Work Plan
 Background Study and Geochemical Evaluation
 Fort Wingate Depot Activity Gallup, New Mexico

Contract No. W912BV-07-D-2004
Delivery Order DM01
Revision 0
Final—January 2009

Prepared for:
U.S. Army Corps of Engineers

Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

Prepared by:
Shaw Environmental, Inc.
2440 Louisiana Blvd. NE, Suite 300
Albuquerque, New Mexico 87110

Table of Contents

List of Figures iii
List of Tables iii
List of Appendices iii
Acronyms and Abbreviations iv
1.0 Introduction 1-1
1.1 Work Plan Organization 1-1
1.2 Background 1-2
1.3 Environmental Setting 1-2
1.3.1 Geographic Setting 1-2
1.3.2 Meteorology 1-2
1.3.3 Demographics 1-2
1.3.4 Geology and Soil 1-5
1.3.4.1 Regional Geology 1-5
1.3.4.2 Site-Specific Geology 1-5
1.3.4.3 Soil Types 1-6
1.3.5 Hydrogeology 1-6
1.3.5.1 Regional Hydrogeology 1-6
1.3.5.2 Site-Specific Hydrogeology 1-7
2.0 Project Management 2-1
2.1 Project Scheduling and Reporting Requirements 2-1
2.2 Project Organization and Resource Management 2-1
2.3 Record Keeping 2-1
2.3.1 Photographic Records 2-5
2.3.2 Sample Documentation 2-5
2.3.3 Sample Numbering System 2-5
2.3.4 Sample Labels. 2-5
2.3.5 Chain-of-Custody Records 2-5
2.3.6 Field Records 2-5
2.4 Documentation Procedures/Data Management and Retention 2-6
2.5 Reporting Requirements 2-6
2.6 Project Personnel 2-7
3.0 Technical Approach 3-1
3.1 Background Metal Concentrations 3-1
3.2 Site-Specific Dilution Attenuation Factors 3-3
3.3 Geographic Information System Submittals 3-4
3.3.1 Plot Size 3-5
3.3.2 Geographical Information System Database 3-5
3.4 Additional Sample Collection 3-5
4.0 Quality Control Plan 4-1
4.1 Approach and Procedures 4-1
4.2 Project Organization 4-2
4.2.1 Project Manager 4-2

Table of Contents (continued)

4.2.2 Senior Geochemist 4-2
4.2.3 Senior Project Chemist 4-2
4.2.4 Contractor QC System Manager 4-2
4.2.5 Health and Safety Manager 4-3
4.2.6 Field Team Leader/Project Geologist 4-3
4.2.7 Project Subcontractors 4-3
4.3 Personnel Qualification and Training 4-4
4.3.1 Project QC Staff Qualification and Training 4-4
4.3.2 Key Project Staff Qualification and Training 4-4
4.3.3 Subcontractor Qualifications 4-4
4.3.4 Safety and Health Training 4-5
4.4 Processes Affecting Quality. 4-5
4.4.1 Quality Control Inspections 4-5
4.4.1.1 Preparatory Phase Inspection 4-7
4.4.1.2 Initial Phase Inspection 4-7
4.4.1.3 Follow-Up Phase Inspection 4-8
4.4.1.4 Additional Inspections 4-8
4.4.2 Corrective/Preventive Action Procedures 4-8
4.4.2.1 Nonconformance Documentation 4-8
4.4.2.2 Continual Improvement 4-9
4.4.2.3 Variance Documentation 4-9
4.4.2.4 Project Documentation 4-10
4.5 Data Management 4-10
4.5.1 Analytical Data 4-10
4.5.2 Earth Science Data 4-10
4.6 Field Operations 4-10
4.6.1 Sampling 4-10
4.6.2 Equipment Calibration and Maintenance Requirements. 4-11
4.6.3 Documentation 4-11
4.7 Submittal Management 4-11
4.7.1 Project Submittals 4-11
4.7.2 Project Records 4-11
4.7.3 Submittal Scheduling 4-12
4.7.4 Review and Approval of Submittals 4-12
4.7.5 Transmittal to Client. 4-13
4.8 Daily QC Reports 4-13
5.0 References 5-1

List of Figures

Figure 1-1 Site Location Map, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Figure 2-1 Shaw Project Management Organization Chart, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico

List of Tables

Table 4-1 Definable Features of Work, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Fort Wingate, New Mexico

List of Appendices

Appendix A Scope of Work

Appendix B Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan)
Appendix C Site Safety and Health Plan
Appendix D Project Points of Contact
Appendix E Resumes of Key Personnel

AFB	Air Force Base
amsl	above mean sea level
BIA	Bureau of Indian Affairs
CQCSM	Contractor QC Systems Manager
DAF	dilution attenuation factor
DFW	definable feature of work
DOE	U.S. Department of Energy
DQCR	Daily Quality Control Report
EPA	U.S. Environmental Protection Agency
EPACMTP	EPA Composite Model for Leachate Migration and
	Transformation Products
oF	degree(s) Fahrenheit
FADL	Field Activity Daily Log
FSP	Field Sampling Plan
FWDA	Fort Wingate Depot Activity
FWV	Field Work Variance
GIS	Geographic Information System
GPS	global positioning system
HSM	Health and Safety Manager
NGVD	National Geodetic Vertical Datum
NMED	New Mexico Environment Department
OSHA	Occupational Safety and Health Administration
QAPP	Quality Assurance Project Plan
QC	quality control
QCP	Quality Control Plan
SAP	Sampling and Analysis Plan
SDS	Spatial Data Standards
SDSFIE	Spatial Data Standards for Facilities and Infrastructure
Shaw	Shaw Environmental, Inc.
SOP	standard operating procedure
SOW	Scope of Work
SSHO	Site Safety and Health Officer
SSHP	Site Safety and Health Plan
TGSM	tailgate safety meeting
UCL	upper confidence limit
USACE	U.S. Army Corps of Engineers
UTL	upper tolerance limit
UTM	Universal Transverse Mercator
VOC	volatile organic compound

1.0 Introduction

This Work Plan provides guidance for activities related to the determination of background concentrations of inorganic constituents and site-specific dilution attenuation factors (DAF) for organic compounds at the Fort Wingate Depot Activity (FWDA) in New Mexico. Shaw Environmental, Inc. (Shaw) has prepared this Work Plan for the U.S. Army Corps of Engineers (USACE) in accordance with the Request for Proposal dated June 30, 2008, and Scope of Work (SOW) dated June 26, 2008 (Appendix A). The project activities described in this Work Plan will be performed under Contract Number W912BV-07-D-2004, Delivery Order DM01 for the USACE, Albuquerque District.

The purpose of this project is to conduct a background study to develop a baseline inorganic geochemical assessment establishing concentrations of naturally occurring inorganic constituents in soil, groundwater, surface water, and sediment. Geologic, hydrogeologic, and geochemical processes that control the distributions of naturally occurring minerals and inorganic compounds within the boundaries Fort Wingate will be identified.

In addition, site-specific DAFs or other approved and appropriate models will be developed for "non-naturally" occurring organic compounds, such as 1,2-dichloroethane; toluene; total explosives (based on a list of 14 separate explosive compounds); perchlorate; and other nonnaturally occurring organic constituents potentially released to the environment. The objective of developing DAF values for organic constituents is to determine potential impacts to groundwater through release at the surface and migration to groundwater. Hence, the overall objective of this project is to determine whether a release has occurred to the environment above natural background levels, and whether a release has the potential to impact groundwater.

1.1 Work Plan Organization

This Work Plan is organized as follows. Chapter 1.0 states the project objectives, discusses the site background, and describes the environmental setting for the FWDA. Chapter 2.0 addresses project management and personnel. Chapter 3.0 presents the technical approach for establishing background metal concentrations, developing DAFs, conducting the monitoring well survey, providing Geographic Information System (GIS) submittals, and collecting samples if additional data are required. Chapter 4.0 provides the Quality Control Plan (QCP), and Chapter 5.0 lists the references cited.

Appendix B contains the project Sampling and Analysis Plan (SAP), which includes the Field Sampling Plan (FSP) and the Quality Assurance Project Plan (QAPP). The Site Safety and Health Plan (SSHP) is provided in Appendix C. Appendix D provides the points of contact for this project, and Appendix E provides the qualifications of key personnel.

1.2 Background

The FWDA is located in west-central New Mexico, approximately 130 miles west of Albuquerque and 7 miles east of Gallup (Figure 1-1). Originally founded in 1860 as a cavalry post, the U.S. Army established Fort Wingate as a munitions storage depot in 1918. The FWDA installation has had a number of missions since then, including ordnance storage, testing, and demilitarization, as well as missile defense testing. The 15,277-acre installation was closed in 1993 under the Base Realignment and Closure program (Malcolm Pirnie, 2000). Although some missile defense testing is still operational at the site, most FWDA operations now focus on assessment and remediation of contamination resulting from past military activities. Efforts to clean up affected areas have focused primarily on the removal of exploded and unexploded ordnance. However, the extent of soil contamination by metals is also being investigated at several areas of concern, including the former Igloo Blocks and Functional Test Ranges. The background concentrations of metals, established by this study, will be used to determine the presence and extent of soil contamination caused by military activities at FWDA.

1.3 Environmental Setting

1.3.1 Geographic Setting

The FWDA occupies approximately 34 square miles (15,277 acres) of land in McKinley County in northwestern New Mexico. The FWDA is located approximately 7 miles east of Gallup, and about 130 miles west of Albuquerque on U.S. Highway 66. The main entrance to the FWDA is on U.S. Highway 66, west from Exit 33 of Interstate 40.

1.3.2 Meteorology

The climate for the Ft. Wingate area varies with elevation, but is generally mild during the summer when temperatures range between 65 and 95 degrees Fahrenheit (${ }^{\circ} \mathrm{F}$), and cold during the winter when average daily temperatures range between 30 to $35^{\circ} \mathrm{F}$. The warmest month of the year is July with an average maximum temperature of $89^{\circ} \mathrm{F}$ (NOAA, 2008), while the coldest month of the year is December with an average minimum temperature of $11^{\circ} \mathrm{F}$. Daily temperature variations tend to be considerable during the summer months with a difference near $35^{\circ} \mathrm{F}$. The annual average precipitation at Gallup is 11.4 inches (NOAA, 2008). The wettest month of the year is August with an average rainfall of approximately 2 inches. Most of the precipitation occurs as rain or hail in violent summer thunderstorms, and the remainder is provided by light winter snow accumulations.

1.3.3 Demographics

The FWDA installation is almost entirely surrounded by federally owned or administered land, including both national forest and tribal lands. Located north and west of the FWDA are Navajo

133366.10000010 A3

Figure 1-1
Site Location Map
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
tribal trust and allotted lands. Development north of the FWDA includes Red Rock State Park; a Zuni railroad siding; an El Paso Natural Gas fractioning plant and housing area; the small Navajo community of Church Rock; the Burlington, Northern, and Santa Fe Railroad; and transportation corridors for Interstate 40 and U.S. Highway 66. The town of Fort Wingate, located immediately to the east of the FWDA on land administered by the Bureau of Indian Affairs (BIA), was the original site of the fort headquarters. Located to the south and southeast is the largely undeveloped Cibola National Forest. Most of the land to the west is undeveloped and is tribal trust and allotment land managed by the BIA, individual Native American allottees, and the Navajo Nation.

1.3.4 Geology and Soil

1.3.4.1 Regional Geology

The FWDA can be divided into the following three topographic areas: (1) the rugged north-to-south-trending Hogback along the western and southwestern boundaries; (2) the northern hill slopes of the Zuni Mountain Range in the southern portion of the FWDA; and (3) the alluvial plains marked by bedrock remnants in the northern portion of the FWDA (Malcolm Pirnie, 2000). The elevation of the FWDA ranges from approximately 8,200 feet above mean sea level (amsl) in the south to 6,600 feet amsl in the north.

1.3.4.2 Site-Specific Geology

The FWDA is located in an erosional basin within the Navajo section of the Colorado Plateau Physiographic Province. During the uplift of the Zuni Mountain Range in the southern and southeastern portion of the installation, the area occupied by the erosional basin was under tensional stress that extensively fractured the bedrock. Differential weathering and erosion along the fractures resulted in the formation of the basin currently occupied by the FWDA (Anderson et al., 2003).

In the northern part of the installation, the surface is covered by either remnants of the Chinle Formation or alluvial deposits. The alluvial deposits consist of sediment deposited by outwash from the Zuni Mountains to the south and the Hogback in the western part of the installation. The Hogback is a monocline fold, where westerly dipping Mesozoic bedrock is exposed to form a long, sharp-crested ridge trending north to south. In areas east of the Hogback, the bedrock generally dips to the north. In the southeastern part of the FWDA, bedrock of Permian and Triassic age was uplifted by a northwest thrust fault (Anderson et al., 2003).

The majority of the FWDA is underlain by the Chinle Formation (Triassic age) that has been dissected by arroyos. The Chinle Formation consists of reddish-brown siltstone and mudstone and grayish-purple mudstone. This formation has low permeability and acts as a confining unit for the underlying San Andres-Glorieta aquifer. Sandstone of the Chinle Formation is relatively weather-resistant and forms the caprock of the remnant bedrock exposures in the northern
portion of the FWDA. The softer mudstone is easily eroded to form badlands or arroyos on hill slopes and in eroded valleys (Anderson et al., 2003).

The Chinle Formation is underlain by San Andres Limestone and Glorieta Sandstone of the Permian age. The San Andres generally consists of two limestone beds separated by a sandstone layer and reaches a maximum thickness of approximately 200 feet. The Glorieta Sandstone is a fine-grained, quartz sandstone with a maximum thickness of approximately 300 feet. The San Andres-Glorieta aquifer is the principle source of water in the area (Malcolm Pirnie, 2000). This aquifer is confined, except in and near outcrop areas, by siltstone and claystone beds in the overlying Chinle Formation. Alluvial deposits are most prevalent in the northern part of the FWDA in lowland areas between bedrock remnants. Alluvial deposits are also present along intermittent streams draining the Hogback and Zuni Mountains, which flow through the northern part of the installation before joining the South Fork of the Puerco River. The alluvium ranges in grain size from clay to gravel, typical of braided stream deposits (Malcolm Pirnie, 2000).

1.3.4.3 Soil Types

Soil types found at FWDA are similar to those in cool plateau and mountain regions of New Mexico. The FWDA soil types commonly found in arroyos are permeable sand and sandy loam clays (DOE, 1990); however, most soil is composed of low permeable clay. Soils at the FWDA are primarily alluvial materials, with the exception of the Hogback along the western border and the northern hill slopes of the Zuni Mountain Range in the extreme southern portion. The alluvial materials, encompassing the area covered by this background study, do not have distinct soil horizons, because they are relatively shallow and the parent bedrock is either at or near the surface in over a quarter of the installation (DOE, 1990).

1.3.5 Hydrogeology

1.3.5.1 Regional Hydrogeology

Main drainages flow generally toward the north until the South Fork of the Puerco River is encountered, except in the southwestern corner of the installation where drainage is toward the west. Streams are intermittent and fed by rain and snowmelt from the Zuni Mountain Range and the Hogback. These streams transport sediment to low-lying areas in the northern part of the installation, creating extensive alluvial deposits among remnants of bedrock.

Due to the nature of precipitation in this semiarid region, the surface drainage is relatively shallow near headwaters. Downward erosion intensifies as the stream moves downstream resulting in a system of well-developed, steep-walled arroyos. Arroyos form because of the erodibility of localized areas of silt and clay rich bedrock (Malcolm Pirnie, 2000).

1.3.5.2 Site-Specific Hydrogeology

Fort Wingate lies between the South Fork of the Puerco River and the northern foothills of the Zuni Mountain Range. Three major drainage systems may be identified: (1) eastern drainage system; (2) western drainage system; and (3) southwestern-corner drainage system. They are divided by either bedrock ridges or bedrock remnants. Also, in the northwest part of the site, two artificial channels were constructed during the 1940s to divert water away from Magazine/Igloo groups A and B and the Administration Area (DOE, 1990).

The eastern drainage system consists of washes that run in northwestern and northeastern directions off the slopes of the Zuni Mountains. Alluvial fans form in basins at the front of the slope, as well as between bedrock remnants. In the northeast section of the installation, the drainage flows around bedrock remnants before joining the South Fork of the Puerco River.

The western drainage system (except for the southwest corner) consists primarily of two drainages covering the western portion of FWDA. Tributaries of the western drainage system pass the demolition area and cross the Hogback, then join flowing north depositing alluvium along the bedrock remnants.

The southwestern-corner drainage system flows southwest and joins the Bread Springs Wash on the western side of the Hogback. Because this system is hydrogeologically isolated from the other parts of the site and installation activities have apparently not occurred in this area, the drainage system is of less environmental concern (DOE, 1990).

This page left intentionally blank.

2.0 Project Management

2.1 Project Scheduling and Reporting Requirements

Shaw is responsible for planning, scheduling, and performing the project activities and fieldwork, as well as documenting and reporting project activities on a daily basis. Shaw is also responsible for compliance with applicable quality control (QC) requirements, overall project safety, the safety and health of workers under its direction, and performance of field activities according to both the Work Plan and regulatory requirements. Appendix B contains the project SAP, which includes the FSP and the QAPP. The SSHP is provided in Appendix C.

Time management will be the responsibility of the Shaw project management team. The schedules set forth in this Work Plan will be followed. Schedule changes associated with the actual project activities may require documentation by a Field Work Variance (FWV), signed by either the Shaw Project Manager or Task Order Manager and the appropriate USACE Technical Managers.

2.2 Project Organization and Resource Management

Personnel at the work site will vary in number, depending on the particular task being implemented. The chain of command is as follows: Shaw subcontractors will report to Shaw, and Shaw will report to the USACE. The organizational chart (Figure 2-1) specifies Shaw personnel responsibilities and reporting lines. Appendix D provides the points of contact for this project, and Appendix E provides the qualifications of key personnel.

All Shaw personnel and Shaw on-site subcontractors will be required to have current hazardous waste training as defined by Title 29 of the Code of Federal Regulations, Section 1910.120. Shaw will directly supervise subcontractors performing fieldwork at all times, and Shaw is responsible for the performance of work by all subcontractors under its supervision.

2.3 Record Keeping

The project also includes an optional task to collect soil, sediment, groundwater, and surface water samples. This task is not presently funded but is included here for completeness.

In addition to the planning documents, the following documents will be prepared or obtained and retained as project records, as appropriate:

This page left intentionally blank.


```
BEC - BRAC Environmental Coordinator
BRAC - Base Realignment and Closure
CQC - Contractor Quality Control
CSP - Certified Safety Professional

FWDA - Fort Wingate Depot Activity GIS - Geographical Information System PG - Professional Geologist

Figure 2-1

\section*{Shaw Project Management Organization Chart Background Study and Geochemical Evaluation}
- Field documentation, including daily tailgate safety meeting (TGSM) forms, field activity daily logs (FADL), FWVs, telephone/meeting logs, sample collection forms, equipment calibration records, field audits/inspections records, well purging logs, and monitoring well survey data
- Training documentation as specified in the SSHP (Appendix C)

\subsection*{2.3.1 Photographic Records}

Photographs of field activities will be taken routinely, kept on file, and provided to the USACE as directed.

\subsection*{2.3.2 Sample Documentation}

Use of sample documentation, including sample numbers, labels, and chain-of-custody records, will follow the procedures and use the forms described in the SAP.

\subsection*{2.3.3 Sample Numbering System}

Samples will be assigned a unique field identification number specific to the FWDA. Typically, the field identification number will consist of a combination of parcel, area of concern, source, and other descriptions as specified for FWDA. The specific sample numbering system for the FWDA project is outlined in the FSP (Appendix B, Part I).

\subsection*{2.3.4 Sample Labels}

Sample labels will be affixed to each sample container. Complete collection information, sample type, matrix, time, date, field number, analysis requested, and the sampler's name will be recorded with indelible ink.

\subsection*{2.3.5 Chain-of-Custody Records}

Chain-of-custody documentation will be completed in the field using the U.S. Environmental Protection Agency (EPA) software, "FORMS II Lite, Version 5.1," (or latest revision) in order to document sample collection, possession, and the chain of custody. A sample is considered to be in a person's custody while either under physical possession or safely secured in a controlled access location. Sample custody can be transferred by signature relinquishment and acceptance. Shipping company waybills or bills of lading are considered part of the custody record between the time of collection and receipt at the analytical laboratory. Chain-of-custody records will accompany the sample shipment until receipt at the contractor laboratory.

\subsection*{2.3.6 Field Records}

Records of field analytical or monitoring measurements will be recorded on preprinted, prepared forms. Field documentation will consist of FADLs, sample collection logs, analytical request/chain-of-custody forms, and waste tracking logs, as applicable. Soil sampling locations will be surveyed and documented; measurements for groundwater elevation, discharge volumes
and rates, and groundwater quality measurements will be taken and recorded in accordance with the SAP (Appendix B).

\subsection*{2.4 Documentation Procedures/Data Management and Retention}

Documentation procedures will follow the QCP (Chapter 4.0). All field documentation will be provided in the final report of the field activities.

\subsection*{2.5 Reporting Requirements}

In addition to the records generated during the implementation of Delivery Order DM01, following the completion of the activities at FWDA, a report will be prepared in draft, draft final, and final iterations and submitted to the USACE. The report will include the following elements as outlined in the SOW (Appendix A):
- Table of Contents
- List of Tables
- List of Figures
- Acronyms
- Chapter 1.0 Introduction
- Project Objectives
- Project Location
- Project History
- Regulatory Framework
- Geologic Setting
- Physical Setting
- Ecological Setting
- Soils
- Surface Water
- Groundwater
- Sediment
- Chapter 2.0 Sampling Methodology
- Previous Background Soil Sampling
- Additional Sampling Locations
- Sampling Procedures
- Sample Analysis
- Chemical Analysis for Metals
- Physical Analysis
- Chemical Analysis for Organic Contaminants
- Chapter 3.0 Identification of Statistical Issues
- General Approach
- Geochemical Evaluation of Pre-Existing Data
- Geochemical Evaluation of New Data
- DAF Calculations or Model
- Methodology
- Chapter 4.0 Results of Statistical Analysis
- Outlier Analysis
- Uncertainties
- Tests for Geological Group Differences
- Tests for Lithologic Group Differences
- Calculation of Summary Statistics
- Chapter 5.0 Conclusions
- Chapter 6.0 References

\subsection*{2.6 Project Personnel}

The following positions will be regarded as key project personnel:
- Project Manager: Mike Goodrich, PG
- Senior Geochemist: Jonathan Myers, PhD
- Senior Project Chemist: Mark Lyon, GISP
- Field Team Leader: Dale Flores, PG
- Health and Safety Manager (HSM): James Vigerust, CSP
- Contractor QC Systems Manager (CQCSM): Craig Givens

The resumes of key personnel assigned to the project are provided in Appendix E. Figure 2-1 presents the project organizational chart.

Mike Goodrich, PG. Mr. Goodrich is a Professional Geologist and will be the Project Manager responsible for day-to-day progress on the project. He is responsible for keeping the project on schedule and within budget, preparing all required deliverables, and participating in all project meetings. In addition, Mr. Goodrich is a Senior Hydrologist with more than 22 years of technical experience in New Mexico; as such, he will take the lead in determination of sitespecific DAFs.

Jonathan Myers, PhD. Dr. Myers has nearly 30 years of experience and is the Senior Geochemist on this project. He has directed the characterization of statistical distributions of background concentrations of naturally occurring metals and radionuclides in soil and groundwater at Sandia National Laboratories and Kirtland Air Force Base (AFB). Dr. Myers pioneered the use of geochemical correlations to distinguish between contamination versus naturally high background concentrations of metals in groundwater, surface water, sediment, and soil. He has applied these geochemical evaluation techniques at numerous U.S. Department of Defense, U.S. Department of Energy (DOE), and commercial facilities and has made several presentations on the topic to the New Mexico Environment Department (NMED). He also teaches short courses on geochemical evaluation techniques at environmental remediation conferences.

Mark Lyon, GISP. Mr. Lyon has 29 years of experience-23 years in applied environmental sciences and 6 years as a laboratory analyst and engineering technician involved in chemical analysis, chemical process engineering, and data acquisition instrumentation and process controls. He is also certified by ESRI as a GIS Professional and has experience in cadastral and engineering surveying, aerial photo interpretation, cartography, forest and rangeland resource inventories, and the construction trades.

Dale Flores, PG. Mr. Flores is a Professional Geologist with 20 years of experience conducting surface and subsurface soil and groundwater investigations. He has extensive experience in the selection of sample collection techniques needed to optimize the sampling design. In addition, Mr. Flores is a project manager and directs groundwater monitoring activities for the USACE, the DOE, and commercial clients as well as managing site investigations and performing monitoring well installations. He has managed field programs and written reports on groundwater and soil investigations.

James Vigerust, CSP. Mr. James Vigerust is a certified safety professional and will act as the HSM. He will serve as an advisor in evaluating health and safety concerns with respect to hazardous waste issues and general work practices. As the HSM, Mr. Vigerust will either conduct a safety audit himself or assign a Site Safety and Health Officer (SSHO) to perform the safety audit to determine whether operations are being conducted in accordance with the SSHP requirements and Occupational Safety and Health Administration (OSHA) regulations. The HSM/SSHO will have the authority to take immediate steps to correct unsafe or unhealthful conditions including the stoppage of fieldwork when deemed necessary.

Craig Givens. Mr. Givens will act as the CQCSM. As CQCSM, Mr. Givens will work with the Project Manager to ensure that all project activities comply with applicable specifications of this QCP, the approved documents, and the contract. Details of the CQCSM's responsibilities are provided in Section 4.2.

\subsection*{3.0 Technical Approach}

The overall approach to the work at the FWDA has been developed and is described in the SOW as follows:
- Evaluate existing geochemical data and establish background concentrations for naturally occurring inorganic constituents in soil, groundwater, surface water, and sediment
- Develop site-specific DAFs for "non-naturally" occurring organic compounds to determine allowable soil concentrations that are protective of groundwater
- Provide GIS support as needed
- Attend meetings and support the USACE in regulatory discussions as requested

The SOW also includes an optional task to collect soil, sediment, groundwater, and surface water samples if additional data requirements are identified. This task is not presently funded but is included in this chapter for completeness and discussed in detail in the SAP (Appendix B).

\subsection*{3.1 Background Metal Concentrations}

The background data screening process will include multiple procedures based on statistics and geochemistry that are designed to identify and remove potentially contaminated samples from the data sets, such that the remaining samples contain only naturally occurring concentrations of metals. These steps will be performed sequentially, although some iteration between steps may be necessary. Steps required for this task are described in this section. Following Step 7, "surviving" data will be regarded as representative of background metal concentrations at the FWDA. These data will be assessed for adequacy with regard to the number of samples and geographic coverage. At the discretion of the USACE, additional samples may be obtained if the existing screened data are deemed insufficient. Background summary statistics shall be calculated based on screened data. These statistics will include the minimum, median, arithmetic mean, 95th upper confidence limit (UCL) of the mean, 95th upper tolerance limit (UTL), and the maximum concentration. The UCLs and UTLs shall be calculated using nonparametric bootstrap methods to maintain consistency and avoid bias (EPA, 1997).

The results for a considerable number of analyses of soil, sediment, groundwater, and surface water have been made available to Shaw as several database compilations. The sample dates range from 1992 through 2008. Some of the analyzed samples are from background investigations and some are from focused site investigations. The background data includes a set of background sediment samples obtained in 1992 and sets of background soil samples obtained in 1992, 1996, and 1999. The 75 background soil samples obtained in 1999 were used in the

Soil Background Concentration Report, prepared by Malcolm Pirnie, Inc. (Malcolm Pirnie, 2000). A much larger number of samples were obtained from focused site investigations. All of the analytical data will be screened using the following steps:
1. Screen data for acceptable quality, considering analytical methods, method reporting limits, quantitation limits, matrix interferences, presence of laboratory qualifiers, comparisons of duplicate results, etc.
2. Perform a statistical outlier test for each metal. Examine outliers to determine whether they reflect site-related contamination (see Step 6), transcription errors, etc., and eliminate as appropriate.
3. Eliminate "high nondetects" (nondetected results that are present in the upper 10 percent of the distribution). Removal of these results ensures that the background screening values are not biased high due to nondetections with elevated reporting limits.
4. Eliminate samples that exhibit impacts from the presence of organic contaminants. The presence of high concentrations of organic constituents in groundwater can, under certain conditions, depress the local redox potential of the aquifer. Redox depression can cause the dissolution of naturally occurring iron and manganese oxide minerals. These minerals have very strong affinities to adsorb certain elements including antimony, arsenic, molybdenum, selenium, and vanadium; which can become mobilized when the oxide minerals dissolve. This "reductive dissolution" effect can be easily identified in volatile organic compound (VOC)-impacted groundwater samples because they will have low dissolved oxygen and redox potential; and elevated dissolved iron, manganese, and associated trace elements. VOC-impacted soil samples may also have altered trace metal concentrations due to redox effects. Additionally, some sources of VOC contamination in soil, such as used motor oil or leaded gasoline, can contain metals.
5. Prepare probability plots of metal concentrations to identify the presence of multiple distributions and statistical outliers. Examine outliers to determine whether they reflect site-related contamination (see Step 6) and eliminate as appropriate.
6. Perform geochemical evaluation to determine whether metal concentrations are naturally occurring. This step involves examining selected trace versus major element ratios to identify samples with anomalously high ratios. Samples exhibiting anomalous trace versus major element ratios should be considered suspect and be eliminated from the candidate background data set. The advantage of the geochemical evaluation is that it distinguishes anomalously high metal concentrations from naturally elevated concentrations in groundwater samples with elevated turbidity. Samples with elevated turbidity will be retained if no evidence of contamination is observed; this allows the background groundwater data set to reflect the full range of concentrations that are likely to be observed in the site data sets, thus avoiding a low bias in the background screening values. For reference, the theory and application of
geochemical evaluations in soil and groundwater can be found in Myers and Thorbjornsen (2004) and Thorbjornsen and Myers (2007), respectively.
7. Spatial relationships shall be considered during the screening process to determine whether subpopulations are present in the background data sets. Surface and deep soil samples may show different distributions, as may groundwater samples obtained from different hydrostratigraphic units. If evidence for subpopulations exists, these data shall be subdivided into groups, and separate background distributions will be defined for each group.

Following data screening, Shaw will develop background data sets and characterize background distributions for metals in soil, groundwater, surface water, and sediment at the FWDA. Due to the considerable amount of existing data, the approach shall be based on evaluating the existing data for adequacy in characterizing background distributions. These existing data shall be extensively screened using a rigorous multi-step process based on a combination of statistical and geochemical techniques to identify and eliminate any samples that (1) are not of sufficient quality, and (2) do not represent background conditions. Additional samples may be required to supplement the existing data if data that survives the screening process is inadequate with respect to the number of samples or the spatial coverage of the samples.

Extracting background data in this manner (termed "data mining") is a cost-effective approach that maximizes the value of the existing data and minimizes the number of new background samples that are necessary. The data mining approach for background characterization from existing data sets shall be conducted for this study and is recommended for environmental soil and sediment investigations by the U.S. Navy (Navy, 2002 and 2003). This approach has been successfully applied to soil and groundwater in New Mexico at Kirtland AFB and Sandia National Laboratories (IT Corporation, 1996) with approval from the NMED. Following screening of these data (and acquiring additional data if necessary), the second step required for this task is to characterize the background distributions for the 23-element Target Analyte List in each media based on EPA guidance (EPA, 1989; 1992; 1994; 1995; and 1997).

\subsection*{3.2 Site-Specific Dilution Attenuation Factors}

The purpose of developing DAFs is to calculate a maximum allowable soil contaminant concentration that is protective of groundwater resources at the FWDA. Shaw will develop sitespecific DAF values consistent with the methodology described in the Technical Background Document for Development of Soil Screening Levels, Rev. 4 (NMED, 2006) and the Soil Screening Guidance: User's Guide, Second Edition (EPA, 1996). Shaw will use the EPA's Composite Model for Leachate Migration and Transformation Products (EPACMTP) (EPA, 1994b) to calculate DAFs based on site-specific hydraulic and hydrogeologic parameters. The EPACMTP code contains both saturated and unsaturated flow and transport modules, as well as
a Monte Carlo routine that allows for a stochastic analysis of the uncertainty in model input parameters.

DAF determination will focus on flow and transport through the vadose zone at FWDA. Primary assumptions in the EPACMTP unsaturated zone module include (EPA, 1994b):
- The source area is rectangular
- Contaminants are distributed uniformly over the source area
- The soil is a homogenous and isotropic porous medium
- Flow is one-dimensional and vertically-downward
- Flow is steady state and driven by the infiltration rate
- Contaminants are present in solution or soil solid phase only
- Sorption of contaminants is described by a linear or nonlinear isotherm
- Chemical or biological degradation is described by a first order decay coefficient
- Leachate concentration entering the soil column is either constant (with either a finite or infinite duration) or decreases with time following a first order decay process

Site-specific hydrogeologic parameters, including but not limited to, the depth to groundwater, the soil type and vertical stratigraphy in the vadose zone, initial conditions/concentration in the soil, and infiltration rates from natural or man-made recharge will be applied. Geologic logs from FWDA wells and boreholes will be analyzed to determine a conceptual model of the vertical stratigraphy and geology. As much site specific input data will be used as possible; when not available, literature values will be used instead. Previous analyses indicate that EPACMTP results are most sensitive to infiltration rate (EPA, 1994b); therefore Shaw expects to treat this parameter as uncertain and use the Monte Carlo module to quantify the effect of a range of infiltration rates.

Model results will be used to determine a DAF that can be applied to specific soil contaminant concentrations and still be protective of groundwater at FWDA.

\subsection*{3.3 Geographic Information System Submittals}

The purpose of geospatial information and electronic submittals is to manage GIS technology to effectively coordinate and integrate all pertinent data collected at the FWDA. This information can then be analyzed and used to manage project-related spatial data. Examples of data used within the GIS may include monitoring well locations, soil sampling locations, topography, and physiographic features such as roads, buildings, and streams. Where appropriate, GIS
applications will be developed and used to integrate spatial data (maps) with tabulated data stored in databases.

Shaw's standard GIS platform is ArcView, currently Version 9.2. Any new geographic data collected during this project will be recorded in the UTM system (meters). All GIS and other electronic submittals will be provided to the USACE upon completion of this delivery order in accordance with the Geospatial Information and Electronic Submittals DID [Data Item Description] MR-005-07.01, dated December 20, 2007.

The data work flow and relationship between all primary components of the digital record will be documented to facilitate the use of these data by all interested parties. Close coordination will be required among database managers, staff processing field data, GIS analysts, and project task managers. Data will be differentiated between raw and final.

\subsection*{3.3.1 Plot Size}

Plot size may vary according to scale. In general, the default size for each sheet that is plotted will be standard D-size plots ( \(36 \times 24\) inches). Each sheet will have standard borders as dictated by the project and include a revision block; title block; complete index sheet layout; bar scale; legend describing SDS for Facilities and Infrastructure (SDSFIE)-compliant map symbology; grid lines or grid tic layout in feet; a True North Arrow, a Magnetic North Arrow, and a grid North arrow with their differences shown in minutes and seconds; and the computer file path location where the digital map is stored.

\subsection*{3.3.2 Geographical Information System Database}

Shaw will maintain a database of Federal Geographic Data Committee-compliant metadata for each GIS layer, including information such as the name of the GIS Analyst, when it was made, each and all updates, dates of updates, and what was changed. This GIS data management system will also include the location of SDSFIE-compliant layers, all known metadata (using the National Geospatial Data Standards as a guide) for each layer, and will be capable of providing tabular reports of each GIS layer. This information will be tracked by utilizing the data management tools included with the latest version of ArcGIS applications.

\subsection*{3.4 Additional Sample Collection}

Additional soil and sediment sample collection may be required to supplement the existing data. Data quality objectives for supplemental soil and sediment sample collection will be developed with stakeholder input prior to sample collection. At a minimum, the DQOs will take into account spatial distribution of samples, soil types, geologic environment, sample depth, sample collection method (multi-incremental versus discrete sampling), and delineation of associated aerial boundaries i.e. decision units if MI soil sampling is selected. An amended sampling and
analysis plan will be prepared outlining the details of the methods to be employed for the supplemental sample collection. Samples will be collected in accordance with the methods discussed in the SAP (Appendix B) and described in Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents (USACE, 2007).

\subsection*{4.0 Quality Control Plan}

The overall SOW for this project involves analyzing existing data to determine background levels for naturally occurring inorganic constituents in soil, groundwater, surface water, and sediment at the FWDA; establishing site-specific DAFs for non-naturally occurring organic compounds/constituents; provide GIS submittals and collecting additional samples (if additional data is determined to be required).

The objectives of this QCP are to address the specific operating needs of the project and to establish the necessary levels of management and control to ensure all work performed meets the technical requirements of the applicable project plans and conforms in all respects to the requirements of the contract and applicable regulations. Specifically, this QCP addresses the following:
- Identifies the project organization
- Identifies personnel qualification and training requirements
- Identifies the processes affecting quality
- Defines corrective/preventive action procedures
- Describes data management procedures
- Defines field operations (site reconnaissance, surveying, and sampling and analysis)
- Describes procedures used to ensure contract submittals are reviewed/processed to ensure they meet contractual requirements
- Describes QC reporting requirements

\subsection*{4.1 Approach and Procedures}

This QCP is a subpart of the overall Work Plan and identifies the approach and operational procedures to be employed to perform QC during activities associated with the project. This QCP identifies the definable features of work (DFW) for the project for which QC practices and procedures will be implemented. The quality requirements and systems established in this QCP are relevant and applicable to all project work identified in the Work Plan and performed by Shaw and its subcontractors and suppliers under this project.

Once approved, the distribution of this Work Plan shall be controlled by the CQCSM in order to ensure that the most recent, accepted version is available at all locations where investigative activities covered by this Work Plan are performed.

Revisions and FWVs to this Work Plan will require the same level of approval, control, and distribution as the original.

\subsection*{4.2 Project Organization}

The project organization chart is depicted in Figure 2-1 of this Work Plan. Quality-related responsibilities and authorities of essential personnel in this organization are outlined in the following sections. Chemical QC organizational requirements, roles/responsibilities, and authorities are further defined in the project SAP and laboratory QAPP (Appendix B).

\subsection*{4.2.1 Project Manager}

The Project Manager, Mike Goodrich, PG, will report to the Shaw Program Manager, Kenny Hadash, and will be responsible for the quality and timeliness of all project activities, including those performed by subcontractors. The Project Manager will be responsible for implementing this QCP and supporting the efforts of the CQCSM and other project personnel performing QC functions.

\subsection*{4.2.2 Senior Geochemist}

The Senior Geochemist, Jonathan Myers, PhD, will report to the Project Manager and will be responsible for evaluating the existing data and determining background concentration data sets for inorganic constituents in soil, groundwater, surface water, and sediment. The Senior Geochemist will be responsible for data mining and data management (including control) of the existing data.

\subsection*{4.2.3 Senior Project Chemist}

The Senior Project Chemist, Mark Lyon, GISP, will report administratively to the Project Manager. Mr. Lyon is responsible for managing all project chemical sampling and analysis tasks. Mr. Lyon will serve as the point of contact for USACE on all environmental chemistry and chemical QC issues. Additional project and QC-related qualification requirements, responsibilities, and authorities for the Senior Project Chemist are detailed in the project SAP and analytical QAPP.

\subsection*{4.2.4 Contractor QC System Manager}

The CQCSM, Craig Givens, will support the Project Manager in day-to-day operations. The CQCSM will have the requisite authority, including stop-work authority, to ensure that all project site activities comply with applicable specifications of this QCP, the approved project documents, and the contract. This authority applies equally to all project activities, whether performed by Shaw or its subcontractors and suppliers.

The CQCSM will be responsible for planning and executing QC oversight of project operations, and shall ensure compliance with specified QC requirements in project plans, procedures, and contract documents. Specifically, the responsibilities of the CQCSM include the following:
- Develop, maintain, and assess the effectiveness of the project QCP-related procedures and work plans.
- Review the qualifications of proposed technical staff and subcontractors.
- Plan and ensure the performance of preparatory, initial, follow-up, and completion inspections for each DFW and issue the Daily Quality Control Report (DQCR).
- Verify that subcontracted laboratories have and operate under a QC program that complies with the Project QCP, SAP and analytical QAPP, and applicable requirements of the contract.
- Assign additional qualified personnel to conduct field and chemical QC activities when justified by project work scope and circumstances.

The CQCSM is also responsible for attending the project coordination meetings and project kickoff meetings. The CQCSM shall review, track, and assess quality issues identified during the project execution. If absent from the site during project operations, the CQCSM will designate an alternate with equivalent responsibility and authority.

\subsection*{4.2.5 Health and Safety Manager}

The HSM, James Vigerust, CSP, will support the Project Manager and/or the Field Team Leader/Project Geologist in management of health and safety for day-to-day field operations. The HSM may delegate health and safety oversight of field operations to an SSHO.

\subsection*{4.2.6 Field Team Leader/Project Geologist}

The Field Team Leader/Project Geologist, Dale Flores, PG, will provide field oversight, coordinate project-related activities, and will have the authority and responsibility to stop work when, in his opinion, continuation of work would pose an unacceptable safety or health risk to personnel on the site or when nonconformance to approved project plans occurs. The Field Team Leader/Project Geologist will work with the CQCSM to implement the QCP.

\subsection*{4.2.7 Project Subcontractors}

The project may require the use of subcontracted services for analytical laboratory services. Subcontracted work will be conducted in accordance with the requirements of the contract, the Work Plan and SAP, subcontractor SOWs, and the project QCP.

\subsection*{4.3 Personnel Qualification and Training}

Project staff shall be qualified to perform their assigned jobs by the establishment and enforcement of minimum qualification requirements for key positions, verification of initial and continued personnel proficiency, and implementation of a formal training program (where necessary) to achieve and maintain work-related proficiency as outlined herein.

\subsection*{4.3.1 Project QC Staff Qualification and Training}

The CQCSM shall be USACE-certified in Construction Quality Management. Supplemental project QC personnel, if required to perform inspection activities during the course of the project, are to be qualified and certified by the CQCSM in accordance with established Shaw protocols for the QC function provided.

The CQCSM will be responsible for providing QC implementation and USACE QC protocol indoctrination and training to Shaw staff assigned to the project on a formal and as-needed basis.

\subsection*{4.3.2 Key Project Staff Qualification and Training}

The Project Manager shall establish minimum qualification requirements for additional key staff positions on this project through review of contractual and other project-related requirements. The Project Manager/CQCSM shall review the qualifications of proposed key personnel against job qualifications before work may be conducted. Resumes of key project personnel are provided in Appendix E.

Senior technical staff members are to provide newly assigned technical staff on-the-job training related to specific job requirements and techniques on an as-required basis. Particular emphasis shall be paid to problem prevention. Senior staff shall monitor work performed by newly assigned staff. The frequency of monitoring shall be dependent upon the individual's demonstrated proficiency to perform assigned duties.

\subsection*{4.3.3 Subcontractor Qualifications}

The CQCSM is responsible for verifying that subcontractors possess the requisite qualifications before procurement of services.

Subcontractors to Shaw may not subcontract their responsibilities on this project to a third party or organization without prior and written approval of the Shaw Project Manager. Where required by Work Plan assignment or procurement document requirements, Shaw QC staff shall work with major subcontractors to ensure that the subcontractor develops and implements, as necessary, supplier QC and internal training programs.

\subsection*{4.3.4 Safety and Health Training}

Safety and health training requirements shall be established and implemented in accordance with Shaw policies and procedures specified in the SSHP (Appendix C). At a minimum, site workers and QC staff who may encounter hazardous wastes shall have completed the OSHA Hazardous Material Site Worker Training (40-hour initial training and, as applicable, 8-hour annual refresher courses). The Field Team Leader/Project Geologist shall have also completed the OSHA Hazardous Material Site Worker Training and 8-Hour Supervisor Training.

\subsection*{4.4 Processes Affecting Quality}

To verify the performance of work activities in accordance with approved work instructions and QC program requirements, a system of planned and documented inspections will be implemented. Both internal activities and the activities of subcontractors, if applicable, will be monitored. These assessments may include the following areas:
- Conformance to data quality objectives
- Transmittal of information
- Record control and retention
- Inspection of Shaw- and subcontractor-provided materials, capabilities, and/or performance

It is the ultimate objective, through the implementation of this quality program system, to measure and judge the quality of performance of the project activities. This system will be implemented by reviewing methodologies (in the form of this Work Plan and standard operating procedures [SOP]), observing the way methods are executed, and noting the conditions of the environment in which they are performed. The qualifications of the personnel completing the work are also part of the scope of a complete quality program. If variability from these sources can be reduced through a successful quality program implementation, the consistency of the samples collected, the data gathered, the analyses performed, and the results reported can be improved.

\subsection*{4.4.1 Quality Control Inspections}

The QC staff (including CQCSM, the Field Team Leader/Project Geologist, and the Senior Project Chemist) will be responsible for assisting the Shaw Project Manager in maintaining compliance with this QCP through the implementation of a three-phase inspection process. This section specifies the minimum requirements that must be met and to what extent QC monitoring must be conducted by the QC staff. The inspection system is based on the three-phase system of control to cover the activities. The three-phase inspection system consists of preparatory, initial,
and follow-up inspections for applicable DFWs. The three-phase inspection system will be performed on all DFWs. Details of the three-phase inspection system follows.

A DFW is defined as a major work element that must be performed to execute and complete the project. It consists of an activity or task that is separate and distinct from other activities and requires separate control. The DFWs that have been identified for this project are listed in Table 4-1.

Table 4-1
Definable Features of Work
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Fort Wingate, New Mexico
\begin{tabular}{|c|c|c|c|}
\hline Feature No. & Definable Feature Of Work & Responsible Organization & Work Document Reference \\
\hline 1 & Establish background data sets for soil, groundwater, surface water, and sediment & Shaw & Work Plan, Section 3.1 \\
\hline 2 & Develop site-specific dilution attenuation factors (modeling) & Shaw & Work Plan, Section 3.2 \\
\hline 3 & Use GIS to develop maps of site features & Shaw & Work Plan, Section 3.3 \\
\hline 4 & Perform background surface soil sample collection, handling, and shipment (optional task) & Shaw & Work Plan, Sections 2.3 and 3.4; SAP \\
\hline 5 & Conduct analyses of soil samples (optional task) & Shaw/Subcontractor Laboratory & SAP/QAPP \\
\hline 6 & Perform chemical data review and validation (optional task) & Shaw & SAP/QAPP \\
\hline 7 & Prepare report & Shaw & Work Plan, Section 2.5 \\
\hline \begin{tabular}{l}
GIS \\
QAPP \\
SAP \\
Shaw
\end{tabular} & \begin{tabular}{l}
= Geographic Information System. \\
= Quality Assurance Project Plan. \\
= Sampling and Analysis Plan (Appendix B). \\
= Shaw Environmental, Inc.
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.4.1.1 Preparatory Phase Inspection}

A preparatory phase inspection will be performed prior to beginning each DFW. The purposes are to review applicable work plans, processes, and specifications and verify that the necessary resources, conditions, and controls are in place and compliant before the start of work activities. The QC staff shall verify that lessons learned during similar previous work have been incorporated as appropriate into the project procedures to prevent recurrence of past problems. The QC staff shall generate and use a Preparatory Phase Inspection Checklist. Work plans and operating procedures are to be reviewed by the QC staff to ensure that prequalifying requirements or conditions, equipment and materials, appropriate work sequences, methodology, hold/witness points, and QC provisions are adequately described. The QC staff shall verify, as applicable, the following:
- The required plans and procedures have been prepared and approved and are available to the field staff.
- Field equipment and materials meet required specifications.
- Field equipment is appropriate for intended use, available, functional, and calibrated.
- Work responsibilities have been assigned and communicated.
- Field staff possesses the necessary qualifications, knowledge, expertise, and information to perform their jobs.
- Arrangements for support services (such as on-site testing and off-site test laboratories) have been made.
- Prerequisite site work has been completed.

Discrepancies between existing conditions and approved plans/procedures are to be resolved. Corrective actions for unsatisfactory and nonconforming conditions identified during a preparatory inspection are to be verified by the QC staff prior to granting approval to begin work.

\subsection*{4.4.1.2 Initial Phase Inspection}

An initial phase inspection will be performed, as applicable, the first time each DFW is performed. The purposes will be to check preliminary work for compliance with procedures and specifications, to establish the acceptable level of workmanship, and to check for omissions and resolve differences of interpretation. The QC staff shall generate and use an initial inspection checklist. The QC staff will be responsible to ensure that discrepancies between site practices and approved specifications are identified and resolved. The QC staff will oversee, observe, and inspect all applicable DFWs at the project site and ensure that off-site activities, such as analytical testing, are properly controlled. Discrepancies between site practices and approved
plans/procedures are to be resolved and corrective actions for unsatisfactory and nonconforming conditions or practices are to be verified by the CQCSM or designee before granting approval to proceed.

\subsection*{4.4.1.3 Follow-Up Phase Inspection}

Follow-up phase inspections will be performed, as applicable, periodically while the DFW is performed in order to ensure continuous compliance and level of workmanship. The QC staff will be responsible to monitor on-site practices and operations taking place, verify continued compliance of the specifications and requirements within the contract, site work scope, and applicable approved project plans and procedures. Discrepancies between site practices and approved plans/procedures will be resolved, and corrective actions for unsatisfactory and nonconforming conditions or practices must be verified by the QC staff prior to granting approval to continue work. Follow-up inspection results will be summarized in the DQCR.

Periodic checks of procedures and/or documentation will be made for completeness, accuracy, and consistency. Follow-up inspections of field activity will typically include a review of field data and any calibration logs for all instruments in use.

\subsection*{4.4.1.4 Additional Inspections}

Additional inspections may be performed on the same DFW at the discretion of the client or the QC staff. Completion and acceptance inspections will also be performed to verify that project requirements relevant to the DFW are satisfied.

\subsection*{4.4.2 Corrective/Preventive Action Procedures}

Regular inspections should prevent deviations from the work plans and methods being used to perform quality work. However, this is not always the case. When unplanned deviations are detected that may affect the quality of the work performed, a nonconformance will be reported. If a change is required prior to beginning work, it will be documented as a revision to the plan document or as a planned variance (FWV).

\subsection*{4.4.2.1 Nonconformance Documentation}

Complex field investigation, sampling, and analysis tasks are sometimes subject to nonconformances. A nonconformance is defined as an unplanned deviation that occurs during the implementation of a task that cannot usually be corrected until after it has occurred. Nonconformances may include using unapproved methods, not following procedures, or substituting unapproved materials or equipment to perform an activity. All nonconformances must go through a cycle of being identified, documented, assessed, and corrected, and will be reported. Each of these steps is critical in handling nonconformances as they are encountered.

The identification of a nonconformance is the responsibility of every person assigned to support the project. This responsibility is incorporated into each person's understanding of the tasks assigned by the supervisor or task leader and the individual's function on the project. As personnel perform their duties on the project, they must constantly be aware of the scope of the activity and recognize when a deviation from the planned activity has occurred or is occurring. After recognizing deviations, they must take action by informing their supervisors or site leaders and documenting in writing the specifics of what occurred using a nonconformance report. Shaw SOP EI-Q007, "Nonconformance Reporting," provides the details of how nonconformances will be reported and tracked. When completed, the nonconformance report may be reviewed by a peer or supervisor and will be presented to the Project Manager. The Project Manager will evaluate the nonconformance report and may assign a lead individual to work with the person who identified the nonconformance (and other team members as needed) to assess its impact on the project and develop corrective actions. Shaw SOP EI-Q008, "Corrective Action," details the corrective action process. The completed nonconformance report and documentation of any corrective action taken will be included as a permanent part of the project file.

\subsection*{4.4.2.2 Continual Improvement}

Project staff at all levels are to be encouraged to provide recommendations for improvements in established work processes and techniques. The intent is to identify activities that are compliant but can be performed in a more efficient or cost-effective manner.

Typical quality improvement recommendations include the identification of an existing practice that should be improved (e.g., a bottleneck in production) and/or recommendations for an alternative practice that provides a benefit without compromising prescribed standards of quality. Project staff members are to bring their recommendations to the attention of project management or QC staff through verbal or written means.

Deviations from established protocols are not to be implemented without prior written approval of the Project Manager and concurrence of the CQCSM. Staff-initiated recommendations resulting in tangible benefits to the project should be formally acknowledged by project management personnel.

\subsection*{4.4.2.3 Variance Documentation}

FWVs shall be used to address discrepancies, unforeseen conditions, inaccurate assumptions made during the work planning stages, job site interferences, and other work problems discovered during project activities that conflict with the execution of the work as detailed by the work planning documents (Work Plan, procedures, etc.). Although FWVs may be initiated for any number of reasons, the chief benefit of a FWV is to provide an expedited, documented, and
technically authorized departure or change to previously approved work planning documents in order to continue with the timely execution of the project.

\subsection*{4.4.2.4 Project Documentation}

In the performance of project tasks, Shaw and its subcontractor personnel are required to complete the necessary documentation to record such events as nonconformances, FWVs, and decisions and action items from meetings held with regulatory agencies or the USACE. This project documentation will supplement basic documentation, which can consist of field investigation data, sample collection information, analytical data records, and field reconnaissance. To assist in the collection of information, project documentation procedures have been developed and specialized forms designed. These procedures and documents are either provided as discussed in the previous sections of this document or are Shaw SOPs located on the Shaw intranet site.

\subsection*{4.5 Data Management}

Data management for this project may include the management of existing analytical laboratory data provided by the USACE for the purpose of establishing background concentrations and newly collected earth science and analytical data from optional additional soil, groundwater, surface water, or sediment sample collection and analysis.

\subsection*{4.5.1 Analytical Data}

Laboratory analytical data requirements for munitions constituents soil sampling are outlined in the QAPP portion of the SAP (Appendix B, Part II).

\subsection*{4.5.2 Earth Science Data}

Shaw has a defined process for managing earth science data collected in the field, including geology, lithology, hydrogeology, and field parameters. These data are documented on field log forms designated for the specific medium and data type, and the data are recorded in bound logbooks. These data are organized in the field into packages that contain all the relevant data from a specific site, parcel, or area. Once compiled and organized, all project earth science data will be subjected to a final review by a qualified professional to ensure completeness, consistency, and conformance with site conditions.

\subsection*{4.6 Field Operations}

\subsection*{4.6.1 Sampling}

The SAP FSP contains a detailed discussion of sampling activities that may be performed. The SAP describes sampling methodologies, record-keeping, and quality requirements. Hand-held GPS monitors will assist in the location of specific sampling locations, which will be documented in FADLs and the DQCRs.

\subsection*{4.6.2 Equipment Calibration and Maintenance Requirements}

Equipment calibration and instrument standardization procedures will be implemented to ensure accuracy and repeatability of all collected field data. Calibration and maintenance of any field sampling equipment or survey equipment will be documented on standard calibration logs and retained as project records. If equipment is found to be out of calibration, a nonconformance report will be prepared and any data collected with the equipment/instrument will be evaluated to determine whether it is usable. This evaluation will be documented in the nonconformance report.

\subsection*{4.6.3 Documentation}

Shaw will maintain records of all data and related field files including analytical data, survey data, lists, photographs, maps, etc. Reports and submittals will be provided to the USACE.

\subsection*{4.7 Submittal Management}

\subsection*{4.7.1 Project Submittals}

Submittals will be listed and tracked using USACE Form 4288, Submittal Register. Submittals include deliverables, whether generated on- or off-site by Shaw, subcontractors, fabricators, manufacturers, suppliers, or purchasing agents.

The Submittal Register for this project will be submitted separately for approval from the USACE. Procurement documents for subcontracted services and materials shall list the required subcontractor submittals. The CQCSM is to review the list to ensure its completeness and may expand general category listings to show individual entries for each item. The approved Form 4288 becomes the scheduling document and will be used to control submittals throughout the project. Changes in submittal progress and QC activities related to submittals are to be summarized in the DQCR.

\subsection*{4.7.2 Project Records}

A project file will be established to include a record copy of the following documents:
- Work schedule and progress reports
- Change orders and other contract modifications
- Submittal register
- Submittal records
- Personnel qualification and safety certification records
- Daily work activity summary reports, including:
- TGSMs
- Field sampling reports and records
- FADLs
- Analysis Request/Chain-of-Custody records
- DQCRs

\subsection*{4.7.3 Submittal Scheduling}

The Project Manager shall maintain a project submittal delivery schedule that reflects submittal dates and status on Engineering Form 4288. Submittal activities are to be incorporated into the project schedule so that submittal progress can be tracked in conjunction with overall progress. Submittal schedules shall allow for evaluation, approval, procurement, and delivery prior to the preparatory phase and before the deliverable is needed for work. Interrelated submittals shall be scheduled and submitted concurrently. Adequate time shall be allotted for required reviews and approvals.

\subsection*{4.7.4 Review and Approval of Submittals}

Prior to client delivery or use, project submittals are to be reviewed and approved by Shaw. Knowledgeable members of the project staff, the CQCSM, and the Project Manager or designated representative will review the submittal. Multiple reviewers may be used to evaluate different components of the documents (i.e., technical, editorial, and QC reviews). Reviewers will ensure that the planning documents and report(s) meet the following requirements:
- The documents satisfy the requirements of the SOW, client requirements, and applicable regulatory requirements.
- Report assumptions are clearly stated, justified, and documented.
- The reports clearly and accurately present the investigation results.
- The basis for the recommendations and conclusions presented in the reports are clearly documented.
- The tables and figures are prepared and checked according to Shaw requirements.
- The documents have been proofread; punctuation, grammar, and spelling are correct.

The CQCSM will review submittals prepared by Shaw and its subcontractors and suppliers for completeness and compliance with the specifications of the contract, project plans, and Submittal Register requirements.

Submittals related to field equipment or materials are to be reviewed for contractual compliance. Prior to submittal to the CQCSM for certification, technical documents (e.g., reports, plans, and engineering drawings) are to be reviewed by qualified staff. Although part of the QC process, reviewers may include, but are not limited to, the QC staff. The CQCSM certification and signature are required for each submittal. Nonconforming submittals shall be returned to the originator for corrective action and resubmitted to the CQCSM for verification upon completion of approved corrective actions.

For each project document that is submitted for technical review, a Manuscript Routing Sheet or Document Review and Release Form shall be initiated by the author, submitted with the document to be reviewed, and used to document and track the review process. A copy of the completed document review form is to be submitted to the CQCSM with the corrected document and previous revision review comments for review and certification. When a submittal is the result of responding to USACE and other external review comments, a Shaw comment resolution document should accompany the submittal as well.

Submitted documents may also contain signature locations for CQCSM and Project Manager approvals. Original document review forms and external (USACE or regulator) reviewer comments are to be retained in the project file, traceable to the deliverable, for record-keeping purposes and future reference.

\subsection*{4.7.5 Transmittal to Client}

Submittals to the USACE are to be accompanied by Engineering Form 4025, Transmittal of Shop Drawings, Equipment Data, Material Samples, or Manufacturer's Certificates of Compliance. Form 4025 shall be used for submitting both USACE "approval" and "information only" submittals, in accordance with the instructions on the reverse side of the form.

Form 4025 is to be properly completed by filling out the blank spaces and identifying each item submitted. Care is to be exercised to ensure proper listing of the submittal reference to contractual requirements, the submittal register number, and/or sheet number of the plans pertinent to the data submitted for each item. The CQCSM will sign Form 4025, upon its completion.

\subsection*{4.8 Daily QC Reports}

The CQCSM will be responsible for the preparation and submission of the DQCRs to the USACE. One copy (hard copy or electronic copy) of the DQCR with attachments shall be submitted to the designated USACE representative on the first workday following the date covered by the report. Additional copies may be supplied to the USACE Technical Manager and USACE Program Manager, if requested.

Due to the intermittent nature of the fieldwork schedule associated with this project, DQCRs will be prepared only for those days when fieldwork is being performed.

The DQCR shall provide an overview of technical and QC activities performed each day, including those performed on subcontractor and supplier activities. The QC reports shall present an accurate and complete picture of activities accomplished and forecasted and should report both conforming and deficient conditions. These reports should be precise, factual, legible, and objective. Copies of supporting documentation, such as inspection checklists, test reports, corrective action reports, and surveillance reports shall be attached. Copies of FADLs from the Field Team Leader/Project Geologist or Senior Project Chemist will also be attached to document field activities such as depth of soil borings and samples collected.

DQCR and inspection checklist forms used on this project will be considered project records. Each DQCR is to be assigned and tracked by a three-digit sequential number identifying the current number of field workdays. DQCRs with attachments are to be maintained in the project files.

\subsection*{5.0 References}

Anderson O.J., C.H. Maxwell, and S.G. Lucas, 2003, Geology of Fort Wingate Quadrangle, McKinley County, New Mexico, Open-file Report 473, New Mexico Bureau of Geology and Mineral Resources, Socorro, New Mexico, September.

DOE, see U.S. Department of Energy.
EPA, see U.S. Environmental Protection Agency.
IT Corporation, 1996, Background Concentrations of Constituents of Concern to the Sandia National Laboratories/New Mexico Environmental Restoration Project and the Kirtland Air Force Base Installation Restoration Program, prepared by IT Corporation, Albuquerque, New Mexico.

Malcolm Pirnie, see Malcolm Pirnie, Inc.
Malcolm Pirnie, Inc. (Malcolm Pirnie), 2000, Soil Background Concentration Report of Fort Wingate Depot Activity, New Mexico, prepared for the U.S. Army Corps of Engineers, Fort Worth District by Malcolm Pirnie, Inc., Houston, Texas, September.

Myers, J., and K. Thorbjornsen, 2004, "Identifying Metals Contamination in Soil: A Geochemical Approach," Soil \& Sediment Contamination: an International Journal, Vol. 13, No. 1, pp. 1-16, January/February 2004.

National Oceanographic and Atmospheric Administration (NOAA), 2008, National Weather Service, National Oceanographic and Atmospheric Administration, U.S. Department of Commerce, Washington, D.C. <http://www.nws.gov>

Navy, see U.S. Navy.
New Mexico Environment Department (NMED), 2006, Technical Background Document for Development of Soil Screening Levels, Rev. 4, New Mexico Environment Department, Santa Fe, New Mexico, June.

NMED, see New Mexico Environment Department.
NOAA, see National Oceanographic and Atmospheric Administration.
Thorbjornsen, K., and J. Myers, 2007, "Identifying Metals Contamination in Groundwater Using Geochemical Correlation Evaluation," Environmental Forensics, Vol. 8, Nos. 1-2, pp. 25-35.
U.S. Army Corps of Engineers (USACE), 2007, Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents, ERDC/CRREL TR-07-10, Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers Engineer Research and Development Center, Hanover, New Hampshire, July.
U.S. Department of Energy (DOE), 1990, Master Environmental Plan: Fort Wingate Depot Activity, Gallup, New Mexico, ANL/EAIS/TM-37, U.S. Department of Energy, Washington, D.C., December.
U.S. Environmental Protection Agency (EPA), 1989, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, EPA/530/SW-89/026, Office of Solid Waste, Waste Management Division, U.S. Environmental Protection Agency, Washington, D.C., July.
U.S. Environmental Protection Agency (EPA), 1992, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance, EPA/530/R-93/003, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C., July.
U.S. Environmental Protection Agency (EPA), 1994a, Statistical Methods for Evaluating the Attainment of Cleanup Standards, EPA/230/R-94/004, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, Washington, D.C., June.
U.S. Environmental Protection Agency (EPA), 1994b, Determination of Groundwater Dilution Attenuation Factors for Fixed Waste Site Areas Using EPACMTP, Office of Solid Waste, U.S. Environmental Protection Agency, Washington, D.C., May 11.
U.S. Environmental Protection Agency (EPA), 1995, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, EPA/540/S-96/500, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., December.
U.S. Environmental Protection Agency (EPA), 1996, Soil Screening Guidance: User's Guide, Second Edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., July.
U.S. Environmental Protection Agency (EPA), 1997, The Lognormal Distribution in Environmental Applications, EPA/600/R-97/006, Technical Support Center Issue, U.S. Environmental Protection Agency, Washington, D.C.
U.S. Navy (Navy), 2002, Guidance for Environmental Background Analysis, Volume I: Soil, NFESC User's Guide UG-2049-ENV, Naval Facilities Engineering Command, Washington, D.C., April.
U.S. Navy (Navy), 2003, Guidance for Environmental Background Analysis, Volume II: Sediment, NFESC User’s Guide UG-2054-ENV, Naval Facilities Engineering Command, U.S. Navy, Washington, D.C.

\section*{Appendix A \\ Scope of Work}

\section*{SCOPE OF WORK \\ FOR \\ DELIVERY ORDER DM01 TO CONTRACT W912BV-07-D-2004 FORT WINGATE DEPOT ACTIVITY BACKGROUND AND SITE SPECIFIC DILUTION ATTENUATION FACTORS}
A. General. The Architect-Engineer (A-E), as an independent contractor and not as an agent of the Government, shall, in accordance with the terms and conditions more particularly set forth below, furnish all labor, management, facilities, supplies, equipment, and material as required to accomplish a , identified herein. During the prosecution of the work, the A-E shall provide adequate professional supervision and quality control to assure the accuracy, quality, completeness, and progress of the work.
B. Background. The Fort Wingate Depot Activity (FWDA) encompasses 24 square miles of land in northwestern New Mexico in McKinley County, approximately 8 miles east of Gallup, New Mexico. The FWDA is a military reservation under control of the U.S. Army. In 1988, the depot was recommended for closure under the Base Realignment and Closure (BRAC) program and closed in 1993. The FWDA facility now operates under a RCRA Hazardous Waste Facility Permit (EPA ID\#: NM6213820974) issued by the New Mexico Environment Department (NMED). This permit can be downloaded off the NMED Hazardous Waste Bureau website, http://www.nmenv.state.nm.us/hwb/fwdaperm.html\#Permit_(12-1-2005. As a condition of the NMED permit, the FWDA is required to undertake corrective actions to mitigate the potential risk posed by contaminants including release of explosive constituents. The objective of this scope of Work (SOW) is to conduct a background study in order to develop a baseline inorganic geochemical assessment establishing concentrations of natural occurring inorganic constituents in soil, groundwater, surface water, and sediment. The Contractor shall identify geologic, hydrogeologic, and geochemical processes that control the distributions of naturally occurring minerals and inorganic compounds within the boundaries of the current FWDA installation. The Contractor shall develop sitespecific Dilution Attenuation Factors (DAF) or other approved and appropriate models for "non-naturally" occurring constituents such as 1, 2-DCA, toluene, total explosive (a list of 14 separate explosive compounds), perchlorate, and other potential "non-naturally" occurring constituents released to the environment. The objective of DAF values apply to potential impacts to groundwater through release at the surface, and migration to groundwater. The SOW objective is to develop and execute a study to determine if a release occurred to the environment above natural background levels, and whether a release has a potential to impact groundwater. Data collected during the execution of this SOW shall be compiled in a report and submitted to the Army (Army Draft), Navajo Nation, Pueblo of Zuni, Bureau of Indian Affairs (Tribal Draft), and NMED (Final) for review and approval.
C. Work to be Performed.
1. Task 1: Develop Work Plan. The Contractor shall develop a work plan outlining techniques and methodologies to establish background concentration for inorganic compounds and constituents, establish site specific DAFs for nonnaturally occurring compounds and constituents, sample collection (if additional data is required), data mining process, reconciling chemical data collected using different methods (ex: Multi-Incremental vs. Grab), and a monitoring well geospatial survey. The work plan shall also describe the methods used to determine if site samples exceed background concentrations. As part of the work
plan, a Field Sampling Plan (FSP), a Quality Assurance Project Plan (QAPP), and a Site-Safety Health Plan (SSHP) shall be included. Any samples collected as part of this Task Order (TO) shall be acquired and analyzed using the approved FSP, QAPP, and the SSHP. Laboratory testing shall be conducted using the approved QAPP. The SSHP shall also address safety concerns associated with Parcel 3, the Open Burn/Open Detonation areas. Parcel 3 has obtained an Improvised Conventional Munitions (ICM) Waiver. All work conducted in Parcel 3 shall be executed strictly IAW this ICM Waiver. All electronic laboratory data shall be submitted in Staged Electronic Data Deliverable (SEDD) format (Refer to ER 200-3-1, page 7-8).
2. Task 2: Establish Background. The Contractor will develop background data sets and characterize background distributions for metals in soil groundwater, surface water and sediment at FWDA. Due to the large amount of existing data, the approach shall be based on evaluating the existing data for adequacy in characterizing background distributions. These existing data shall be extensively screened using a rigorous multi-step process based on a combination of statistical and geochemical techniques to identify and eliminate any samples that 1) are not of sufficient quality, and 2) do not represent background conditions. Additional samples may be required to supplement the existing data if data that survives the screening process is inadequate with respect to the number of samples or the spatial coverage of the samples.

Extracting background data in this manner (termed "data mining") is a costeffective approach that maximizes the value of the existing data, and minimizes the number of new background samples that are needed. The data mining approach for background characterization from existing data sets shall be conducted for this study. The data mining approach is recommended for environmental soil and sediment investigations by the U.S. Navy (Navy, 2002; 2003), and has been successfully applied to soil and groundwater in New Mexico at Kirtland AFB and Sandia National Laboratories (IT Corporation, 1996) with approval from the NMED. Following screening of these data (and acquiring additional data if necessary), the second step required for this task is to characterize the background distributions for the 23-element Target Analyte List (TAL) in each media based on U.S. Environmental Protection Agency (EPA) guidance (EPA, 1989; 1992; 1994; 1995; and 1997).
3. Task 3 Data Screening Methodology. The background data screening process will include multiple procedures based on statistics and geochemistry that are designed to identify and remove potentially contaminated samples from the data sets, such that the remaining samples contain only naturally occurring concentrations of metals. These steps shall be performed sequentially, although some iteration between steps may be necessary. Steps required for this task are described below. Note: Following Step 7, "surviving" data shall be regarded as representative of background at Fort Wingate. These data shall be assessed for adequacy with regard to the number of samples and geographic coverage. At the discretion of the Fort Wingate project geologist, additional samples may be obtained if the existing screened data are deemed insufficient. Background summary statistics shall be calculated on screened data. These statistics will include the minimum, median, arithmetic mean, \(95^{\text {th }}\) upper confidence limit (UCL) of the mean, \(95^{\text {th }}\) upper tolerance limit (UTL), and the maximum concentration. The UCLs and UTLs shall be calculated using nonparametric bootstrap methods to maintain consistency and avoid bias (EPA, 1997).
1. Screen data for acceptable quality, considering analytical methods, method reporting limits, guantitation limits, matrix interferences, presence of laboratory qualifiers, comparisons of duplicate results, etc.
2. Perform a statistical outlier test for each metal. Examine outliers to determine if they reflect site-related contamination (see Step 6), transcription errors, etc., and eliminate as appropriate.
3. Eliminate "high non-detects" (non-detect results that are present in the upper ten percent of the distribution). Removal of these results ensures that the background screening values are not biased high due to nondetects with elevated reporting limits.
4. Eliminate samples that exhibit impacts from the presence of organic contaminants. The presence of high concentrations of organic contaminants in groundwater can, under some conditions, depress the local redox potential of the aquifer. Redox depression can cause the dissolution of naturally occurring iron and manganese oxide minerals. These minerals have very strong affinities to adsorb certain elements including antimony, arsenic, molybdenum, selenium, and vanadium; which can become mobilized when the oxide minerals dissolve. This "reductive dissolution" effect can be easily identified in Volatile Organic Compound (VOC)-impacted groundwater samples because they will have low dissolved oxygen and redox potential; and elevated dissolved iron, manganese, and associated trace elements. VOC-impacted soil samples may also have altered trace metal concentrations due to redox effects. Additionally, some sources of VOC contamination in soil such as used motor oil or leaded gasoline can contain metals.
5. Prepare probability plots of metal concentrations to identify the presence of multiple distributions and statistical outliers. Examine outliers to determine if they reflect site-related contamination (see Step 6), and eliminate as appropriate.
6. Perform geochemical evaluation to determine if metals concentrations are naturally occurring. This step involves examining selected trace vs. major element ratios to identify samples with anomalously high ratios. Samples exhibiting anomalous trace vs. major element ratios should be considered suspect and be eliminated from the candidate background data set. The advantage of the geochemical evaluation is that it distinguishes anomalously high metals concentrations from naturally elevated concentrations in groundwater samples with elevated turbidity. Samples with elevated turbidity shall be retained if no evidence of contamination is observed; this allows the background groundwater data set to reflect the full range of concentrations that are likely to be observed in the site data sets, thus avoiding a low bias in the background screening values. For reference, the theory and application of geochemical evaluations in soil and groundwater can be found in Myers and Thorbjornsen (2004) and Thorbjornsen and Myers (2007), respectively.
7. Spatial relationships shall be considered during the screening process to determine if subpopulations are present in the background data sets. Surface and deep soil samples may show different distributions, as may groundwater samples obtained from different hydrostratigraphic units. If evidence for subpopulations exists, these data shall be subdivided into groups, and separate background distributions defined for each group.
4. Task 4: Develop Site Specific Dilution Attenuation Factor Values. The Contractor will develop site-specific DAF values using the methodology described in the New Mexico Technical Background Document for Development of Soil Screening Levels, rev 4, June 2006. Other references for developing sitespecific DAF values are Determination of Groundwater Dilution Attenuation Factors for Fixed Waste Site Areas Using EPACMTP, EPA Office of Solid Waste, May 11, 1994, and the Oakridge National Lab web-based Soil Screening Calculator at http://rais.ornl.gov/epa/ssl1.htm. The DAF values shall be developed for potential contaminants of concern. These values will be used to calculate a maximum allowable soil contaminant concentration that is protective of groundwater resources at Fort Wingate. The Contractor shall either implement the equations described in the New Mexico Technical Background Document for Development of Soil Screening Levels, and in other appropriate publications, or use an "off the shelf" numerical model such as VLEACH or SESOIL. Whichever approach is used, site-specific hydrogeologic parameters will be used, including but not limited to, the depth to groundwater, the soil type and vertical stratigraphy in the vadose zone, initial conditions/concentration in the soil, and infiltration rates from natural or man-made recharge.
5. Task 5: Monitoring Well Survey (FFP). The Contractor will use a global positioning system or equivalent surveying techniques to survey the horizontal and vertical locations of 75 existing monitoring wells. Elevations for each survey point will be reported to within 0.01 feet and referenced to the 1988 National Geodetic Vertical Datum (NGVD), as obtained from existing, permanent benchmarks. Both ground and top of casing elevations shall be surveyed. Horizontal coordinates of each survey point will be measured to within 0.1 feet and reported in the Universal Transverse Mercator coordinate system (meters). The Contractor is responsible for locating all benchmarks (control points) in advance of mobilization into the field. This survey shall be performed by a licensed surveyor. Coordinate and elevation data shall be provided to USACE in electronic and hard copy. The hard copy shall contain the surveyor's license number and signature.
6. Task 6: Meetings (FFP). The Contractor shall include in their proposal the cost associated for two meetings with the NMED in Santa Fe, NM to discuss Tasks 1, 2, and 3 described in this SOW. The objectives of these meetings are to educate the NMED on the procedures noted in Task 2, and develop a consensus for a work plan that meets the intent of the FWDA RCRA permit, and Army goals. For estimating purposes, the Contractor shall assume each meeting will take 8 -hours (this includes travel to and from the meeting place). No more than three contract personnel are authorized to attend the meeting. Additionally, the Contractor shall provide a cost estimate for one site visit that will coincide with a kick-off meeting with BRAC, USACE and the Contractor. For estimating purposes, the Contractor shall assume three contract personnel for two days onsite. Cost for all other meetings shall be included in the Project Management Task, Task 6.
7. Task 7: Project Management. The Contractor is responsible for providing the USACE and BRAC with all contract-specific management reports. The Contractor will provide an experienced project manager who has the background and aptitude to track task budgets, schedule progress, and clearly convey that information to the USACE and BRAC. Project management includes monthly progress reports, project schedules, coordination with USACE and BRAC, recording minutes of all meetings (telephonic and in person), cost management, and work quality.
8. Option 1: Task 7 - Additional Data Requirements. If required due to data gaps, the Contractor shall propose a sampling approach to collect additional soil, surface water, groundwater and/or sediment. This sampling approach shall address data needs required to adequately assess background conditions. Since the data mining and evaluation process will determine additional data requirements, the Contractor shall provide a cost for this task on a Firm Fixed Unit Priced (FFUP) basis. For estimating purposed, the Contractor shall submit a cost for 20 samples per unit for each media requiring additional data (soil, surface water, groundwater, and sediment). This task shall be funded when the required number of samples is known, and will be negotiated based on the FFUP provided in Contractor's proposal. The Contractor shall use the Multi-Incremental Sampling (MIS) method for all additional soil and sediment sample collection. More information regarding MIS can be found in "Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents" July 2007.
9. Task 8: GIS. The Contractor shall utilize GIS in the development of the Background Study. All available existing data that are applicable to the project shall be consolidated into a database and analyzed to relay pertinent information to the USACE, BRAC, Regulators and other stakeholders. The database shall be a living repository that is refined throughout the life of the project. The information attained through the data mining phase shall be documented in the GIS. The information attained during field activities shall be documented in GIS. The Contractor shall submit the GIS data in a format compatible to the ESRI (ArcView/ArcInfo) system, version \(9 . x\). The Contractor shall incorporate layers that overlay on maps of the site that identify physiographic characteristics such as eco-zones and geology, and physical boundaries such as Hazardous Waste Management Units (HWMU), Solid Waste Management Units (SMWU) and (Areas of Concern), real estate parcels and installation boundaries. The Contractor shall provide all submittals in the UTM coordinate system. Archeological site location(s) will not be released to the public without written permission from USACE. The Contractor shall submit GIS files to USACE upon completion of this Task Order. All GIS files currently available will be provided to the Contractor.
10. Task 9: Sampling \& Analysis and Data Quality. Existing data shall be reviewed and evaluated. Based on this review, the Contractor shall propose the additional analytical needs and the quantity of samples, including QC requirements that are sufficient to determine the natural background conditions. Data needs to be of sufficient quality to perform the background "screening" processes that are a critical component of human and ecological risk assessments. Hence, data shall meet applicable regulatory criteria needed to perform an ecological and human health risk assessment IAW the EPA Risk Assessment Guidance (RAGS) and USACE EM 200-1-4, Volumes I and II. Sampling shall be conducted to support the geochemical evaluation and statistical analysis. The Contractor shall prepare and submit for acceptance a single SAP that shall include \(a\) FSP and a QAPP in accordance with and EM 200-1-3 that describes the sampling approach, addresses contaminants of concern, and sample media. The cost of the SAP shall be firm fixed price and shall be covered under Task 2. The SAP will be subjected to regulatory and tribal review. For additional data quality requirements, refer to Section 4.1 of this SOW.
11. Task 10: Report. Data generated from activities indentified in this SOW shall be compiled and delivered to USACE, BRAC, Regulators and other

Stakeholders in a report. In general, the report shall follow the outline shown below:

Table of Contents
List of Tables
List of Figures
Acronyms
Chapter 1.0 Introduction
Project Objectives
Project Location
Project History
Regulatory Framework
Geologic Setting
Physical Setting
Ecological Setting
Soils
Surface Water
Groundwater
Sediment
Chapter 2.0 Sampling Methodology
Previous Background Soil Sampling
Additional Sampling Locations
Sampling Procedures
Sample Analysis
Chemical Analysis for Metals
Physical Analysis
Chemical Analysis for Organic Contaminants
Chapter 3.0 Identification of Statistical Issues
General Approach
Geochemical Evaluation of Pre-existing Data
Geochemical Evaluation of New Data
Dilution Attenuation Factor Calculations or Model
Methodology
Chapter 4.0 Results of Statistical Analysis
Outlier Analysis
Uncertainties
Tests for Geological Group Differences
Tests for Lithologic Group Differences
Calculation of Summary Statistics
Chapter 5.0
Conclusions
Chapter 6.0 References
D. GENERAL REQUIREMENTS: All work under Section \(C\) "Work to be Performed" of this sow shall be performed in accordance with the following general requirements.
1. Chemical Analysis and Laboratory Requirements. If required due to data gaps, the SAP shall be prepared in accordance with EM 200-1-3. The SAP shall address each requirement as identified in ER 1110-1-263 and EM 200-1-3. The laboratory shall meet all of the requirements of Appendix I in EM 200-1-3 unless approved in advance in the SAP. If there are any requirements that the laboratory cannot meet, they shall be clearly identified in the SAP.
a. Laboratory Qualifications: If required due to data gaps, the analytical laboratory utilized by the Contractor must be identified in the SAP, must have an approved self-declaration form on file with USACE, and hold applicable state and national certifications to perform the analytical methods required by this SOW.
b. Coordination with Government Quality Assurance Laboratory: If required due to data gaps, the Contractor must provide coordination of quality assurance samples (collected and transported by the Contractor) to the Government Quality Assurance (GQA) lab. There will be a \(10 \%\) maximum of additional field sampling. The GQA samples will be replicates of primary field samples and will be analyzed for the same parameters as the associated primary field sample. The GQA samples shall include all sample matrices and analytical parameters except samples analyzed for disposal by Toxicity Characteristic Leaching Procedure (TCLP). The Contractor shall provide the GQA lab a minimum of two weeks notice of sample shipment, unless an alternate notification requirement is proposed and accepted by the Contracting Officer. The Government shall identify the GQA lab. Results of the field control samples and associated laboratory QC shall be provided to the GQA lab.
c. Data Reporting Requirements: If required due to data gaps, the Contractor shall provide data reporting elements for definitive data per Section I.13.4.2 of EM 200-1-3. These data shall be included in the draft and final engineering reports in tabular format. There should be, at a minimum, two types of data tables. The first shall include all analytical results for all samples collected. The second shall include all analytical results greater than Method Detection Limit (MDL) for all samples collected. Tables should be sorted by method and include appropriate data flags resulting from laboratory review and from Contractor's data validation. Data shall also be provided in the SEDD format. The Contractor's laboratory must hold and make available all project raw data for a period of five years after completion of this contract.
d. Data Validation: The Contractor shall perform data validation on all analytical data collected and produced as a result of field and lab efforts. The validation shall be performed as required in approved SAP and documented in the draft and final engineering reports. Validation documentation should address review of laboratory and field QC results. Persons performing the data validation shall have a minimum of 10 years plus directly relatable laboratory experience coupled with two years data review and two years data validation experience in accordance with current guidelines.
e. Data Quality: The Contractor shall produce and maintain data quality at a level sufficient to support project objectives as defined in the SAP. The Contractor shall also establishment a quality control process for all
analytical tasks performed during the execution of this SOW, and shall be responsible for achieving the data quality objectives as defined in the SAP. Analytical data that does not meet \(Q A\) requirements may be rejected by the Government and contract re-performance required at no additional cost to the Government.
2. Location Surveys and Mapping: The Contractor shall perform civil surveys and IAW EM 1110-1-4009. All data submitted shall be in the Universal Transverse Mercator (UTM) coordinate system.
3. Submittals and Correspondence:
a. Schedule: A final schedule shall be submitted a minimum of 30 days before commencing in a format compatible with Primavera or Microsoft Project. A PDF version shall also be submitted. This is an electronic submittal only.
b. Telephone Conversations/Correspondence Records. The Contractor shall keep a record of each phone conversation and written correspondence concerning this Task Order. A copy of this record shall be attached to the Project Status Report.
c. Project Status Reports. The Contractor shall prepare and submit a Monthly Progress Report describing the work performed since the previous report, work currently underway and work anticipated and any issues that will impact the project. The report shall state whether current work is on schedule and within budget. If the work is not on schedule, the Contractor shall state what corrective actions are being taken in order to get back on-schedule. The report shall be submitted not later than the 10 th day of the following month. If required, data submittals shall include the monthly GIS database update, which shall be submitted on a CD.
d. Computer Files. All final text files generated by the Contractor under this contract shall be furnished to the Contracting Officer in Microsoft Word 2000 or higher software. Spreadsheets shall be in Microsoft EXCEL 2000 or higher. All electronic laboratory data shall be submitted in SEDD format (Refer to ER 200-3-1, page 7-8). All final CADD drawings shall be in Microstation 95 or higher. All GIS data shall be in ESRI (Arcview/Arcinfo) format.
e. PDF Deliverables: In addition to the paper and digital copies of submittals, the draft and final version of any and all report and/or plans shall be submitted, uncompressed, on CD/DVD in PDF format along with a linked table of contents, linked tables, linked photographs, linked graphs, and linked figures, all of which shall be suitable for viewing on the Internet. The PDF files shall be created from source documents whenever possible. PDF files shall be provided without security restrictions.
f. Identification of Responsible Personnel: Each report shall identify the specific members and title of the Contractor's staff and subcontractors that had significant and specific input into the reports' preparation or review.
g. Submittals. The Contractor shall furnish copies of the plans, maps, and reports as specified in this sow, to each addressee listed below in the quantities indicated. The Contractor shall submit copies on CD/DVD with each hard copy of the Draft and Final versions of all submittals (Work Plans, Reports, Plans, etc) as indicated below.
4. Administrative Record: The Contractor is not required to establish or maintain an Administrative Record; however, all deliverables will be prepared and submitted in a manner which supports and complements inclusion in the project's Administrative Record.
5. Project Access: All vehicles entering FWDA are subject to post regulations. All personnel must be willing to show driver's license/government issued photo ID and proof of insurance (drivers) upon request of the caretakers' office. Speed limit on the post is 15 mph in admin area and 25 mph all other areas. FWDA is generally open (main gate unlocked) from 06:45 to 17:00 hours 5 days a week. A series of gates lies between the administrative area and different areas of the installation. The contractor will be required to coordinate with the FWDA caretakers' office during the execution of this contract for access into FWDA and the work sites. Firearms, open flames, and smoking are prohibited on FWDA, violators will be removed from the project.
6. Quality Control (QC) Plan.
a. The A-E's QC Plan shall provide and maintain an effective quality control program that will assure that all services required by this Delivery Order are performed and provided in a manner that meets professional, architectural, and engineering quality standards. The A-E's QC Plan shall be prepared in accordance with CESPDR-1110-1-8 "Quality Management Plan" Appendix D. As a minimum, all documents shall be technically reviewed by competent, independent reviewers. One copy of all independent technical review (ITR) comments shall be provided to the Government with the draft submittal. Performance of the independent technical review should not be accomplished by the same element that produced the product. Errors and deficiencies in the report documents shall be corrected prior to submitting them to the Government.
b. The A-E shall include in the QC plan a time-scaled bar chart or Critical Path Method (CPM) study schedule showing the sequence of events involved in carrying out the project tasks within the specific period of service. This should be at a detailed level of scheduling sufficient to identify all major tasks including those that control the flow of work. The bar chart or schedule shall include review and correction periods proper to submittal of each item. This should be a forward-planning, as well as a project-monitoring, tool. The bar chart or schedule reflects calendar days and not dates for each activity. When a modification to this Delivery Order occurs, the A-E shall submit a revised bar chart or schedule reflecting the change within seven calendar days of receipt of the change.
c. The QC Plan shall be implemented by an assigned person within the AE's organization who has the responsibility of being present during the times work is in progress, and shall be cognizant of and assure that all documents on the project have been coordinated. This individual shall be a person who has verifiable engineering or architectural design experience and is a registered professional engineer or architect. The A-E shall notify the District, in writing, of the name of the individual and the name of an alternate person assigned to the position.
d. The Contracting Officer will notify the A-E, in writing, of the acceptance of the QC Plan. After acceptance, any changes proposed by the AE are subject to the acceptance of the Contracting Officer or the authorized representative.
E. Technical Criteria and Standards. The work shall be performed in accordance with the basic contract, Section C, this Scope of Work, and all furnished instructions. The project shall incorporate the Government furnished data stated in Exhibit I.
F. Submittal Schedule and Requirements. The study and other related data and/or services required in accordance with this Scope of Work shall be accomplished within the specified times. No work shall be accomplished beyond this original Scope of Work unless specifically directed by the Contracting Officer. The initial schedule for delivery of data to the Contracting Officer is in calendar days after the date of receipt of Notice to Proceed by the A-E. All narratives shall be accomplished using MicroSoft \({ }^{\text {TM }}\) Word, word processing software and furnished on computer diskette or compact diskette. Delivery of completed work shall be accomplished such that the materials will be protected from handling damage. Each package shall contain a transmittal letter or shipping form, in duplicate, listing the materials being transmitted, being properly numbered, dated, and signed. Shipping Labels shall be marked as follows:
U.S. Army Engineer District Albuquerque

Attn: David Henry
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

DELIVERY SCHEDULE
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Task \# } & \multicolumn{1}{c|}{ Task } & \multicolumn{1}{c|}{ Due date } \\
\hline 1 & Army Draft WP & 60 Days from NTP \\
\hline 1 & Final WP & 90 Days from NTP \\
\hline 1 & NMED Comment Responses and Revision & 185 Days from NTP \\
\hline 3 & DAF Values Generated & 180 Days from NTP \\
\hline 4 & Well Survey & 30 Days from NTP \\
\hline 5 & Regulatory Meetings & TBD \\
\hline 6 & Project Management & Monthly \\
\hline 7 Option & \begin{tabular}{l} 
Execution of Additional Sampling \\
Requirements
\end{tabular} & 190 Days from NTP \\
\hline 10. & Army Draft Report & 240 Days from NTP \\
\hline 10. & \begin{tabular}{l} 
Army Comment Responses and Revision \\
(Tribal Draft Report)
\end{tabular} & 285 Days from NTP \\
\hline 10. & \begin{tabular}{l} 
Tribal Comment Responses and \\
Revision (Final Report)
\end{tabular} & 395 Days from NTP \\
\hline & \begin{tabular}{l} 
Regulatory Comment Responses and \\
Report Revision
\end{tabular} & 470 Days from NTO \\
\hline
\end{tabular}
G. Information to Be Furnished By the Government:
1. General Data. The Government will furnish the A-E with data and information concerning functions and principal features of the project along with pertinent personnel information. Specific data to be furnished by the Government are set forth in the attached Exhibit I.
2. Review Comments. Review comments will be provided after each Draft Report submittal. The comments will be reviewed for possible conflicts and consolidated before being furnished. These comments will be furnished either in hard copy or on computer diskette. All comments will be provided a minimum of three working days before any scheduled review conference (as applicable).

\section*{H. Architect-Engineer Services.}
1. General Design and Study Requirements. The A-E shall furnish all submittals to the address indicated in the paragraph E.
2. Review Conferences. Not applicable.
3. Review Comment Annotation and Compliance.
a. The Government's review will consist of quality assurance (QA) checks with limited technical review. Comments will be provided either in written form or on computer diskette. The A-E shall incorporate the review comments in the development of the Final Report submittal. If any review comment requires clarification and/or amplification to assure understanding, the A-E shall notify the Contracting Officer in writing. After each Draft Report submittal, the A-E will be furnished comments to be annotated and returned to the Government. Comments shall be annotated as: C-Concur; D-Do Not Concur; and E-Exception. Comments annotated with D or \(E\) shall be explained to justify noncompliance with the comment. These annotations will, in addition to explanations previously required, include a brief notation for all comments concurred with as to what action was taken and where.
b. The A-E shall furnish all annotated comments to the Government no later than seven calendar days after receipt of all comments associated with the Draft Report submittal.
c. A compliance check to insure that all accepted review comments have been incorporated will be performed upon submittal of the Final Report.
I. SPECIAL CONDITIONS.
1. Prosecution of the Work. The A-E shall furnish sufficient technical supervisory and administrative personnel at all times to ensure prosecution of the work in accordance with the delivery schedule within each delivery order. The A-E shall assure that the work is executed in a professional manner and is prosecuted vigorously. The A-E shall be responsible for checking calculations, drawings, details, notes and other work products to verify the design intent and scope of work for each delivery order have been met.
2. Project Management.
a. The A-E shall appoint an individual to serve as a single point of contact and liaison between the \(A-E\) and the Contracting Officer, and/or the Government representative, for all services required under this contract. Upon
issuance of a delivery order, the A-E shall furnish, in writing, the name of the Project Manager to the Contracting Officer. The Project Manager will be responsible for the complete coordination of all work developed under the particular delivery order. All work will be accomplished with adequate internal controls and review procedures to eliminate conflicts, errors and omissions, and to assure the technical accuracy of all design information. The Government shall be notified, in writing, of any changes in the Project Manager.
b. The Government's Technical Leader for this work is Mr. David Henry, Geotechnical and HTRW Branch, Albuquerque District, telephone 505-3423139. The Technical Leader is the Government's representative responsible for the day-to-day management of the project. Questions regarding technical issues under this delivery order should be directed to this individual. The Technical Leader does not have the authority to change the terms or conditions of this delivery order including time and cost. The A-E will be notified, in writing, of any changes in the Government's Technical Leader.
3. Verification and Return of Government Furnished Information.
a. The A-E shall advise the Contracting Officer of any discrepancies, ambiguities, and lack of clarity noted in reports, plans, specifications and other data furnished for use in connection with delivery orders under this contract, unless otherwise specifically stated in each delivery order.
b. All engineering manuals, guide specifications and other data furnished by the Government as designated by the Contracting Officer, shall be returned, if specifically requested, within 30 calendar days after the date of acceptance of the work to be accomplished under the applicable delivery order.
4. Site Visits, Inspections and Investigations. The A-E shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work under each delivery order. Prior to any site visit, the A-E shall notify the District's Project Manager of the visit date. All travel, costs, and expenses incurred by the Architect-Engineer or his representative(s) including consultants for such site visits, inspections, and investigations are included in the lump sum price of each delivery order.
5. Rights of Entry. The A-E shall obtain all rights-of-entry and work permits as may be necessary for access to or performance of services required by this contract, except as otherwise specifically noted in each delivery order.
6. Architect-Engineer Request for Information (A-E RFI). When the A-E needs additional, or a clarification of, information from the Government to facilitate the services required by delivery order, the A-E shall submit an A-E RFI requesting the needed information. A separate A-E RFI shall be used for each unrelated request. Although the information is requested by other documentation or methods such as, Confirmation notices, letters, memorandums, design analysis, annotated review comments, tele-copies, telephone conversations, conferences, meetings, discussions, etc., the A-E shall document the requested information on an A-E RFI. These requests, entitled "A-E Request for Information" shall be numbered sequentially and shall fully explain the requested information and all ancillary information needed. The A-E shall forward each A-E RFI to the Contracting Officer no later than five working days after the need for information is determined.

\section*{7. Conferences and Meetings.}
a. The \(A-E\) shall attend and participate in all design meetings and conferences pertinent to the services as defined by the particular scope of work under each delivery order, as directed by the Contracting Officer.
b. Periodic meetings may be held whenever requested by the Contracting Officer, or the \(A-E\), for discussion of questions and problems relating to the services required under each delivery order.
c. At the option of the Contracting Officer, the A-E may be required to attend and participate in other conferences in addition to those included in each delivery order. Labor and travel costs for such meetings/conferences will be negotiated and included by modification to the delivery order.
8. Correction of Deficiencies. After submission of the deliverables specified in each delivery order, the A-E shall make any corrections thereto, as may be necessary because of errors or omissions, including the preparation of addenda during the bidding period that may be required as a result of such deficiencies.

\section*{I. GENERAL PROVISIONS.}
1. Performance Evaluation. A Performance Evaluation will be prepared at the completion of this Delivery Order and entered into the Corps of Engineers, Architect-Engineer Contract Administration Support System (ACASS). It will be made available to other Corps Districts and utilized in the selection process for future contracts.
2. Work Authorizations. Any work done without being directed to do so, in writing, by the Contracting Officer will be done at the A-E's own risk. Work beyond the original scope shall be accomplished only at the direction of the Contracting Officer. For delivery orders requiring submittals in installments, the A-E shall not proceed or initiate any successor level of work prior to receipt of approval of the preceding level.
3. Subcontractors. The A-E shall cause appropriate provisions to be inserted in all subcontracts relating to this contract to ensure fulfillment of all contractual provisions by subcontractors. If for sufficient reason, at any time during the process of this contract, the Contracting Officer determines that any subcontractor is unsatisfactory or is not performing in accordance with the contract, the A-E will be informed in writing accordingly and immediate steps shall be taken by the A-E to obtain acceptable performance or terminate the subcontract. Subletting by subcontractors shall be subject to the same requirements. Nothing contained in this contract shall be construed to create any contractual relation between any subcontractor and the Government.
4. Inspection and Acceptance.
a. Inspection During Progress. During the progress of work, all work and all the \(\overline{A-E ' s}\) or subcontractor's plant and equipment engaged in this contract shall be subject to, and available for, inspection by the Contracting Officer during normal office hours.
b. Inspection of Delivered Work. As soon as practicable after delivery of work in any installment, the Contracting Officer will spot check for
serious errors or an undue number of minor errors indicating mistakes, carelessness, or lack of adequate quality control on the part of the A-E. The Contracting Officer may forego a thorough inspection and return the entire submittal for rechecking and correction by the A-E.
c. Resubmittal. In the event that documents submitted for review are deemed to be deficient or incomplete for a particular stage of completion, the \(A-E\) will be required to correct the deficiencies and resubmit the documents in the quantities originally required and within a reasonable time as specified by the Contracting Officer. The cost of accomplishing the resubmittal data shall be borne by the A-E.
5. Certification of Computer Media. All delivery media (disks, magnetic tapes, etc, for computer data shall be certified by the A-E to be free of known computer viruses. The name(s) and release date(s) of the virus scanning software used to analyze the delivery media shall be furnished to the Government at the time of delivery. The release or revision date of the viruses scanning software shall be current. If analysis of the delivery media by the Government finds evidence of virus infection, the media will be returned to the A-E. The A-E shall resubmit the media at no cost to the Government.
6. Progress Payments. The A-E may invoice monthly based on the progress of the project. The invoice shall give the status of the project, expressed on a percentage basis, of the total amount of work completed. All invoices shall be signed and submitted to the Albuquerque District, Attention: Jeff Nelson, A-E Contracts Section.

EXHIBIT I
GOVERNMENT FURNISHED ITEMS

\section*{REFERENCES}
1. EPA, 1989, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, Office of Solid Waste, Waste Management Division, U.S. Environmental Protection Agency, EPA/530/SW-89/026.
2. EPA, 1992, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, EPA/530/R-93/003.
3. EPA, 1994, Statistical Methods For Evaluating The Attainment Of Cleanup Standards, Environmental Statistics and Information Division, Office of Policy, Planning, and Evaluation, U.S. Environmental Protection Agency, EPA/230/R94/004.
4. EPA, 1995, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, Office of Research and Development, U.S. Environmental Protection Agency, EPA/540/S-96/500.
5. EPA, 1997, "The Lognormal Distribution in Environmental Applications," Technical Support Center Issue, U.S. Environmental Protection Agency, EPA/600/R97/006.
6. EPA, 2002, "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites," U.S. Environmental Protection Agency, OSWER 9355.4-24.
7. Myers, J. and K. Thorbjornsen, 2004, "Identifying Metals Contamination in Soil: A Geochemical Approach," Soil \& Sediment Contamination: an International Journal. Amherst Scientific Publishers, Vol. 13, No. 1, January/February 2004, pp. 1-16.
8. IT Corporation, 1996, "Background Concentrations of Constituents of Concern to the Sandia National Laboratories/New Mexico Environmental Restoration Project and the Kirtland Air Force Base Installation Restoration Program," prepared by IT Corporation, Albuquerque, New Mexico.
9. Navy, 2002, Guidance for Environmental Background Analysis, Volume 1: Soil, NFESC User's Guide UG-2049-ENV, Naval Facilities Engineering Command, United States Navy, Washington, D.C.
10. Navy, 2003, Guidance for Environmental Background Analysis, Volume II: Sediment, NFESC User's Guide UG-2054-ENV, Naval Facilities Engineering Command, United States Navy, Washington, D.C.
11. Thorbjornsen, K. and J. Myers, 2007, "Identifying Metals Contamination in Groundwater Using Geochemical Correlation Evaluation," Environmental Forensics, Vol. 8, Nos. 1-2, pp. 25-35.

The table below identifies personnel receiving a preliminary draft, draft and final Work Plan and Report.

Note: No tribal review required for the Work Plan
\begin{tabular}{|c|c|c|c|}
\hline ADDRESSEE & VERSIONS & HARD COPIES & CDs \\
\hline \begin{tabular}{l}
USACE - Fort Worth District Planning, Environmental and Regulatory Division \\
ATTN: (Steven Smith) \\
819 Taylor Street, Room 3A12 \\
Fort Worth, Texas 76102 \\
T: 817-886-1879
\end{tabular} & Army Draft, Tribal Draft, Draft, and Final & 1 & 1 \\
\hline \begin{tabular}{l}
Mark Patterson BRAC Environmental Coordinator Ravenna Army Ammunition Plant Building 1037 \\
Ravenna, OH 44266
T: 330-358-7312
\[
F: 330-358-7314
\]
\end{tabular} & Army Draft, Tribal Draft, Draft, and Final & 3 & 2 \\
\hline \begin{tabular}{l}
Richard Cruz \\
Ft. Wingate Army Depot 7 Miles East of Gallup Bldg 1 \\
Ft. Wingate, NM 87316 505-488-6109
\end{tabular} & Army Draft, Tribal Draft, Draft, and Final & 3 & 2 \\
\hline \begin{tabular}{l}
Dr. Burton C. Suedel \\
Research Biologist \\
US Army Engineer Research and \\
Development Center Waterways \\
Experiment Station, EP-R \\
3909 Halls Ferry Road \\
Vicksburg, MS 39180-6199 \\
T:601-634-4578 \\
F: 601-634-3120 \\
email:burton.suedel@usace.army.mil
\end{tabular} & Army Draft, Tribal Draft, and Final & 1 & 1 \\
\hline \begin{tabular}{l}
Neal Navarro \\
USACE - Sacramento District \\
Engineering Division, CESPK-ED-GD \\
Sacramento, Calif. 95814-2922 \\
T:916-557-6948
\end{tabular} & Army Draft, Tribal Draft, and Final & 1 & 1 \\
\hline \begin{tabular}{l}
David Henry \\
USACE - Albuquerque District Environmental Engineer Branch 4101 Jefferson Plaza \\
Albuquerque, NM 87109 \\
T:505-342-3139
\end{tabular} & Army Draft, Tribal Draft, Draft, and Final & 1 & 1 \\
\hline \begin{tabular}{l}
Bill 0'Donnell \\
US Army BRAC Office \\
2530 Crystal Dr. \\
Arlington, VA 22202 \\
T:703-601-1570
\end{tabular} & Army Draft, Tribal Draft, Draft, and Final & 0 & 1 \\
\hline Tammy Diaz & Final & 2 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ADDRESSEE & VERSIONS & HARD COPIES & CDs \\
\hline New Mexico Environment Dept., HWB 2905 Rodeo Park Drive, East Bldg. 1 Santa Fe, NM 87505-6303 T:505-428-2552 & & & \\
\hline \begin{tabular}{l}
Chuck Hendrickson \\
U.S. EPA, Region 6 \\
NM \& Federal Facilities Section. \\
1445 Ross Ave., Suite 1200 \\
Dallas, TX 75202-2733 \\
T:214-665-2196
\end{tabular} & Final & 1 & 1 \\
\hline ```
Sharlene Begay-Platero (Sharlene
will distribute)
Navajo Nation Wingate Project
Coordinator
Eastern Navajo Economic Development
Office
211 E. Historic Hwy. 66
Church Rock, NM }8731
T:505-863-6414
``` & Tribal Draft, Draft, Final & 1 & 6 \\
\hline ```
Edward Edwaed Wemytewa
Zuni Wingate Project Coordinator
Attn: Governor's Office
P.O. Box 339
1203B State Hwy 53
Zuni, NM 87327
T:505-782-7036
``` & Tribal Draft, Draft, Final & 1 & 8 \\
\hline ```
Ben Burshia (Please FedEx)
Chief of Real Estate Services
Division
Central Office, Bureau of Indian
Affairs
1620 L Street NW. Suite 1075
Washington, DC 20036
T:202-452-7778
``` & Tribal Draft, Draft, Final & 0 & 1 \\
\hline \begin{tabular}{l}
Link Lacewell \\
Bureau of Land Management 1474 Rodeo Rd. \\
P.O. Box 27115 \\
Santa Fe, NM 87502-0115
\[
505-438-7424
\]
\end{tabular} & Tribal Draft, Draft, Final & 1 & 1 \\
\hline ```
Rose Duwyenie
BIA - NR - Environmental Protection
301 West Hill
Gallup, NM }8730
T:505-863-8369
``` & Tribal Draft, Draft, Final & 1 & 2 \\
\hline ```
Tom Bartman (Please FedEx)
Office of the Solicitor
Department of the Interior
Mail Stop MIB 6453
1849 C Street, NW
Washington, D.C. }2024
T:202-208-5000
``` & Tribal Draft, Draft, Final & 0 & 1 \\
\hline ```
Mike Kipp
U.S. Army Environmental Center
``` & Army Draft, Tribal Draft, & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ ADDRESSEE } & \multicolumn{1}{|c|}{ VERSIONS } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
HARD \\
COPIES
\end{tabular}} & CDS \\
\hline SFIM-AEC-ERA & Draft, and & & \\
5179 Hoadley Rd. & Final & & \\
APG (EA), MD 21010-5401 & & & \\
T:401-436-7099 & & & \\
\hline
\end{tabular}

\section*{Appendix B \\ Sampling and Analysis Plan \\ (Field Sampling Plan and Quality Assurance Project Plan)}

\title{
SAMPLING AND ANALYSIS PLAN \\ Background Study and Geochemical Evaluation \\ Fort Wingate Depot Activity \\ Gallup, New Mexico
}

Contract No. W912BV-07-D-2004
Delivery Order DM01
Revision 0
Final—January 2009

Prepared for:
U.S. Army Corps of Engineers

Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

Prepared by:
Shaw Environmental, Inc.
2440 Louisiana Blvd. NE, Suite 300
Albuquerque, New Mexico 87110

\section*{I. Field Sampling Plan}
\begin{tabular}{ll}
1.0 & Project Background \\
2.0 & Project Organization and Responsibilities \\
3.0 & Project Scope and Objectives \\
4.0 & Nonmeasurement Data Acquisition \\
5.0 & Field Sampling Activities \\
6.0 & Field Operations Documentation \\
7.0 & Sample Packaging and Shipping Requirements \\
8.0 & Management of Investigation-Derived Waste \\
9.0 & Nonconformance/Corrective Actions \\
10.0 & References \\
& \\
\(\frac{\text { Attachments }}{\text { A1 }}\) & \\
&
\end{tabular}

\section*{II. Quality Assurance Project Plan}
1.0 Project Laboratory Organization and Responsibilities
\(2.0 \quad\) Data Assessment Organization and Responsibilities
\(3.0 \quad\) Data Quality Objectives
4.0 Sample Receipt, Handling, Custody, and Holding Time Requirements
\(5.0 \quad\) Multi-incremental Sample Processing and Sub-sampling Procedures
\(6.0 \quad\) Analytical Procedures
7.0 Data Reduction/Calculation of Data Quality Indicators
8.0 Laboratory Operations Documentation
9.0 Data Assessment Procedures
10.0 References

Attachments
A2 Table of Measurement Quality Objectives

\section*{I. Field Sampling Plan (FSP)}

\title{
Field Sampling Plan \\ Background Study and Geochemical Evaluation \\ Fort Wingate Depot Activity Gallup, New Mexico
}

Contract No. W912BV-07-D-2004
Delivery Order DM01
Revision 0
Final—January 2009

Prepared for:
U.S. Army Corps of Engineers

Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

Prepared by:
Shaw Environmental, Inc.
2440 Louisiana Blvd. NE, Suite 300
Albuquerque, New Mexico 87110

\section*{Table of Contents}
List of Attachments ..... ii
Acronyms and Abbreviations ..... iii
1.0 Project Background ..... 1-1
1.1 Site History and Contaminants ..... 1-1
1.2 Summary of Existing Data ..... 1-1
1.3 Site-Specific Definition of the Problem ..... 1-1
1.4 Sampling and Analysis Activities ..... 1-2
2.0 Project Organization and Responsibilities ..... 2-1
3.0 Project Scope and Objectives ..... 3-1
3.1 Task Descriptions ..... 3-1
3.1.1 Site Surveys ..... 3-1
3.1.2 Supplemental Soil and/or Sediment Sampling ..... 3-1
3.1.3 Groundwater Sampling ..... 3-2
3.1.4 Surface Water Sampling ..... 3-2
3.2 Applicable Regulations and Standards ..... 3-2
3.3 Project Schedule ..... 3-3
4.0 Nonmeasurement Data Acquisition ..... 4-1
5.0 Field Sampling Activities ..... 5-1
5.1 Site Surveys ..... 5-1
5.1.1 Stakeout Surveys ..... 5-1
5.2 Surface Soil and/or Sediment Sampling and Analysis ..... 5-1
5.2.1 Rationale/Design ..... 5-2
5.2.2 Quality Control Samples and Frequency ..... 5-2
5.2.3 Field Procedures ..... 5-2
5.3 Groundwater Sampling and Analysis ..... 5-3
5.3.1 Rationale/Design ..... 5-3
5.3.2 General Sampling Methods for Groundwater ..... 5-3
5.3.3 Sampling Containers and Preservation Techniques ..... 5-4
5.3.4 Field Quality Control Sampling Procedures ..... 5-4
5.3.5 Decontamination Procedures ..... 5-4
5.4 Surface Water Sampling and Analysis ..... 5-5
5.4.1 Rationale/Design ..... 5-5
6.0 Field Operations Documentation ..... 6-1
6.1 Daily Quality Control Reports ..... 6-1
6.2 Field Logbook and/or Sample Field Sheets ..... 6-1
6.3 Photographic Records ..... 6-1
6.4 Sample Documentation ..... 6-1
6.4.1 Sample Numbering System ..... 6-1
6.4.2 Sample Labels ..... 6-2
6.4.3 Chain-of-Custody Records ..... 6-2
6.5 Field Records ..... 6-2
6.6 Documentation Procedures/Data Management and Retention ..... 6-2

Table of Contents (continued)
7.0 Sample Packaging and Shipping Requirements ..... 7-1
8.0 Management of Investigation-Derived Waste ..... 8-1
9.0 Nonconformance/Corrective Actions ..... 9-1
10.0 References ..... 10-1

\section*{List of Attachments}

\author{
Attachment A1 Standard Operating Procedures
}
\begin{tabular}{ll} 
bgs & below ground surface \\
\({ }^{\circ}\) C & degrees Celsius \\
CFR & Code of Federal Regulations \\
DAF & Dilution attenuation factor \\
DU & decision unit \\
EDMS & Environmental Data Management System \\
EPA & U.S. Environmental Protection Agency \\
FSP & Field Sampling Plan \\
FWDA & Fort Wingate Depot Activity \\
GPS & global positioning system \\
IDW & investigation-derived waste \\
kg & kilogram(s) \\
MI & multi-incremental \\
NMED & New Mexico Environment Department \\
NMWQCC & New Mexico Water Quality Control Commission \\
QA & quality assurance \\
QC & quality control \\
QCP & Quality Control Plan \\
RCRA & Resource Conservation and Recovery Act \\
SAP & Sampling and Analysis Plan \\
Shaw & Shaw Environmental, Inc. \\
SOP & standard operating procedure \\
SOW & Statement of Work \\
TAL & Target Analyte List \\
USACE & U.S. Army Corps of Engineers \\
UTM & Universal Trans-Mercator
\end{tabular}

This page left intentionally blank.

\subsection*{1.0 Project Background}

This Field Sampling Plan (FSP) provides guidance for collecting additional soil, surface water, groundwater, and/or sediment samples in order to address additional data needs, i.e. data gaps, that may be identified during the establishment of background concentrations for naturallyoccurring inorganic constituents and site-specific dilution attenuation factors (DAF) for nonnaturally occurring organic compounds and constituents at the Fort Wingate Depot Activity (FWDA). A large data set of constituents and compound concentrations exist for samples previously collected at the site. Statistical and geochemical evaluations, i.e. data mining techniques, will be performed to develop background data sets and background distributions for metals in soils, groundwater, surface water, and sediment at FWDA. If the results from statistical and geochemical evaluations indicate that additional sample analyses are required to determine background distributions or DAF, then those additional samples will be collected in the field following guidance detailed in this FSP. The number of additional samples, their media, and locations are not known at this time.

\subsection*{1.1 Site History and Contaminants}

A site history is presented in Chapter 1.0 of the Work Plan. Figure 1-1 of the Work Plan is a site location map of the FWDA area.

\subsection*{1.2 Summary of Existing Data}

A summary of existing data from FWDA will be in the report describing the processes and procedures used to determine background distributions for metals and site-specific DAFs.

\subsection*{1.3 Site-Specific Definition of the Problem}

The FWDA is required to undertake corrective actions to mitigate the potential risk posed by contaminants including release of explosives constituents. In order to identify any contaminant releases and determine the potential risks, the naturally occurring background concentrations for metals and DAFs for non-naturally occurring organic compounds and constituents must be known. If the data mining techniques used during the statistical and geochemical evaluations do not sufficiently characterize background for metals and DAFs for other constituents then additional sampling and analysis will be required. The environmental media, sample locations, and analyses that may be required are unknown at this time.

Sampling activities described in this FSP are designed to collect samples of surface or subsurface soils, groundwater, surface water, and/or sediment that are representative of the media and locations from which they are collected and that upon analysis can yield constituent
concentrations that can be included in the background distributions or that can be used to differentiate contamination from background.

To aid in the identification of potentially hazardous constituents and determine whether or not a release has occurred, environmental media sample results will be compared to background distributions for naturally occurring inorganic constituents and site-specific DAFs for non-naturally occurring organic compounds. Samples collected under this FSP may contribute to determining the background distributions for metals and DAFs for non-naturally occurring compounds and constituents. Additional criteria can be used for comparison with site soil sample data and include the New Mexico Environment Department (NMED) soil screening levels (NMED, 2006) and the Environmental Protection Agency (EPA) Region 6 human health medium-specific screening levels for residential exposure (EPA, 2008a) (Table 3-1 of the Quality Assurance Project Plan - Part II of this Sampling and Analysis Plan [SAP]). For groundwater and surface water samples, metals analysis results can be compared to the EPA Maximum Contaminant Levels and Secondary Drinking Water Standards (EPA, 2001) (Table 3-1 of the Quality Assurance Project Plan - Part II of this SAP).

Potential risk to terrestrial ecological receptors will be assessed by screening against EPA's EcoSSLs (EPA, 2008b). The lowest Eco-SSL available for plants, invertebrates, birds, and mammals that is also greater than the established background will be used for the screening. Two metals without EPA Eco-SSLs, mercury and thallium, do have ESLs available in the ECORISK Database, Version 2.3 (LANL, 2008). The soil ESLs in ECORISK represent feeding guilds and trophic levels relevant to potential terrestrial receptor exposure at the facility, including: plants, soil-dwelling invertebrates, deer mouse (mammalian omnivore), Montane shrew (mammalian insectivore), desert cottontail (mammalian herbivore), fox (mammalian carnivore), American robin (avian insectivore, omnivore, and herbivore), and the American kestrel (avian insectivore and carnivore). As with the EPA Eco-SSLs, the lowest available SSL in ECORISK that is also greater than the established background will be used for screening of mercury and thallium.

\subsection*{1.4 Sampling and Analysis Activities}

Sampling activities may include the following sampling tasks:
- Multi-incremental (MI) and/or discrete sampling of surface soil and sediments
- Surface water sampling
- Groundwater sampling at existing or newly installed monitoring wells

The collected samples will be analyzed for the EPA Contract Laboratory Program's Target Analyte List (TAL) of 23 metals.

Data quality objectives (DQOs) for supplemental soil and sediment sample collection will be developed with stakeholder input prior to sample collection. At a minimum, the DQOs will take into account spatial distribution of samples, soil types, geologic environment, sample depth, sample collection method (multi-incremental versus discrete sampling), and delineation of associated aerial boundaries i.e. decision units (DU) if MI soil sampling is selected. An amended sampling and analysis plan will be prepared outlining the details of the methods to be employed for the supplemental sample collection.

This page left intentionally blank.

\subsection*{2.0 Project Organization and Responsibilities}

Project organization and responsibilities are addressed in Chapter 2.0 of the Work Plan. The project organizational chart is presented in Figure 2-2 of the Work Plan. Appendix D of the Work Plan provides current contact information.

This page left intentionally blank.

\subsection*{3.0 Project Scope and Objectives}

Project scope and objectives for this FSP are detailed in the "Scope of Work [SOW] for Delivery Order DM01 to Contract W912BV-07-D-2004, Fort Wingate Depot Activity, Background and Site Specific Dilution Attenuation Factors," dated June 26, 2008. The objective for the scope of work is to, "...conduct a background study in order to develop a baseline inorganic geochemical assessment establishing concentrations of natural occurring inorganic constituents in soil, groundwater, surface water, and sediment." And further, "The SOW objective is to develop and execute a study to determine if a release occurred to the environment above natural background levels, and whether a release has a potential to impact groundwater." Field sampling conducted under this FSP will, if performed, support those paired objectives.

\subsection*{3.1 Task Descriptions}

Planned activities detailed in this section include site surveys, supplemental surface soil and/or sediment sampling, surface water sampling, and groundwater sampling.

\subsection*{3.1.1 Site Surveys}

Site surveys include:
- Stakeout the locations for the supplemental soil and/or sediment DUs
- Locating surface water sampling locations

Stakeout of the supplemental soil or sediment sampling DUs or discrete sample locations will be accomplished using a sub-meter grade global positioning system (GPS); total data station or similar survey instruments; or sighting compass and surveyor's chain, tape measure, or distance wheel. DU intersections and study area boundaries will be designated with stakes, rebar, pin flags, or lathe driven into the ground and clearly marked with fluorescent paint and/or flagged. Adjacent DUs will be designated by naming or by row and column designations, using numerals for one and alphabetic characters for the other.

Surface water sampling locations will be identified using a hand held GPS unit. Locations will be designated with clearly marked stakes, rebar, pin flags, or lathe.

\subsection*{3.1.2 Supplemental Soil and/or Sediment Sampling}

Data quality objectives for supplemental soil and sediment sample collection will be developed with stakeholder input prior to sample collection. At a minimum, the DQOs will take into account spatial distribution of samples, soil types, geologic environment, sample depth, sample collection method (multi-incremental versus discrete sampling), and delineation of associated aerial boundaries i.e. DUs if MI soil sampling is selected. An amended sampling and analysis
plan will be prepared outlining the details of the methods to be employed for the supplemental sample collection.

\subsection*{3.1.3 Groundwater Sampling}

Groundwater may be sampled from indicated monitoring wells at the FWDA. Monitoring wells will be purged of stagnant water prior to sampling using equipment and procedures appropriate to the type of well installation and with respect to previous sampling events. Monitoring wells may be purged and sampled using bailers, electric submersible pumps, gas-driven piston pumps, low-flow bladder pumps, BARCAD \({ }^{\text {TM }}\) sampling systems, or other devices and techniques depending on the location and installation. Groundwater samples will be collected for both "total" metals analysis (unfiltered samples containing both dissolved constituents and suspended particulates) and "dissolved" metals (the sample filtered in the field through a 0.45 micron pore-size membrane). Well purging and sampling will follow established standard operating procedures (Attachment A1).

\subsection*{3.1.4 Surface Water Sampling}

Surface water samples will be collected from indicated water courses, impoundments, or natural ponds or lakes where indicated. Surface water samples will be collected following established procedures (Attachment A1) from below the water surface.

\subsection*{3.2 Applicable Regulations and Standards}

Federal and state regulations and standards that may be applicable to the FWDA include the following:
- Resource Conservation and Recovery Act (RCRA), 40 CFR 260-268, Management of Hazardous Waste: In the event that investigation-derived waste (IDW) sampling and analysis indicate the presence of constituents of potential concern at concentrations rendering them hazardous, storage and disposal protocols will be followed in accordance with RCRA hazardous waste regulations.
- U.S. Department of Transportation 49 CFR 172, 173, and 178: Applies to packaging IDW for removal off site and addresses hazard-class diamond labeling.
- NMED, Hazardous Waste Bureau and Ground Water Quality Bureau, Voluntary Remediation Program, Technical Background Document for Development of Soil Screening Levels, Revision 4.0, (NMED, 2006): Establishes human health risk-based criteria for soil remediation.
- RCRA Permit EPA ID No. NM6213820974, to U.S. Department of Army for the Fort Wingate Deport Activity (NMED, 2005).
- NMWQCC Groundwater Regulations (NMWQCC, 2002): Establishes standards for protection of groundwater.

\subsection*{3.3 Project Schedule}

A schedule for implementation of this SAP may be developed pending identification of data gaps following data mining techniques to be used in developing background distributions and DAF

This page left intentionally blank.

\subsection*{4.0 Nonmeasurement Data Acquisition}

If data gaps are identified when following the data mining process that will be used to develop background distributions for metals and DAFs for non-naturally occurring organic compounds and constituents, then that information will be used to define the environmental media to be sampled and the sampling locations. Maps or aerial photographs of the site will be used to delineate supplemental surface soil and/or sediment sampling. Monitoring wells coordinate locations, reference measurement elevations, depths, construction, and completion information for any indicated groundwater sampling will be compiled in order to plan for groundwater sampling. Surface water sampling locations will be determined. These types of information will be required and documented in an addendum to this SAP prior to implementing field sampling activities.

This page left intentionally blank.

\subsection*{5.0 Field Sampling Activities}

Field sampling activities at FWDA may include stake out; supplemental surface soil and/or sediment sampling, groundwater sampling, or surface water sampling.

\subsection*{5.1 Site Surveys}

Surveying may be performed at FWDA consisting of stakeout surveys of MI DUs and/or discrete sample locations.

\subsection*{5.1.1 Stakeout Surveys}

Stakeout surveys will delineate the surface soil and/or sediment DU areas for MI sampling, if selected, or discrete sample locations. First the DU areas or discrete samples will be map located and then navigated to in the field. Stakeout surveys will be conducted using a sub-meter, surveygrade GPS for navigation. To delineate the DU boundaries the GPS or total data station or similar survey instruments; or sighting compass and surveyor's chain, tape measure, or distance wheel may be used to either locate the intersections or corners if the DU areas are regular in shape, or to map the boundaries if the DU areas are irregular. Stakeout positional data collected with the GPS will be in UTM coordinate system on the World Geographic Datum of 1984. Horizontal accuracy obtained during DU stakeout will be plus or minus 1 meter, which is less than the single point resolution for the anticipated map scale. Elevation data need not be collected for the stakeout survey.

\subsection*{5.2 Surface Soil and/or Sediment Sampling and Analysis}

Supplemental soil and sediment sample collection may consist of MI or discrete sample collection based on DQOs developed for the background study. Supplemental sampling will only be performed if the data screening process determines that the quantity or quality of the existing data is inadequate. This section describes both the general approach for both MI and discrete sample collection.

MI surface soil or sediment samples may be collected from appropriately sized DU areas delineated at FWDA. MI samples will consist of combining at least 30 increments of approximate \(3 / 4\)-inch or 1 -inch diameter soil core from depths of 0 to 6 inches bgs. Increments will be collected by field crews with soil probes walking regular or random paths across the DU. Increments will be combined in specially designed plastic bags (NASCO Whirl-Pak \({ }^{\circledR}\) ).

MI surface soil samples will be collected and then submitted to a contractor laboratory for analysis of TAL metals by EPA Methods 6010C, 6020A, 7471B (EPA, 1986). The contractor laboratory will air-dry the entire MI sample, pass the entire sample through a number 10 sieve,
and further homogenize and sub-sample using either a rotary splitter or following sub-sampling procedures in Appendix A to EPA Method 8330B (EPA, 2006). Laboratory requirements for sample preparation are detailed in the Quality Assurance Project Plan (Part II of this SAP).

Discrete soil samples may be collected from the surface ( 0 to 6 inches bgs) or subsurface (greater than 4 inches) depending on the data needs. Soil sample collection will follow Standard Operating Procedures (SOP) EI-FS101, Trowel/Spoon Surface Soil Sampling (Shaw, 2006a) and EI-FS100, Hand Auger Sampling (Shaw, 2006b). The discrete soil samples will be passed through a No. 4 Sieve in the field prior to placing in the laboratory prepared jar.

\subsection*{5.2.1 Rationale/Design}

MI surface soil sampling and analysis will provide average metal concentrations for appropriately sized DU areas. DU areas will be based on topography, geology, and past land use and will be of minimum reasonable size. MI surface soil sample analytical results for TAL metals will fill the identified data gaps; should those be input to the background distribution calculations or otherwise used to determine whether or not contaminant releases have occurred.

Additional discrete soil sample locations will be based on topography, geology, and post land use and results used for geochemical evaluations and to supplement the sample size to provide more meaningful statistics.

\subsection*{5.2.2 Quality Control Samples and Frequency}

Quality assurance (QA) and quality control (QC) practices will be applied to this field activity to ensure that the data collected meet project objectives. Field QC samples will be collected and analyzed to provide indices of overall data accuracy and precision. MI field QC samples will be collected as triplicate samples from the same DU. Additional QA samples for the U.S. Army Corps of Engineers (USACE)-designated third-party QA laboratory may also be collected. Additional field QC samples will be collected at a minimum frequency of 10 percent.

\subsection*{5.2.3 Field Procedures}

The field procedures for the MI soil and/or sediment sampling at FWDA are described in the following sections.

\subsection*{5.2.3.1 Field Measurements}

Field measurements will be limited to checking the weight of MI soil samples to ensure that the 1 kg sample weight is collected. A top-loading kitchen-type balance may be used for checking sample weights. Accuracy of the field balance is expected to be within 10 percent. Calibration check of the field balance will not be necessary. Field measurements will be recorded on sample collection logs or field activity daily log forms.

\subsection*{5.2.3.2 Multi-Incremental Surface Soil Sampling for Chemical Analyses}

MI surface soil sampling will follow guidance in "Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents" (Hewitt et al., 2007) and Appendix A of EPA Method 8330B (EPA, 2006) and direction provided in this SAP. MI samples will consist of combining at least 30 increments of approximate \(3 / 4\)-inch or 1 -inch diameter soil core from depths of 0 to 6 inches bgs. Increments will be collected by field crews with soil probes walking regular or random paths across the DUs. Increments will be combined in specially designed plastic bags (NASCO Whirl-Pak \({ }^{\circledR}\) ).

MI samples should be at least 1 kg ( 2.2 pounds) mass. MI field samples may be passed through a No. 4 (4.75-millimeter) sieve in the field to remove rocks and gravel. The sample may then be homogenized to some extent in the field by manually mixing the sample. The MI samples will be shipped to the laboratory for preparation and analysis without thermal preservation.

\subsection*{5.2.3.3 Decontamination Procedures}

Decontamination of sampling equipment will follow Shaw Environmental, Inc. (Shaw) Standard Operating Procedure (SOP) EI-FS014, Decontamination of Contact Sampling Equipment (Attachment A1), with modification. Generally, dry brushing, scrubbing with detergent solutions, and rinsing with deionized water are sufficient for decontamination. Organic desorbing agents, i.e., solvents, will not be applied to sampling equipment. MI surface soil sampling equipment will be decontaminated before and between sampling each DU.

\subsection*{5.3 Groundwater Sampling and Analysis}

Groundwater may be sampled at FWDA to fill data gaps identified during data mining and background distributions and DAF study. Groundwater samples will be analyzed for TAL metals as both total concentrations and dissolved constituents. Monitoring wells to be sampled will be identified during the background study.

\subsection*{5.3.1 Rationale/Design}

Groundwater samples may be collected to fill data gaps identified during the background distributions and DAF study. Sampling procedures will be determined depending on the well type, completion, and historical records once the wells to be sampled are known.

\subsection*{5.3.2 General Sampling Methods for Groundwater}

Depth-to-water measurements will be taken in all wells prior to purging and sampling. Water levels will be measured using a well sounder tape to the nearest 0.01 feet. Water level measurements, ground or top of casing elevations, and total well depths will be used to calculate water level elevations and the required purging volumes.

Groundwater samples may be collected after stagnant water has been removed from the well in order to obtain samples representative of groundwater. Groundwater samples will be analyzed for TAL metals (EPA Methods 6010C, 6020A, and 7471B). Samples should be collected directly from the pump or sampler discharge line into pre-preserved sample containers, if possible. If inline filtration is not possible for the filtered sample then groundwater will be collected in an unpreserved jar or bottle and a peristaltic pump will be used to filter the sample.

Field measurements of transient parameters, including hydrogen ion activity (pH), specific conductance, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature, will be collected while purging at each monitoring well. Field meters will be either calibrated or checked each day prior to sampling in accordance with manufacturers' recommendations and applicable SOPs. Calibration results will be recorded on field calibration log forms.

\subsection*{5.3.3 Sampling Containers and Preservation Techniques}

Groundwater samples will be collected in minimum 500-milliliter polyethylene bottles preserved with nitric acid to a pH less than 2.0. Two sample containers will be collected at each well, one unfiltered and the other filtered through 0.45 micron filter cartridges.

\subsection*{5.3.4 Field Quality Control Sampling Procedures}

QA and QC practices will be applied to this field activity to ensure that the data collected meet project objectives. Field activities will follow documented SOPs (Attachment A1). Field QC samples will be collected and analyzed to provide indices of overall data accuracy and precision. Additionally, QA sample splits will be collected for submittal to the USACE-designated thirdparty QA laboratory. QC samples will be collected at a minimum frequency of 10 percent.

A groundwater duplicate field QC sample will be collected immediately after the parent sample. USACE QA sample splits will also be collected in the same manner.

\subsection*{5.3.5 Decontamination Procedures}

Nondedicated measurement and sampling equipment, such as water level tapes, will be decontaminated prior to, and after, each use. Equipment decontamination will follow general decontamination methods and procedures for sampling equipment as detailed in Shaw SOP EI-FS014, Decontamination of Contact Sampling Equipment (Attachment A1).

Sampling equipment dedicated for use at specific wells will not require decontamination prior to use. Disposable sampling equipment that is used once and then disposed of will not require decontamination prior to use provided it is wrapped in the manufacturer's packaging or otherwise protected from inadvertent contamination.

\subsection*{5.4 Surface Water Sampling and Analysis}

Surface water may be sampled at FWDA to fill data gaps identified during data mining and background distributions and DAF study. Surface water samples will be analyzed for TAL metals as total, unfiltered concentrations. Surface water sampling locations will be identified during the background study.

\subsection*{5.4.1 Rationale/Design}

Additional surface water sampling and analysis may fill data gaps identified during the background distributions and DAF study. Sampling locations will be determined during the background study.

\subsection*{5.4.1.1 Sample Collection, Field Measurements, and Laboratory Analysis}

Surface water samples will be collected directly from the water courses or bodies from below the surface in order to represent current field conditions. Field measurements of transient parameters, including hydrogen ion activity ( pH ), specific conductance, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature, will be collected at each surface water sampling location. Surface water samples will be analyzed for TAL metals (EPA Methods 6010C, 6020A, and 7471B) and collected in minimum 500-milliliter polyethylene bottles preserved with nitric acid to a pH less than 2.0.

\subsection*{5.4.1.2 Quality Control Samples and Frequency}

QA and QC practices will be applied to this field activity to ensure that the data collected meet project objectives. Field activities will follow documented SOPs (Attachment A1). Field QC samples will be collected and analyzed to provide indices of overall data accuracy and precision. Additionally, QA sample splits will be collected for submittal to the USACE-designated thirdparty quality assurance laboratory. QC samples will be collected at a minimum frequency of 10 percent.

This page left intentionally blank.

\subsection*{6.0 Field Operations Documentation}

\subsection*{6.1 Daily Quality Control Reports}

Daily QC Report forms will be completed and provided to the USACE as directed by the Albuquerque District representative and the Quality Control Plan (QCP) (Chapter 4.0 of the Work Plan).

\subsection*{6.2 Field Logbook and/or Sample Field Sheets}

Daily logs of field activities, daily tailgate safety meeting forms, sample collection logs, soil boring logs, well construction diagrams, water quality measurements, and other field documentation will be recorded on preprinted, standardized forms. All field documentation will be provided to the USACE in the background study report.

\subsection*{6.3 Photographic Records}

Photographs of field activities will be taken routinely, kept on file, and provided to the USACE representative as directed.

\subsection*{6.4 Sample Documentation}

Use of sample documentation, including sample numbers, labels, and chain-of-custody records will follow Shaw SOPs or specific requirements in this SAP.

\subsection*{6.4.1 Sample Numbering System}

Each sample will be assigned a unique field identification nomenclature specific for the FWDA. FWDA Sample ID's will consist of a combination of Parcel, AOC, Site identifier, source of sample, increment number for sub sample identification if necessary, type of sample, and matrix as follows:
- Parcel: 24
- AOC: 18
- Site Identifier: Y-A924 (in this case it’s Revetment Y-A924 in A Block)
- Source of sample: SS (Surface Soil)
- Increment number: 000 (3 digits for subsample if necessary)
- Type of sample: \(\quad \mathrm{M}\) (Multi-incremental)
- Matrix:

SO (Soil)
An example of an MI sample for revetment Y-A924 would be: 2418Y-A924SS-M-SO

\subsection*{6.4.2 Sample Labels}

Sample labels will be affixed to each sample container. Complete collection information, sample type, matrix, time, date, field number, analysis requested, and the sampler's name will be recorded with indelible ink. Sample labeling guidance is found in Shaw SOP EI-FS006, Sample Labeling (Attachment A1).

\subsection*{6.4.3 Chain-of-Custody Records}

Chain-of-custody documentation will be completed in the field to document sample collection, possession, and the chain of custody. Chain-of-custody documentation will follow Shaw SOP EI-FS003, Chain of Custody Documentation-Paper (Attachment A1). However, the EPA software, "FORMS II Lite, Version 5.1," (or latest version) may be used to generate and print sample chain-of-custody documentation in the field. Chain-of-custody information, collected in FORMS II Lite data files, will eventually be electronically transferred to a centralized database repository, the Environmental Data Management System (EDMS).

A sample is considered to be in a person's custody while either under physical custody or safely secured in a controlled access location. Sample custody can be transferred by signature relinquishment and acceptance. The shipping company waybills or bills of lading are considered part of the custody record between the time of collection and receipt at the analytical laboratory. Chain-of-custody records will accompany the sample shipment until receipt at the contractor laboratory.

\subsection*{6.5 Field Records}

Records of field analytical or monitoring measurements will be recorded on preprinted, prepared forms. Measurements for MI samples masses, depths to groundwater, discharge volumes and rates, and groundwater and surface water quality measurements will be taken and recorded. Field measurement information collected and recorded on preprinted field forms will be electronically transferred to the EDMS.

\subsection*{6.6 Documentation Procedures/Data Management and Retention}

Documentation procedures will follow Shaw SOPs (Attachment A1). All field documentation will be provided to the USACE in the report.

\subsection*{7.0 Sample Packaging and Shipping Requirements}

Samples will be packaged and shipped as nonhazardous environmental samples following the procedures in Shaw SOP EI-FS012, Shipping and Packaging of Non Hazardous Samples and SOP EI-FS005, Custody Seals (Attachment A1).

Sample containers will be sealed and packed into plastic bags. Samples will be placed into a cooler for shipping. As applicable, absorbent materials will be placed in the bottom of the cooler to contain any spillage from sample breakage, meltwater, or condensation. Bubble wrap, bubble bags, or precut foam blocks will serve as cushioning material in each cooler. Groundwater samples may be packed in ice to a temperature less than 6 degrees Celsius. The ice will be placed into plastic bags to contain meltwater and packed with the samples to provide adequate cooling until receipt at the laboratory. If collected, MI soil and/or sediment samples will not be cooled, but rather collected, processed, screened, and packaged at ambient temperatures. Chain-of-custody documents will be sealed in waterproof bags and included in the shipping cooler, which will be sealed and secured prior to being relinquished to the transport company. Samples will be packed and shipped overnight to the analytical laboratory by air express carrier as soon as possible after collection so as to not exceed the sample holding times.

Field personnel are responsible for contacting and coordinating with an overnight express air carrier (e.g., Federal Express, United Parcel Service or Airborne) to arrange for sample shipment. Soil and water samples for chemical analysis will be shipped to a subcontractor laboratory for processing and analysis. The laboratory will be qualified to perform analyses for the USACE. The analytical laboratory will be selected prior to mobilization. The third-party QA laboratory will be designated by the USACE.

The shipping cooler and its contents will be inspected and inventoried upon receipt at the analytical laboratory. The temperature and condition of the samples will be documented upon receipt. The analytical laboratory will contact field personnel immediately if there are any discrepancies in the shipment documentation. The laboratory will provide sample receipt documentation with its analytical report.

This page left intentionally blank.

\subsection*{8.0 Management of Investigation-Derived Waste}

Investigation derived waste (IDW) will be limited to spent decontamination wash and rinse water, and possibly groundwater purged prior to sampling. Liquid IDW decontamination wash will go in an evaporation tank constructed on site. Purge water from wells with organic compounds will also go into the evaporation tank. Purge water from wells without organics will be discharged to the ground surface.

This page left intentionally blank.

\subsection*{9.0 Nonconformance/Corrective Actions}

Any nonconformances to either the requirements in this plan or the procedures referenced herein will be identified and documented, and corrective actions will be initiated as described in the QCP (Chapter 4.0 of the Work Plan) in order to prevent recurrence of the offending situation or condition.

This page left intentionally blank.

\subsection*{10.0 References}

EPA, see U.S. Environmental Protection Agency.
Hewitt, Alan D., et. al, 2007, Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents, U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, ERDC/CRREL TR-07-10, Hanover, NH.

LANL, see Los Alamos National Laboratory.
Los Alamos National laboratory (LANL), 2008, ECORISK Database, Release 2.3, Environmental Programs Directorate, LA-UR-08-6673, Los Alamos National Laboratory, Los Alamos, New Mexico, October.

New Mexico Environment Department (NMED), 2005, Resource Conservation and Recovery Act Permit EPA ID No. NM 6213820974 to U.S. Department of Army for the Fort Wingate Depot Activity Located in McKinley County, New Mexico, Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Environment Department (NMED), 2006, Technical Background Document for Development of Soil Screening Levels, Revision 4.0, Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Water Quality Control Commission (NMWQCC), 2002, New Mexico Water Quality Control Commission Regulation, Section 20.6.2 of the New Mexico Administrative Code, New Mexico Water Quality Control Commission, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.
NMWQCC, see New Mexico Water Quality Control Commission.
U.S. Environmental Protection Agency (EPA), 1986, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd ed., U.S. Environmental Protection Agency, Washington, D.C.
U.S. Environmental Protection Agency (EPA), 2001, National Primary Drinking Water Regulations (40 CFR 141), Office of Water, U.S. Environmental Protection Agency, Washington, D.C.
U.S. Environmental Protection Agency (EPA), 2006, Nitroaromatics, Nitramines, and Nitrate Esters by High Performance Liquid Chromatography (HPLC), Method 8330B, U.S. Environmental Protection Agency, Washington, D.C. <http://epa.gov/SW-846/pdfs/8330b.pdf>
U.S. Environmental Protection Agency (EPA), 2008a, Region 6 Human Health Medium-Specific Screening Levels 2008 (Revised 03/08/08), U.S. Environmental Protection Agency Region 6, Dallas, Texas.
U.S. Environmental Protection Agency (EPA), 2008b, Ecological Soil Screening Levels (updated 05/21/08), <http://www.epa.gov/ecotox/ecossl>

\section*{Attachment A1 \\ Standard Operating Procedures}

\section*{List of Standard Operating Procedures}

Shaw Standard Operating Procedures
SOP EI-FS108 Measurement of Water Level and LNAPL in Monitoring Wells
SOP EI-FS109 Sampling of Aqueous Liquids via Bailers
SOP EI-FS110 Well Purging and Sampling Preparation
SOP EI-FS111
SOP EI-FS112
SOP EI-FS113
SOP EI-FS129
SOP EI-FS014
SOP EI-FSO06
SOP EI-FS003
SOP EI-FS012
SOP EI-FS005
SOP EI-FS100
SOP EI-FS101
Low-flow Sampling/Micro-purge
Depth Integrated Samplers
Surface Water Sampling
Collection of Water Samples for Dissolved Parameters
Decontamination of Contact Sampling Equipment
Sample Labeling
Chain of Custody Documentation-Paper
Shipping and Packaging of Non Hazardous Samples
Custody Seals
Hand Auger Sampling
Travel/Spoon Surface Soil Sampling

\section*{See folder on this compact disc.}
\begin{tabular}{lr} 
Procedure No. & El-FS003 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 1 of 4
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Chain of Custody Documentation - Paper}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the requirements for completion of written Chain of Custody (COC) documentation and to provide a suggested Chain of Custody Form for project use.
2. SCOPE

This procedure is applicable to all Shaw E \& I efforts where samples are transferred among parties, including to off-site testing facilities. Adherence to this procedure is not required whenever the same individual/team is performing the sampling and testing within the same workday, and transfer to the testing process is being documented by other means, e.g. sampling and then field-screening in a mobile laboratory.

\section*{3. REFERENCES}
- U.S. Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste; Physical/Chemical Methods, SW-846, Third Edition.
- U.S. Army Corps of Engineers, Requirements for the Preparation of Sampling and Analysis Plans, EM200-1-3.
- Shaw E \& I, 2002, Sampler's Training Course Handout.

\section*{4. DEFINITIONS}
- Custody-The legal term used to define the control and evidence traceability of an environmental sample. A sample is considered to be in an individual's custody when it is in actual physical possession of the person, is in view of the person, is locked in a container controlled by the person, or has been placed into a designated secure area by the person.
- Chain of Custody Form-A form used to document and track the custody and transfers of a sample from collection to analysis or placement in a designated secure area within the testing facility.
- COC Continuation Page-Additional page(s) that may be included with a Chain of Custody form. The continuation page(s) contain the information on additional samples contained within the same cooler/shipping container associated with the cooler/shipping container Chain of Custody form.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.
\begin{tabular}{lr} 
Procedure No. & El-FS003 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 2 of 4
\end{tabular}

\subsection*{5.2 Project Responsibility}

Shaw E \& I employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.
6. PROCEDURE

\subsection*{6.1 Documentation}

All Chain of Custody documentation must be completed in indelible ink. All corrections must be performed using standard single-line cross-out methods, and the initials of the individual making the change must be included beside the corrected entry.

\subsection*{6.2 Continuation Pages}

Continuation pages may be utilized for shipping containers/coolers with sufficient samples/sample containers that all of the lines of the Chain of Custody form are used before the documentation of the cooler/shipping container is complete. The number of pages in total must be filled out. All samples entered onto a Continuation Page must be included in the same cooler/shipping container as those on the Chain of Custody form itself.

\subsection*{6.3 Header Information}
- Each Chain of Custody form must be assigned a unique Reference Document Number-use the Project/proposal number followed by a unique numeric sequence or current date (if only one cooler sent per day). Continuation Pages should contain the same Document Reference Number as the Chain of Custody form that they are associated with. The project team should maintain a log of Chain of Custody Reference Document Numbers.
- The page identifier and total page count section must be completed. Total pages include the Chain of Custody form and any attached Continuation Pages.
- Project number, name, and location information must be completed for all forms.
- If available, the laboratory Purchase Order Number should be included on the appropriate line.
- The name and phone number of the Project Contact should be included; the Project Contact should be a responsible individual that the laboratory may access to address analytical issues. This person is usually the analytical lead for the project.
- The Shipment Date should be provided on the applicable lines.
- If shipping by carrier, the Waybill/Airbill Number must be included. Note: couriers will not sign custody documents. Therefore, inclusion of the waybill/airbill number on the Chain of Custody is the only means of documenting the transfer to the carrier.
- Laboratory Destination and Contact information should be provided.
\begin{tabular}{lr} 
Procedure No. & El-FSO03 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 3 of 4
\end{tabular}
- The Sampler(s) names should be provided on the appropriate line. This line should include all persons whose initials appear on any of the sample containers, to provide the laboratory a means of cross-referencing containers.
- The "Send Report To" information should be completed. If multiple reports/locations are needed, the information should be provided on a separate page included with the Chain of Custody documents.

\subsection*{6.4 Sample Information Section-Including on Continuation Page(s)}

During actual sampling, each sample must be entered on the COC form at the time of collection in order to document possession. The sampler must not wait until sampling is completed before entering samples on the COC.
- Complete the Sample ID Number for each line. If there are multiple container types for a sample, use additional lines to indicate the needed information.
- Ensure that the Sample Description matches the description on the sample label-the laboratory will use this information for cross-referencing.
- Provide the Collection Date and Time. These must match those on the sample label and Field Logbook/Logsheets.
- Indicate whether the sample is a Grab or Composite sample.
- Indicate the Matrix of the sample. Use the Matrix Codes listed on the Chain of Custody form.
- Indicate the Number of Containers and the Container Type. If a sample has multiple container types, use multiple lines and cross-out the information spaces to the left of the container blocks. Failure to do this may cause the laboratory to log-in each container type as a separate sample/lab-ID, resulting in a confused report and invoice.
- Alternatively, if each sample has the same number/type container types, use "various" in the Container Type block and provide detail in the Special Instructions section, e.g., "Each sample consists of one 16-oz jar, two pre-weighed VOC w/DI water, and one preweighed VOC w/Methanol."
- Check the appropriate Preservative box for each line/container type.
- Write in and check the Analyses Requested boxes for each line/container type. The appropriate method number (e.g., EPA Method 8260C) must be written as well as the method name.
- Indicate the Turn-around Time Requested for each sample.
- Use the Special Instructions section to provide important information to the laboratory, e.g., samples that may require dilution or samples that will need to be composited by the laboratory. This section may also be used to inform the laboratory of additional information contained in attachments to the Chain of Custody package.
- Circle the appropriate \(Q C / D a t a\) Package Level requested.

\subsection*{6.5 Custody Transfer Section}
- The first Relinquished By space must be completed by the individual who will either transfer the samples or seal the shipping container.

Procedure No.
Revision No.
- If the samples will be transferred to a courier, write the courier/carrier company in the Received By box and enter the Date and Time that the shipping container was closed.
- All other transfers must be performed in person, and the Relinquisher must witness the signing by the Receiver.
- A copy of the Chain of Custody form and all associated Continuation Pages should be maintained in the project files.

\section*{7. ATTACHMENTS}

None.

\section*{8. FORMS}
- Shaw E \& I Chain of Custody Form
- Shaw E \& I COC Continuation Page

\(\qquad\)
\(\qquad\)

Project Number:
Shipment Date: \(\qquad\)
Analyses Requested

Project Name / Location:


Procedure No.
EI-FSOO5
Revision No.
Date of Revision
9/8/06
Page
1 of 2

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Custody Seals}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the requirements for completion and attachment of Custody Seals on environmental samples and shipping containers.

\section*{2. SCOPE}

This procedure is applicable to all Shaw E \& I efforts where sample legal defensibility and custody integrity is desired. Adherence to this procedure is not required whenever the same individual/team is performing the sampling and testing within the same workday, and transfer to the testing process is being documented by other means, i.e. sampling and then field-screening in a mobile laboratory.

\section*{3. REFERENCES}
- U.S. Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste; Physical/Chemical Methods, SW-846, Third Edition.
- U.S. Army Corps of Engineers, Requirements for the Preparation of Sampling and Analysis Plans, EM200-1-3
- Shaw E \& I, 2002, Sampler's Training Course Handout.

\section*{4. DEFINITIONS}
- Custody-The legal term used to define the control and evidence traceability of an environmental sample. A sample is considered to be in one's custody if it is in actual physical possession of the person, is in view of the person, has been locked in a container controlled by the person, or has been placed into a designated secure area by the person.
- Custody Seal-Commercially available thin strips of adhesive paper with write-in lines for the date/time and identification of the using party. Custody seals are placed over the caps of sample containers and along the cover seals of shipping containers as a means to detect tampering before arrival at the testing facility. All Shaw E \& I strategic alliance laboratories provide Custody Seals in their sample container supply kits.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.
\begin{tabular}{lr} 
Procedure No. & El-FS005 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 2 of 2
\end{tabular}

\subsection*{5.2 Project Responsibility}

Shaw E \& I employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw E \& I employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (i.e. checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.
6. PROCEDURE

\subsection*{6.1 Completing the Custody Seal Information}
- All Custody Seals must be completed in indelible ink. All corrections must be made using standard single-line cross-out methods, and the initials of the individual making the change must be included beside the corrected entry.
- Each Custody Seal attached must be completed by writing the Date, at a minimum, and signing with full signature by the person responsible for the sealing of the sample.
- If a space is provided, the Time should also be added.

\subsection*{6.2 Attaching the Custody Seals}

Whenever possible, custody seals should be attached over the sample container lids during actual sampling and not when the samples are packaged for shipment. This will provide confidence in legal custody and will demonstrate non-tampering during the sample collection process.

Do not attach custody seals to VOC sample containers, as contamination may occur. For these samples, the custody seal should be used to seal the folded plastic zip bag that holds the sample containers.
- For sample jars, the completed Custody Seal should be placed across the top of the lid with the edges below the lid/jar interface and attached to the jar material. This will require the visible breaking of the seal in order to open the container.
- Sample coolers and shipping containers should have Custody Seals attached in such a manner that the seal extends lengthwise from the top edge of the lid to the side of the cooler/container.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.
\begin{tabular}{lr} 
Procedure No. & EI-FS006 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 1 of 2
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Sample Labeling}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the requirements for completion and attachment of sample labels on environmental sample containers.

\section*{2. SCOPE}

This procedure is applicable to all Shaw E \& I projects/proposals where samples will be collected.

\section*{3. REFERENCES}
- U.S. Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste; Physical/Chemical Methods, SW-846, Third Edition.
- U.S. Army Corps of Engineers, Requirements for the Preparation of Sampling and Analysis Plans, EM200-1-3
- Shaw E \& I, 2002, Sampler's Training Course Handout.

\section*{4. DEFINITIONS}
- Sample Label-Any writing surface with an adhesive backing that can be used to document sample identification information. The sample label is attached to the sample container as a means of identification and, in some commercially available or laboratory-supplied containers, may be pre-attached. All Shaw E \& I strategic alliance laboratories provide sample labels or pre-labeled containers in their sample container supply kits.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw E \& I employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw E \& I employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (i.e. checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

Procedure No.
Revision No.

\section*{6. PROCEDURE}
- All sample labels must be completed in indelible ink. All corrections must be performed using standard single-line cross-out methods, and the initials of the individual making the change must be included beside the corrected entry.
- Sample labels should be completed and attached as samples are collected. Do not wait until final packaging to attach and/or complete the sample labels.
- Sample labels must be attached to the non-sealing portion of the container. Do not place labels on or across sample container caps.
- If the laboratory has provided pre-labeled containers, make sure to fill one for each parameter set needed. Laboratory pre-labeled containers are often bar-coded and it is important to provide a complete container set for each sample.
- The following information must be recorded on the Sample Label:
- Sample Identification Number
- Date and Time collected
- Initials of person(s) responsible for collection
- If a space is provided, the Analysis Requested should also be added.
- If a Description is provided, remember it must match that on the Chain of Custody form for cross-referencing purposes.
- Cover the completed and attached label with clear plastic tape to prevent bleeding of the ink if it becomes wetted. Do not perform this step for pre-weighed VOC vials, as the final weight values will be influenced by the mass of the tape. Protect these containers by enclosing the rack/holder in a plastic bag within the cooler.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Shipping and Packaging of Non Hazardous Samples}

\section*{1. PURPOSE}

The purpose of this procedure is to provide general instructions in the packaging and shipping of nonhazardous samples. The primary use of this procedure is for the transportation of samples collected on site to be sent off site for physical, chemical, and/or radiological analysis.

\section*{2. SCOPE}

This procedure applies to the shipping and packaging of all non-hazardous samples. Non-hazardous samples are those that do not meet any hazard class definitions found in 49 CFR 107-178, including materials designated as Class 9 materials and materials that represent Reportable Quantities (hazardous substances) and/or materials that are not classified as Dangerous Goods under current IATA regulations.

In general most soil, air, and aqueous samples, including those that are acid or caustic preserved do not qualify as hazardous materials or dangerous goods. An exception is methanolic soil VOC vials: these containers are flammable in any quantity and must be packaged, shipped, and declared as Dangerous Goods whenever transported by air.

The Class 9 "Environmentally Hazardous" designation should only be applied to samples if they are known or suspected (via screening) to contain a sufficient concentration of contaminant to pose a health and/ or environmental risk if spilled in transport. Samples for which screening has shown a potential hazard (i.e. flammability) or those that are derived from a known hazard, including a site/facility with confirmed contamination by an infectious substance must also be shipped in accordance with the applicable DOT/IATA requirements. Refer to Shaw E \& I SOP FS013.

Improper shipment of hazardous materials, especially willful misrepresentation and shipment as nonhazardous materials, is a violation of federal law and is punishable by fines and possible imprisonment of the guilty parties. It is also a violation of Shaw E \& I policy and can result in disciplinary action up to and including termination of employment.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, EM200-1-3, Washington, D.C.
- U.S. Department of Transportation Regulations, 49 CFR Parts 108-178
- International Air Transport Association (IATA), Dangerous Goods Regulations, current edition.

\section*{4. DEFINITIONS}
- Cooler/Shipping Container-Any hard-sided insulated container meeting DOT's or IATA's general packaging requirements.
- Bubble Wrap—Plastic sheeting with entrained air bubbles for protective packaging purposes.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be sent to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (i.e. checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

\subsection*{6.1 Packaging}
- Use tape and seal off the cooler drain on the inside and outside to prevent leakage.
- Place packing material on the bottom on the shipping container (cooler) to provide a soft impact surface.
- Place a large (30-55 gallon or equivalent) plastic bag into the cooler (to minimize possibility of leakage during transit).
- Starting with the largest glass containers, wrap each container with sufficient bubble wrap to ensure the best chance to prevent breakage of the container.
- Pack the largest glass containers in the bottom of the cooler, placing packing material between each of the containers to avoid breakage from bumping.
- Double-bag the ice (chips or cubes) in gallon- or quart-sized resealable plastic freezer bags and wedge the ice bags between the sample bottles.
- Add bagged ice across the top of the samples.
- When sufficiently full, seal the inner protective plastic bag, and place additional packing material on top of the bag to minimize shifting of containers during shipment.
- Tape a gallon-sized resealable plastic bag to the inside of the cooler lid, place the completed chain of custody document inside, and seal the bag shut.
- Tape the shipping container (cooler) shut using packing tape, duct tape, or other tear-resistant adhesive strips. Taping should be performed to ensure the lid cannot open during transport.
- Place a custody seal on two separate portions of the cooler, to provide evidence that the lid has not been opened prior to receipt by the intended recipient.

Procedure No.

\subsection*{6.2 Labeling}
- A "This Side Up" arrow should be adhered to all sides of the cooler, especially ones without obvious handles.
- The name and address of the receiver and the shipper must be on the top of the cooler.
- The airbill must be attached to the top of the cooler.

\subsection*{6.3 Shipping Documentation}
- A Cooler Shipment Checklist (Attachment 1) should be completed and kept in the project file.
7. ATTACHMENTS
- Attachment 1, Shaw E \& I Cooler Shipment Checklist
8. FORMS

None.

Attachment 1
Shaw E \& I Cooler Shipment Checklist


PROBLEMS/RESOLUTIONS: \(\qquad\)
\begin{tabular}{l}
\hline \\
PREPARED BY: \(\quad\) SIGNATURE \(\quad\) \\
\hline
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Decontamination of Contact Sampling Equipment}

\section*{1. PURPOSE}

This procedure is intended to provide minimal guidelines for the decontamination of contact sampling equipment. Contact sampling equipment is equipment that comes in direct contact with the sample or the portion of a sample that will undergo chemical analyses or physical testing.
2. SCOPE

This procedure applies to all instances where non-disposable direct contact sampling equipment is utilized for sample collection and no project-specific procedure is in place. This procedure is not intended to address decontamination of peristaltic or other sampling pumps and tubing. The steps outlined in this procedure must be executed between each distinct sample data point.

\section*{3. REFERENCES}
- U.S. Environmental Protection Agency, Region 4, 2001, Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, 980 College Station Road, Athens, Georgia. November.
- US Army Corp of Engineers, Washington, D.C., 2001, Requirements for the Preparation of Sampling and Analysis Plans (EM-200-1-3), February.

\section*{4. DEFINITIONS}
- Soap-A standard brand of phosphate-free laboratory detergent, such as Liquinox®.
- Organic Desorbing Agent-A solvent used for removing organic compounds. The specific solvent would depend upon the type of organic compound to be removed. See Attachment 1 for recommendations.
- Inorganic Desorbing Agent-An acid solution for use in removing trace metal compounds. The specific acid solution would depend upon the type of inorganic compound to be removed. See Attachment 1 for recommendations.
- Tap water-Water obtained from any municipal water treatment system. An untreated potable water supply can be used as a substitute for tap water if the water does not contain the constituents of concern.
- Distilled Water-Water that has been purified via distillation. Distilled water can be purchased in most stores and is acceptable as a final rinse in non-trace analytical decontamination processes. Examples would include disposal profiling, HazCat, and other gross screening applications.
- Analyte-free water-Water that has been treated by passing through a standard deionizing resin column, and for organics either distillation or activated carbon units. At a minimum, the finished water should contain no detectable heavy metals or other inorganic compounds, and/or no detectable organic compounds (i.e., at or above analytical detection limits). Type I and Type II Reagent Grade Water meet this definition as does most laboratory-supplied blank water.
\begin{tabular}{lr} 
Procedure No. & El-FS014 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 2 of 2
\end{tabular}

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be sent to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

Wear appropriate eye protection including safety goggles when working with corrosive liquids, especially when diluting concentrated materials to create low-percentage solutions and follow all project Health and Safety requirements. Decontamination wastes are to be recovered and handled as impacted project waste materials and must be disposed of in accordance with regulatory requirements.

A decontamination area should be established. Implements can either be immersed in a 5-gallon bucket containing each solution/rinse or the solutions can be contained in hand-held units made of an inert and compatible material; such as a Teflon \({ }^{\text {M }}\) wash bottle. The analyte-free water needs to be placed in a container that will be free of any compounds of concern.

Consult Attachment 1 for the decontamination solutions/solvents appropriate to the task. The minimum steps for decontamination are as follows:
1. Remove particulate matter and other surface debris by brushing and/or dipping in the soap solution.
2. Rinse thoroughly with tap water.
3. If necessary, rinse with other applicable solutions/solvents. If hexane is used, be sure to follow it with isopropyl alcohol to allow for the final water rinses to properly mix and contact the surface.
4. Final rinse three times to make sure all residual solutions/solvents are removed.
5. Place decontaminated equipment on a clean surface appropriate for the compounds of concern and allow to air dry.

\section*{7. ATTACHMENTS}
- Attachment 1, Recommended Decontamination Procedures.

\section*{8. FORMS}

None.

\section*{Attachment 1}

Recommended Decontamination Procedures
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & Detergent Wash & Tap Water & Inorganic Desorbing Agent & Tap Water & Organic Desorbing Agent \({ }^{1}\) & Final Water Rinse \({ }^{4}\) & \begin{tabular}{l}
Air \\
Dry
\end{tabular} \\
\hline \multicolumn{8}{|c|}{Organic Constituents} \\
\hline Volatile Organic Compounds & \(\checkmark\) & \(\checkmark\) & & & Methanol Purge \& Trap grade & \(\checkmark\) & \(\checkmark\) \\
\hline Base Neutrals/Acid Extractables/PCBs/Pesticides & \(\checkmark\) & \(\checkmark\) & & & Hexane followed by Isopropyl Alcohol & \(\checkmark\) & \(\checkmark\) \\
\hline Organic Bases² & \(\checkmark\) & \(\checkmark\) & \[
\begin{gathered}
1 \% \text { nitric } \\
\text { acid }
\end{gathered}
\] & \(\checkmark\) & Isopropyl Alcohol & \(\checkmark\) & \(\checkmark\) \\
\hline Organic Acids \({ }^{3}\) & \(\checkmark\) & \(\checkmark\) & 1\% nitric acid & & Isopropyl Alcohol & \(\checkmark\) & \(\checkmark\) \\
\hline \multicolumn{8}{|c|}{Inorganic Constituents} \\
\hline Trace Metals and Radio Isotopes & \(\checkmark\) & \(\checkmark\) & 10\% Nitric acid -Trace metals grade & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) \\
\hline Cations/Anions & \(\checkmark\) & \(\checkmark\) & & & & \(\checkmark\) & \(\checkmark\) \\
\hline Acidic Compounds & \(\checkmark\) & \(\checkmark\) & & & & \(\checkmark\) & \(\checkmark\) \\
\hline Basic Compounds (caustic) & \(\checkmark\) & \(\checkmark\) & 1\% nitric acid & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

1 - All organic solvents must be Pesticide Grade or better. The selection of appropriate solvent rinses should first consider if a known or suspected contaminant requires removal from sampling equipment. Secondly, identify whether the subsequent analytical protocol would be impacted by the proposed solvent or an impurity thereof (e.g., residual acetone present in isopropyl alcohol would be measured with certain volatile organics analysis).
2- Organic bases include amines, hydrazines.
3 - Organic acids include phenols, thiols, nitro and sulfonic compounds.
4- Use a grade of water appropriate to the application. For trace level analysis this must be Analyte Free Water. For non-trace applications store-bought distilled water is sufficient

Adapted from: Appendix E, Requirements for the Preparation of Sampling and Analysis Plans (EM-200-1-3), February 2001. US Army Corp of Engineers, Washington, D.C.
\begin{tabular}{lr} 
Procedure No. & El-FS100 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 1 of 3
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Hand Auger Sampling}

\section*{1. PURPOSE}

The purpose of this document is to provide the methods and procedure for sampling of soils and other solids using hand auger techniques. Hand auger sampling can be used when matrices are composed of relatively soft and non-cemented formations, to reach depths of up to 5 feet below ground surface, dependent on site conditions. Samples for Volatile Organic Compound (VOC) analysis should not be collected via hand auger methods. However, a hand auger may be utilized to penetrate to and expose the undisturbed material at the desired depth for sampling by more applicable methods.
2. SCOPE

This procedure is applicable to all Shaw E \& I projects where soil samples will be collected via hand auger methods and no project-specific procedure exists.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, SectionC.6, EM200-1-3, Washington, D.C.
- American Society of Testing and Materials, D1452-80 (re-approved 2000), Standard Practice for Soil Investigation and Sampling by Auger Borings, West Conshohocken, PA.

\section*{4. DEFINITIONS}
- Hand Auger-A sample collection device consisting of metal rods with a T-bar handle and a detachable metal head. The auger head is a hollow metal tube with two cutting edges at the bottom curved into each other to hold the material pushed up into the tube as the auger is forced deeper. All trace environmental samples should be collected using stainless steel auger heads. See ASTM D1452 for a description of various types of augers available for use.
- Sand Auger-A type of auger with the cutting edges bent toward and touching each other. The design allows for the trapping of loosed materials in the auger tube.
- Mud Auger-A type of auger head with the top several inches open at the sides to allow for reduction of suction during removal from wetted and highly plastic materials, such as mud and lagoon solids.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be sent to the Field Sampling Discipline Lead.
\begin{tabular}{lr} 
Procedure No. & El-FS100 \\
Revision No. & 1 \\
Date of Revision & \(9 / 8 / 06\) \\
Page & 2 of 3
\end{tabular}

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for recording information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.
6. PROCEDURE

\subsection*{6.1 Equipment}

The following equipment should be used when conducting hand auger sampling:
- Decontaminated commercial hand auger, stainless steel construction for trace environmental sampling (any of those mentioned in ASTM D1452 are acceptable). If samples will be collected at depth, the auger head will require decontamination prior to collection of the targeted-depth sample. Alternatively, one auger can be used to remove the material to the targeted depth, and the sample can be collected using a different, clean dedicated auger.
- Engineers rule or stiff measuring tape
- Stainless steel spoons or scoops-decontaminated or dedicated
- Decontaminated or dedicated stainless steel bowl

\subsection*{6.2 Sampling}

The following procedure should be used for hand auger sampling:
1. Don a pair of clean gloves.
2. If desired, place plastic sheeting around the targeted location to keep sampled material in place. Use a knife to cut an access hole for the sample location.
3. Remove any surficial debris (e.g. vegetation, rocks, twigs) from the sample location and surrounding area.
4. Place the bucket of the hand auger on the ground with the teeth down, and, while holding the T-handle, rotate it in a clockwise direction while pushing straight downward until the bucket is full.
5. Extract the auger by pulling upward with a slight rocking or rotating motion (counterclockwise) until the head is fully out of the hole.
6. Measure the depth of the sample bottom with the rule or tape and compare to the desired sampling depth.
7. Remove the soil with a spoon or scoop. If the material represents the desired sample, place it into the bowl. If it is not the material to be sampled, empty the auger bucket onto the ground or plastic and repeat steps 4 through 6 until the desired sample aliquot is collected, placing it into the sample bowl. Remember to either decontaminate the auger head or use a fresh one to collect the actual sample aliquot.

\footnotetext{
This document contains proprietary information of Shaw Environmental \& Infrastructure Inc. Shaw Environmental \& Infrastructure, Inc retains all rights associated with theses materials, which may not be reproduced without express written permission of the company.
}

Procedure No.
EI-FS100
Revision No.
Date of Revision 9/8/06
Page 3 of 3
8. If collecting a sample for VOC analysis, expose the desired depth by following steps 4 through 6 and then collect the sample from undisturbed material, using a corer or syringetype sampling device.
9. Homogenize the non-VOC sample and transfer the sample directly into the sample container(s). Cap the sample container(s), label, complete documentation, and place into the sample cooler.
10. Measure the depth from which the sample was taken and record it in the field logbook or sheet.
11. Repeat steps 4 through 10 for deeper samples from the same hole.

\section*{7. ATTACHMENTS}

None.

\section*{8. FORMS}

None.
\begin{tabular}{lr} 
Procedure No. & EI-FS101 \\
Revision No. & 1 \\
Date of Revision & \(9 / 11 / 06\) \\
Page & 1 of 3
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Trowel/Spoon Surface Soil Sampling}

\section*{1. PURPOSE}

The purpose of this document is to provide the methods and procedure for sampling of surface soils using trowels or spoons. Trowels or spoons can be used when matrices are composed of relatively soft and non-cemented formations and to depths of up to 12 inches into the ground surface, dependent on site conditions. Samples for Volatile Organic Compound (VOC) analysis should not be collected via trowel or spoon method. However, a trowel or spoon may be utilized to penetrate to and expose the undisturbed material at the desired depth for sampling by more applicable methods.
2. SCOPE

This procedure is applicable to all Shaw E\&I projects where surface soil samples will be collected via trowel or spoon methods.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, SectionC.6, EM200-1-3, Washington, D.C.

\section*{4. DEFINITIONS}
- Trowel-A sample collection device with a curved and pointed metal blade attached to a handle. All trace environmental samples should be collected using stainless steel blades.
- Spoon-A sample collection device with a round metal blade attached to a handle.
- Surface Soil-Soil that is removed from the surface no greater than 6 inches below grade after removing vegetation, rocks, twigs, etc.
- Weathered Soil—The top \(1 / 8\) to \(1 / 4\) inch of soil impacted by heat from sun, rain, or foot traffic that could evaporate, dilute, or otherwise deposit contaminants from an adjacent location, thereby misrepresenting the actual soil characteristic.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for the maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

Procedure No.
Revision No.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

\subsection*{6.1 Equipment}
- Decontaminated trowel or spoon, stainless steel construction for trace environmental sampling. If samples will be collected at depth (0-6 inches), the trowel or spoon will require decontamination prior to collection of the targeted-depth sample. Alternatively, a different trowel or spoon can be used to remove the material to the targeted depth and the sample collected using a clean dedicated trowel or spoon.
- Engineers rule or stiff measuring tape
- Decontaminated stainless steel mixing bowl

\subsection*{6.2 Sampling}
1. Don a pair of clean gloves.
2. If desired, place plastic sheeting around the targeted location to keep sampled material in place. Use a knife to cut an access hole for the sample location.
3. Remove any surficial debris (e.g. vegetation, rocks, twigs) from the sample location and surrounding area until the soil is exposed. Once exposed, the soil surface is designated as "at grade," or 0 inches.
4. Use a trowel to scrape and remove the top \(1 / 8\) to \(1 / 4\) inch of weathered soil. (A spoon can be interchanged with trowel).
5. If collecting a sample that includes VOC analysis, collect the VOC sample aliquot first following more applicable methods.
6. With a new trowel, place the point of the blade on the ground. While holding the handle of the trowel, partially rotate the blade in a clockwise/counter-clockwise motion while pushing at a downward angle until the blade is inserted to the required depth or the blade is nearly covered. Be certain that the trowel is not inserted to a depth where the soil will touch the handle or other non-stainless steel portion of the trowel or the sampler's hand.
7. With a prying motion lift up the trowel with soil on the blade and place soil into the stainless steel mixing bowl.
8. Repeat steps 6 and 7 until the required depth of soil is placed into the mixing bowl.
9. Measure the depth of the sample location with a rule or tape to verify the sampling depth and record in the field logbook.
10. Homogenize the non-VOC sample and transfer the sample directly into the sample container(s). Cap the sample container(s), label the containers, complete the documentation, and place the containers into the sample cooler.

Procedure No.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.
\begin{tabular}{lr} 
Procedure No. & EI-FS108 \\
Revision No. & 1 \\
Date of Revision & \(9 / 11 / 06\) \\
Page & 1 of 4
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Measurement of Water Level and LNAPL in Monitoring Wells}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the methods and procedures for measurement of groundwater well water levels and for conducting LNAPL measurements. Well water levels can either be determined as part of the well purging/sampling effort or be independently determined to provide information on site hydrology.

\section*{2. SCOPE}

This procedure is applicable to all Shaw E \& I projects where groundwater level and/or LNAPL measurements are taken.

\section*{3. REFERENCES}
- American Society of Testing and Materials, D4750-87 (Reapproved 2001), Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well), West Conshohocken, PA.
- U.S. Department of the Interior, 1977 (updated 1984), National Handbook of Recommended Methods for Water-Data Acquisition, Chapter 2, Reston, VA.

\section*{4. DEFINITIONS}
- Measuring Tape-Steel or plastic tape with graduations to 0.01 feet. The tape shall not stretch more than 0.05 feet under normal use.
- Electronic Measuring Device-Commercial probe and cable designed to register a signal when the probe contacts water. The cable must have graduations to 0.01 feet.
- Oil/water Interface Probe- a specialized electronic measuring device that detects organic liquids. It is used to determine the interface and physical extent of any oil within the well.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be sent to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw E \& I employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw E \& I employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this
Procedure No.
Revision No.
Date of Revision
Page

Revision No.
and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

Two techniques are discussed below: the measuring-tape method and the electronic method.

\subsection*{6.1 Equipment}

The following equipment should be used when measuring groundwater levels:
- Decontaminated, weighted tape with graduations to 0.01 feet. The weight should be sufficient to ensure plumbness of the tape, but slender enough so as not to raise the water level significantly when submerged in the water.
- Decontaminated, commercial electronic water-level measuring device.
- Engineer's rule, graduated to 0.01 feet.
- Oil/water interface probe and meter.

\subsection*{6.2 Weighted Steel Tape}

The following procedure should be used when measuring groundwater levels with a measuring tape:
1. Unlock the well cover and remove the cap.
2. Locate the reference point on the riser pipe.
3. Don a pair of clean gloves.
4. Slowly lower the weighted tape down the well until the bottom is reached, indicated by a bump and sudden slack in the line.
5. Straighten the tape out, removing the slack, and measure the distance at the reference point.
6. Record the reading at the reference point as Depth to Bottom (DTB).
7. Withdraw the tape from the well and record the reading at the wet/dry interface as Depth to Water (DTW).
8. The difference between the two measurements is the depth of the water column (DWC).
9. Dry and decontaminate the wetted portion of the tape.

\subsection*{6.3 Electronic Measurement}

The following procedure should be used when measuring groundwater levels with an electronic water-level measuring device:
1. Check for proper instrument response by inserting the probe in water. Fix or replace the instrument as needed.
2. Unlock the well cover and remove the cap.
3. Locate the reference point on the riser pipe.

Procedure No.
Revision No.
4. Don a pair of clean gloves.
5. Slowly lower the probe down the well until the signal indicates that the water has been contacted.
6. Record the reading at the reference point as DTW.
7. Withdraw the probe and repeat steps 5 \& 6 . Duplicate measurements should agree within 0.02 feet. If not, continue with measurements until 0.02 feet precision is achieved.
8. Lower the probe until the bottom of the well is reached, as indicated by slack in the line.
9. Pull slightly to remove the slack, measure at the reference point, and record as DTB.
10. Determine the water column length as (DTB-DTW) and record as DWC.
11. Remove the probe from the well and decontaminate it.

\subsection*{6.4 Light Non-Aqueous Phase Liquids}

Oil or other light non-aqueous phase liquids (LNAPL) may be floating on the water in selected wells. If so, measure the LNAPL level and the water level using an oil/water interface probe as follows:
1. Check for proper instrument response by inserting the probe in water. Instruments typically indicate LNAPL with a steady indicator light and tone, while water is indicated by an intermittent light and tone.
2. Unlock the well cover and remove the cap.
3. Locate the reference point on the riser pipe.
4. Don a pair of clean gloves.
5. Slowly lower the oil/water interface probe down the well until the signal indicates that LNAPL has been contacted (typically a steady indicator light and tone).
6. Record the reading at the reference point as DTNAPL.
7. Continue lowering the probe until the signal indicates that water has been contacted (typically an intermittent light and tone).
8. Record the reading at the reference point as DTW.
9. Determine the depth of LNAPL as (DTW-DTNAPL) and record it.
10. Withdraw the probe and repeat steps \(5 \& 6\). Duplicate measurements should agree within 0.02 feet. If not, continue with measurements until 0.02 feet precision is achieved.
11. Lower the probe until the bottom of the well is reached, as indicated by slack in the line.
12. Pull slightly to remove the slack, measure at the reference point, and record as DTB.
13. Determine the water column length as (DTB-DTW) and record as DWC.
14. Remove the probe from the well and decontaminate it.

Procedure No.
Revision No.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.
\begin{tabular}{lr} 
Procedure No. & EI-FS109 \\
Revision No. & 1 \\
Date of Revision & \(9 / 11 / 06\) \\
Page & 1 of 3
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Sampling of Aqueous Liquids via Bailer}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the methods and techniques to be utilized when sampling aqueous liquids using bailer methods. This procedure does not apply to the use of depth-integrated modified bailer systems such as the Kemmerer Sampler. Bailers should not be utilized when sampling for trace levels of VOCs in wells containing high solids loads or wells that have been purged using micro techniques.

\section*{2. SCOPE}

This procedure is applicable to all Shaw E \& I projects where samples will be collected using a bailer. These may include groundwater wells, water treatment pools, frac tanks, and other containers.

It is not applicable to direct push groundwater sampling. See Procedure El-GS009 for suggested direct push groundwater sampling methods.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, Section C.2, EM200-1-3, Washington, D.C.
- American Society of Testing and Materials, D6634-01, Standard Guide for Selection of Purging and Sampling Devices for Ground-Water Monitoring Wells, West Conshohocken, PA.
- American Society of Testing and Materials, D4448-01, Standard Guide for Sampling GroundWater Monitoring Wells, West Conshohocken, PA.

\section*{4. DEFINITIONS}
- Bailer-A device used to collect aqueous liquid samples typically consisting of a long tube with a check valve system attached to a rope or cable. The bailer is lowered into the liquid, and once the desired depth is reached, the check valve is set by causing an upward motion. Bailers are constructed of stainless steel, polyethylene plastic, or Teflon \({ }^{\top \mathrm{M}}\). Those made of polyethylene and Teflon \({ }^{\text {M }}\) can be considered disposable and utilized for one-time use.
- Single check valve bailer-The most commonly used type of bailer; a tubular bailer with a bottom check valve that allows water to enter the bailer while it is lowered. The weight of the water in the bailer closes the check valve upon retrieval.
- Top-filling bailer-A tubular bailer that is only open on the top. The bailer is lowered beneath the water surface and water enters the top of the bailer. This type of bailer should not be used for environmental sampling. However, it is a very effective well purging device.
- VOC sampling device/attachment-A detachable spigot usually constructed of polyethylene or Teflon \({ }^{\text {M }}\) that can be attached to the bottom of a bailer to regulate the flow while emptying the device, preventing agitation of the liquid as it exits.
\begin{tabular}{lr} 
Procedure No. & EI-FS109 \\
Revision No. & 1 \\
Date of Revision & \(9 / 11 / 06\) \\
Page & 2 of 3
\end{tabular}

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw E \& I employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure and utilizing materials of a construction specified in the project plans or applicable to the contaminants of concern and other aspects of the sampling effort. These may include well diameter, well construction materials, depth to water, and the presence of DNAPL or LNAPL contaminants. Shaw E \& I employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager or designee is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

\subsection*{6.1 Equipment}

The following equipment should be used for sampling aqueous liquids using bailer methods:
- Dedicated bailer; construction depending upon contaminants of concern and intended data use per the project plan. Disposable bailers should be utilized for one sample location only.
- Dedicated polyethylene/Teflon \({ }^{\text {™ }}\)-coated string or Teflon \({ }^{\text {™ }}\)-coated steel cable for lowering and raising the bailer.
- Tripod with mechanical winch for lowering and raising the bailer (typically only for deep or large-diameter wells).
- Plastic sheeting.

\subsection*{6.2 Sampling}

The following procedure should be used when sampling aqueous liquids using bailer methods:
1. Don a pair of clean gloves.
2. Securely attach the required amount of string or cable to the bailer.
3. Spread a new piece of plastic sheeting around the well so as to keep the bailer rope from contacting the ground. This step is not necessary if sampling treatment pools or storage tanks.
4. If required, unlock the well cover and remove the cap.
5. If sampling a well, measure the static water level and total well depth as described in Procedure EI-FS108.

Procedure No.
Revision No.
6. Purge the well as detailed in Procedure EI-FS110 using a separate bailer or other device. Do not purge and sample with the same bailer. The project planning documents should specify a well purging endpoint, which may include either of the following:
- A selected number of well volumes
- Water property stabilization as indicated by pH , conductivity, turbidity, or temperature measurements, etc.
7. Collect the sample immediately after purging, if applicable, by slowly lowering the bailer to the desired sampling depth and stopping briefly.
8. Set the check valve by pulling upward on the string/cable and then slowly raise the bailer to the surface.
9. Wipe the bailer body with a paper towel or tissue to prevent liquid on the outside from entering the sample containers.
10. If using one, attach the VOC device to the bottom of the bailer.
11. Transfer the groundwater sample immediately to the sample bottles.
- Fill VOA vials first by opening the VOC device spigot and allowing the liquid to slowly fill the container without agitation and to a meniscus slightly above the top of the vial.
- Cap and check all VOA vials for entrained air by slowly tipping and observing for bubbles. If any are present, discard the sample and collect again as above.
- If not using a VOC attachment, the liquid can be collected by pushing up on the check valve or pouring from the top of the bailer.
12. Continue lowering and retrieving the bailer as needed to fill all required sample bottles.
13. Add preservatives to the samples as needed, and place the sample bottles on ice.
14. Note that most sample bottles come with preservatives already added. If such is the case, do not overfill the bottles.
15. Replace the well cap, if required, and lock the cover.
16. Record the sampling information.
17. Dispose of or decontaminate the bailer and string/rope as required in the project plan.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.

Procedure No.
EI-FS110
Revision No.
Date of Revision
9/21/06
Page
1 of 5

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Well Purging and Sampling Preparation}

\section*{1. PURPOSE}

This procedure is intended to provide the methods to be used for preparing groundwater wells for sampling. Preparation includes accessing the well, screening for VOCs (if required), measuring depth and water column height, determining the well volume, and purging the stagnant groundwater from the monitoring well. This procedure presents methods for purging using both bailer and pump techniques. This procedure does not address low-flow or micro-purging, which is covered in Procedure No. EI-FS111.

\section*{2. SCOPE}

This procedure is applicable to all Shaw E \& I projects where groundwater samples will be collected from a monitoring well and where no project/program-specific procedure is in place. Unless specifically directed in project/program plans, well purging will be considered complete when 3 to 5 well volumes have been removed from the well and/or the well water quality parameters ( pH , specific conductivity, temperature, dissolved oxygen) collected during purging have stabilized for three consecutive readings.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, Section C.2, EM200-1-3, Washington, D.C.
- American Society for Testing and Materials, D6634-01, Standard Guide for Selection of Purging and Sampling Devices for Ground-Water Monitoring Wells, West Conshohocken, PA.
- American Society for Testing and Materials, D4448-01, Standard Guide for Sampling Ground-Water Monitoring Wells, West Conshohocken, PA.

\section*{4. DEFINITIONS}
- Bailer-A device used to collect water typically consisting of a long tube with a check valve system attached to a rope or cable. The bailer is lowered into the water, and once the desired depth is reached, the check valve is set by causing an upward motion on the bailer. Bailers are constructed of stainless steel, polyethylene plastic, or Teflon \({ }^{\text {™ }}\). Bailers made of polyethylene and Teflon \({ }^{\text {™ }}\) may be considered disposable.
- Pump-An electric, compressed air, or inert gas driven device that raises liquids by means of pressure or suction. The types of pumps used for well purging should be chosen based on the well size and depth, the type of contaminants, and the specific factors affecting the overall performance of the sampling effort. Pump types that may be used include centrifugal, peristaltic, centrifugal submersible, gas displacement, and bladder pumps.
- Well Purging-The action of removing stagnant groundwater using mechanical means from a monitoring well. Well purging is performed prior to collecting groundwater samples from a well for purposes of attaining representative samples from the groundwater zone where the monitoring well is screened.
\begin{tabular}{lr} 
Procedure No. & El-FS110 \\
Revision No. & 1 \\
Date of Revision & \(9 / 21 / 06\) \\
Page & 2 of 5
\end{tabular}

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure and utilizing materials of a construction specified in the project plans or applicable to the contaminants of concern and other aspects of the sampling effort. These aspects may include well diameter, well construction materials, depth to water, and the presence of DNAPL or LNAPL contaminants. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

\subsection*{6.1 Considerations}

When planning for the well sampling task, the following variables should be reviewed to determine which well purging method to use:
- Recharge capacity of each well: The recharge capacity of a well will determine how fast the well should be purged. The purge rate should be the same as the recharge rate of the groundwater zone to prevent drawing the water table down and creating a cascading effect of groundwater entering the well along the well screen. If recharge rates are greater than 0.5 gallons per minute, bailers or pumps may be used to remove water from the well. Wells with slow recharge rates ( \(<0.5 \mathrm{gpm}\) ) may need to be sampled using other methods such as lowflow or micro-purge techniques that do not agitate the well and therefore do not require full purging.
- Well construction details, including well depth, diameter, screened interval, screen size, material of construction, and depth to water table: The diameter and well depth will determine the size of the pump or bailer that will be required to remove water. The screen opening size will limit the rate at which water can be removed from the well due to high flow rates through the screen creating turbulent flow.
- Groundwater quality, including type and concentration of chemical compounds present: Choose a device that is constructed of materials compatible with the chemicals in the groundwater. Chemical contaminants can also dictate the rate at which the water can be removed from the well. Whenever possible, wells that contain VOCs should be purged using low-flow purging methods to prevent volatilization.
- Presence of LNAPL or DNAPL: If LNAPL or DNAPL are present, it is not recommended that the well be purged, due to the potential for creating a contaminated smear zone.

Procedure No.
Revision No.
Date of Revision

\subsection*{6.2 Equipment}

The following equipment is recommended for use in conducting well purging:
- Bailers and line
- Pump and discharge hose/line
- Water level indicator
- Swabbing materials
- pH meter-if desired
- Specific conductance meter-if desired
- Temperature meter or gauge-if desired
- Nephelometer-turbidity-if desired
- Dissolved Oxygen meter-if desired
- Photoionization detector (PID)
- Drums or tanks to contain the purge water
- Field log book or sheets
- Calculator
- Plastic sheeting to spread around sampling area

\subsection*{6.3 Pre-Purging}

To prevent cross contamination of other wells on site, upgradient and background wells should be sampled first. The procedure for pre-purging is as follows:
- Prepare the area surrounding the well by placing plastic sheeting on the ground surface to prevent potential cross-contamination of the purging and sampling implements.
- Place and secure the drum, tank, or suitable purge-water container in close proximity to the well for the collection and storage of purge water. Purge water must be containerized and disposed of in the manner specified in the project/program plan or as the client directs. Never return purge water to the well. If in doubt or where requirements are not specified, handle all purge water as waste and dispose of it accordingly.
- If screening for organics, measure and record the background organic vapors in the ambient air using a PID in accordance with manufacturer recommendations.
- Open the well casing, remove the well cap, and immediately measure and record the organic vapor levels from the head space within the well casing using a PID, if required, in accordance with manufacturer recommendations.
- Measure the depth to the static water level and the depth to the bottom of the well using the water level indicator in accordance with Procedure EI-FS108, Water Level Measurements.
- Calculate the volume of water within the well casing and screen as follows:
\[
\mathrm{V}=\left[\pi(\mathrm{di} / 2)^{2}(\mathrm{TD}-\mathrm{H})\right](7.48)
\]

Procedure No.
Revision No.
Date of Revision

Where:
\begin{tabular}{ll}
V & \(=\) volume of groundwater in the casing, gallons \\
di & \(=\) inside diameter of casing, feet \\
TD & \(=\) total well depth, feet \\
H & \(=\) depth to the static water level, feet
\end{tabular}

Alternatively, for typical well casing diameters, the Volume can be determined as follows:
\(V=C F \times(T D-H)\)
Where:
\begin{tabular}{ll}
V & \(=\quad\) volume of groundwater in casing, gallons \\
CF & \(=\quad\) Casing Factor, gallons per linear foot-from table below
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Well Diameter \\
(inches)
\end{tabular} & \begin{tabular}{c} 
Casing Factor (CF) \\
(gallons/foot)
\end{tabular} \\
\hline 2 & 0.16 \\
\hline 4 & 0.65 \\
\hline 6 & 1.47 \\
\hline 8 & 2.61 \\
\hline 10 & 4.08 \\
\hline 12 & 5.88 \\
\hline
\end{tabular}

\subsection*{6.4 Well Purging by Bailing}

The well must not be bailed dry; water should be purged from the well at the same rate as it recharges to prevent loss of contaminants through degassing and to prevent agitation, which may release false levels of fine-grained particles or sediments to the groundwater zone. Water level measurements may be performed to verify that water levels remain constant during bailing.

The procedure for well purging by bailing is as follows:
- Attach new bailer line to a clean bailer or new disposable bailer. Attach the other end of the bailer line to the protective casing or your wrist allowing sufficient length to reach the well screen depth.
- Slowly lower the bailer down the well to avoid agitating the water and begin bailing groundwater by allowing water to pass through the bailer check valve into the bailer. Remove the filled bailer and empty the water into the purge-water container.
- If water quality parameters are not being used to determine stabilization, remove 5 well volumes from the well and then sample using a freshly decontaminated reusable or unused disposable bailer. Do not sample with the same bailer used to purge.
- If water quality parameters are being used to determine stabilization, two well volumes should be removed and the water quality parameters measured and recorded as the last bailer
\begin{tabular}{lr} 
Procedure No. & El-FS110 \\
Revision No. & 1 \\
Date of Revision & \(9 / 21 / 06\) \\
Page & 5 of 5
\end{tabular}
amount is removed from the well. This should be done by filling measurement containers with water directly from the bailer and taking readings.
- Continue purging until 3 to 5 well volumes have been removed from the well and three consecutive water quality parameter reading sets yield results within 10 percent of each other. For pH use \(+/-0.3\) units as the standard.
- Once stabilization has been achieved, collect the sample using a freshly decontaminated reusable or unused disposable bailer. Do not sample with the same bailer used to purge.

\subsection*{6.5 Well Purging Using a Pump}

The well must not be pumped dry; water should be purged from the well at the same rate as it recharges to prevent loss of contaminants through degassing and to prevent agitation, which may release false levels of fine-grained particles or sediments to the groundwater zone. Water level measurements may be performed to verify that water levels remain constant during pumping.

The procedure for well purging using a pump is as follows:
- Review and understand the proper operating and maintenance instruction for each type of pump that is used prior to placing the pump in the well. Each pump type has specific procedures for operation.
- Assemble the pump and discharge line in accordance with manufacturer instructions. Ensure the pump discharge line is long enough so that the pump intake can be located within the well screen area and the discharge end can reach the purge water container.
- Lower the pump into the well until it is submerged and at the desired pumping depth.
- Start the pump and begin monitoring discharge rates and volume collected.
- If water quality parameters are not being used to determine stabilization, remove 5 well volumes from the well and then sample using the appropriate method.
- If water quality parameters are being used to determine stabilization, remove 2 well volumes and measure and record the water quality parameters at regular intervals as the purging continues. This can be accomplished either by using in-line direct-reading instruments or by collecting the pump discharge into appropriate measurement containers.
- Continue purging until 3 to 5 well volumes have been removed from the well and three consecutive water quality parameter reading sets yield results within 10 percent of each other. For pH use \(+/-0.3\) units as the standard.
- Once the stabilization has been achieved, collect the sample using a method applicable to the well and contaminants of concern.

\section*{7. ATTACHMENTS}

None.

\section*{8. FORMS}

None.
\begin{tabular}{lr} 
Procedure No. & EI-FS111 \\
Revision No. & 1 \\
Date of Revision & \(9 / 21 / 06\) \\
Page & 1 of 5
\end{tabular}

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Low Flow/Micro-Purge Well Sampling}

\section*{1. PURPOSE}

This procedure is intended to provide methods for low-flow sampling of groundwater from monitoring wells. Low-flow or micro-purge sampling is a method of collecting samples from a well that does not require the removal of large volumes of water from the well and therefore does not overly agitate the water and suspended particles or potentially aspirate VOCs. The method entails the removal of water directly from the screened interval without disturbing any stagnant water above the screen by pumping the well at low enough flow rates to maintain minimal drawdown of the water column followed by in-line sample collection. Typical flow rates for lowflow sampling range from \(0.1 \mathrm{~L} / \mathrm{min}\) to \(0.5 \mathrm{~L} / \mathrm{min}\) depending on site characteristics.
2. SCOPE

This procedure is applicable to all Shaw E \& I projects where groundwater samples will be collected from a monitoring well using low-flow or micro-purge methods and where no project/program specific procedure is in use.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, Section C.2, EM200-1-3, Washington, D.C.
- American Society for Testing and Materials, D6771-02, Standard practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations, West Conshohocken, PA.
- American Society for Testing and Materials, D4448-01, Standard Guide for Sampling Ground-Water Monitoring Wells, West Conshohocken, PA .
- U.S. Environmental Protection Agency Region 1, 1996, Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells, SOP GW0001, Revision 2, July 30.

\section*{4. DEFINITIONS}
- Low Flow-Refers to the velocity that is imparted during pumping to the formation adjacent to the well screen, not necessarily the flow rate of the water discharged by the pump at the surface.
- Micro-purge-Another term for low-flow sampling referred to as such due to the fact that pre-sampling groundwater removal (purging) is performed at flow rates 2 to 3 orders of magnitude less than typical bailer or pump methods.
- Pump-An electric, compressed air, or inert gas driven device that raises liquids by means of pressure or suction. The types of pumps used for well purging should be chosen based on the well size and depth, the type of contaminants, and the specific factors affecting the overall performance of the sampling effort. Low flow/micro-purge sampling is performed using
\begin{tabular}{lr} 
Procedure No. & EI-FS111 \\
Revision No. & 1 \\
Date of Revision & \(9 / 21 / 06\) \\
Page & 2 of 5
\end{tabular}
specially constructed pumps, usually of centrifugal, peristaltic, or centrifugal submersible design, with low draw rates (<1.0L/min).
- Well Purging-The action of removing groundwater using mechanical means from a monitoring well prior to collecting groundwater samples. Purging removes the stagnant groundwater from the column allowing the groundwater surrounding the well screen to enter the collection zone.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure and utilizing materials of a construction specified in the project plans or applicable to the contaminants of concern and other aspects of the sampling effort. These aspects may include well diameter, well construction materials, depth to water, and the presence of DNAPL or LNAPL contaminants. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

Low-flow/micro-purge sampling involves removing water directly from the screened interval without disturbing any stagnant water above the screen or without lowering the water table. Since it is not based upon the removal of well volumes, it requires in-line monitoring of water quality parameters which may include pH , specific conductivity, temperature, dissolved oxygen, and redox potential to determine when the groundwater sample zone has stabilized. The sample is then collected using the same pump directly from the discharge tubing.

\subsection*{6.1 Considerations}

The following variables should be reviewed in planning for low-flow purging and sampling:
- Recharge capacity of each well: The recharge capacity of a well will determine how fast the well should be purged. The purge rate should be no greater than the recharge rate of the groundwater zone to prevent water table drawdown.
- Well construction details, including well depth, diameter, screened interval, screen size, material of construction, and depth to water table: The diameter and well depth will determine the size of the pump and the location from which the pump will operate. Peristaltic and suction draw pumps are only viable at depths of less than 25 feet. The pump intake should be placed within the well screen.

Procedure No.
Revision No.
Date of Revision
- Pump: Low-flow purging and sampling can be used in any well that can be pumped at a constant rate of not more than \(1.0 \mathrm{~L} / \mathrm{min}\). Continuous discharge and cycle discharge pumps with adjustable flow rate controls should be used to avoid causing continuous drawdown. Whenever possible, dedicated pumps should be installed to avoid disturbing the water column.
- Groundwater quality, including type and concentration of chemical compounds present: Low-flow methods can be used for all types of aqueous-phase contamination, including VOCs, SVOCs, metals, pesticides, PCBs, radionuclides, and microbiological constituents. Pump parts and tubing should be made of materials that are compatible with the analytes of interest.

\subsection*{6.2 Equipment}

The following equipment is recommended for use in conducting well purging:
- Pump capable of \(<1.0 \mathrm{~L} / \mathrm{min}\) draw rates
- Discharge line constructed of material compatible with the contaminants of interest. Enough for a fresh line to be used at each well
- Water level indicator
- Flow-through Water Quality Meter (pH, specific conductance, temperature, optional Dissolved Oxygen, Redox potential)-calibrated
- Nephelometer-for turbidity measurement-calibrated (if required)
- Photoionization Detector (PID)-calibrated (if screening for VOCs is required)
- Drums or tanks to contain the purge water
- Field log book
- Calculator
- Plastic sheeting
- Sample containers and preservatives
- Ice and Ziploc-type bags

\subsection*{6.3 Pre-Sampling}

To prevent cross-contamination of other wells on-site, upgradient and background wells should be addressed first. It is also a good idea to use fresh discharge line for each well as the low-flows make it difficult to flush contaminants between samples. The procedure for pre-sampling is as follows:
- Prepare the area surrounding the well by placing plastic sheeting on the ground surface to prevent potential cross-contamination of the pump and discharge hose or sample equipment and materials.
- Place and secure the drum, tank, or suitable purge water container in close proximity to the well for the collection and storage of purge water. Purge water must be containerized and disposed of in the manner specified in the project/program plan or as the client directs. Never return purge water to the well. If in doubt or where requirements are not specified, handle all purge water as waste and dispose of it accordingly.

Procedure No.
- If performing VOC screening, measure and record the background organic vapors in the ambient air using a PID, in accordance with manufacturer recommendations.
- Open the well casing, remove the well cap, and immediately measure and record the organic vapor levels from the head space within the well casing using a PID, in accordance with manufacturer recommendations.
- Measure the depth to the static water level using the water level indicator in accordance with Procedure EI-FS108, Water Level Measurements.

\subsection*{6.4 Well Purging}

The procedure for well purging is as follows:
- Review and understand the proper operating and maintenance instruction for each type of pump that is used prior to placing the pump in the well. Each pump type has specific operating procedures.
- Some wells may include a dedicated pump that is already placed in the well along the well screen. If this is the case, review well construction data to verify the proper placement of the pump intake. Inspect the location where the discharge line and pump support cable exit the well to determine that they are in the proper position (markings should be present at the well head to show this).
- Assemble the pump and clean discharge line in accordance with manufacturer instructions. Ensure the pump discharge line is long enough so that the pump intake can be located within the well screen area and the discharge end can reach the purge water container.
- Slowly lower the pump into the well until it is submerged and at the desired pumping depth.
- Connect the pump discharge to the flow-through water quality meter system in accordance with the manufacturer's procedure.
- Start the pump and begin monitoring discharge rates and volume collected. Adjust flows if necessary to remain in a range of 0.1 to \(0.5 \mathrm{~L} / \mathrm{min}\) without exceeding the well discharge rate.
- Monitor and record the pH , conductivity, temperature, dissolved oxygen, redox potential, and turbidity at set intervals ( 2 to 10 minutes).
- Collect the sample following the procedure below when all monitored water quality parameters are stable, as indicated by three consecutive readings differing by less than 10 percent. For pH use \(+/-0.3\) units as the standard.

\subsection*{6.5 Sample Collection}

The procedure for sample collection is as follows:
- Prepare the sample bottles and preservatives required for the sampling.
- Don a pair of clean gloves.
- Collect the sample immediately after purging through the pump discharge line.
- Fill VOA vials first (reduce the flow rate of the pump discharge) allowing the liquid to slowly fill the container without agitation and obtain a meniscus slightly above the top of the vial.
- Cap and check all VOA vials for entrained air by slowly tipping and observing for bubbles. If any are present, discard the sample and collect again as above.

Procedure No.
Revision No.
Date of Revision
- Continue filling all required sample bottles.
- Add preservatives to the samples as needed, and place the sample bottles on ice. Note that most sample bottles come with preservatives already added. If such is the case, do not overfill the bottles.
- Replace the well cap, if required, and lock the cover.
- Record the sampling information.
- For a dedicated down-hole pumping system, do not decontaminate the pump but rinse the water quality meter's flow-cell and probes with distilled water.
- If using a non-dedicated pump and meter system, decontaminate the pump and meter.
- Retrieve the pump and remove and dispose of the discharge line, including the line leading to and from the water quality meter system.
- Rinse the water quality meter system with distilled water.
- Attach a few feet of clean line to the pump and water quality meter system with a discharge end into the purge waste container.
- Place the pump into a container of distilled water, adjust the flow to its maximum, and allow the entire system to flush with distilled water for at least 5 minutes or longer if the waste does not appear to be clean.
- Secure the area by removing equipment and materials, properly dispose of plastic sheeting and other disposable sampling materials, and close the purge water container(s).
- Proceed to the next well and repeat the process using clean discharge tubing for each well sampled.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.

Procedure No.
EI-FS112
Revision No.
Date of Revision
9/21/06
Page

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Depth Integrated Water Samplers}

\section*{1. PURPOSE}

The purpose of this document is to provide the methods and procedures for sampling of water using depth integrated sampling devices such as the Kemmerer \({ }^{\circledR}\) sampler and the weighted bottle.
2. SCOPE

This procedure is applicable to all Shaw E \& I projects where water samples will be collected from specific depths using a depth integrated sampler and where there is no overriding project/ program plan in place.

The Kemmerer \({ }^{\circledR}\) sampler is a practical method for collecting at-depth, discrete water samples from wells or surface water bodies where the collection depth exceeds the lift capacity of pumps. The weighted bottle can be used to obtain at-depth, discrete water samples from surface water.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix C, Section C.2, EM200-1-3, Washington, D.C.
- Wildlife Supply Company (WILDCO) web site: www.wildco.com.

\section*{4. DEFINITIONS}
- Kemmerer \({ }^{\circledR}\) Sampler-A sampling device consisting of a sample tube and spring-loaded caps/plugs located at both ends of a tube container oriented in either the horizontal or vertical position. Once lowered to the desired sampling depth, a weighted messenger is dropped down the sample line, tripping a release mechanism that closes the ends of the container. The common name for the sampler is a "bottle sampler." These samplers can be constructed of PVC, clear acrylic, stainless steel, brass, and Teflon \({ }^{\text {TM }}\) and can be used to collect water samples from lakes, ponds, rivers, and monitoring wells. These devices can be operated using a hand line or a winch for deep-water operations.
- Weighted Bottle-A sampling device consisting of a glass bottle, a weighted holding device, a bottle stopper, and a line that is used to open the bottle and to lower and raise the sampler during sampling. These devices can be operated using a hand line or a winch for deep-water operations.
- Messenger-A metal weight, usually lead, with a hole through its core that is used to activate the spring closure on a Kemmerer \({ }^{\circledR}\) sampler. The messenger is dropped onto the closure activation mechanism by sliding it down a line. It activates the closure by the force of its weight upon impact.
\begin{tabular}{lr} 
Procedure No. & EI-FS112 \\
Revision No. & 1 \\
Date of Revision & \(9 / 21 / 06\) \\
Page & 2 of 4
\end{tabular}

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure and utilizing materials of a construction specified in the project plans or applicable to the contaminants of concern and other aspects of the sampling effort. These aspects may include well diameter, well construction materials, depth to water, and the presence of DNAPL or LNAPL contaminants. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager or designee is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

\subsection*{6.1 Kemmerer \(^{\circledR}\) Sampler}

\section*{Equipment}
- Decontaminated commercial sampling device with appropriate material of construction for the target compounds and/or planned sampling activity
- Rope or line with graduations, on winch if required-this is the "tag line"
- Separate line for messenger, if sampler requires one
- Carpenter's chalk
- Plastic sheeting to keep emptying area clean
- Sample bottles, cooler, and preservatives

\section*{Sampling Process}
1. Don a pair of clean gloves.
2. Place plastic sheeting around the area where the sampler will be emptied.
3. Inspect the sampler to ensure that the drain valve is closed.
4. Determine the depth for sampling, and measure and mark the sampler line at the desired depth with chalk.
5. Attach the tag line and, if required, the messenger lines to the sampler. If the messenger has a separate line, make sure it is at least as long as the tag line. Do not place the messenger on the line at this time.

Procedure No.
Revision No.
6. Carefully open and lock the sampler. From this point on, handle it only by the tag line and take care not to strike it on the release mechanism.
7. Attach the free end of the tag line to a secure holding place to keep from losing the sampler.
8. Being careful not to contact the sampler, slowly lower it into the water until the desired sample depth is reached. Make sure that the rope/line does not become entangled.
9. If the messenger will be sent down the tag line, loosen the tag line end from the holding place while maintaining tension on the line to maintain depth. Verify the depth by location of the chalk mark before proceeding to step 10.
10. Thread the messenger onto the tag or messenger line and allow it to fall and trip the device.
11. Prepare and clear the sample receiving area, and then slowly raise the sampler out of the water.
12. Remove the messenger from the line to keep from accidentally tripping the device when retrieving the sample. Carefully open the sample valve and fill the appropriate sample containers.
13. If collecting samples for VOC analysis, collect these samples first.
14. Complete all required documentation, and place the sample into a cooler or other specified container.
15. Decontaminate the sampler on the inside and outside while open. Dry and return the sampler to its closed position when completed, if applicable.

\subsection*{6.2 Weighted Bottle}

\section*{Equipment}
- Decontaminated commercial sampling device with appropriate material of construction for environmental sampling
- Rope or line with graduations, on winch if required-this is the "tag line"
- Carpenter's chalk
- Plastic sheeting to keep emptying area clean
- Sample bottles, cooler, and preservatives

\section*{Sampling}
1. Don a pair of clean gloves.
2. Place plastic sheeting around the area where the sampler will be emptied.
3. Determine the depth for sampling and measure and mark the sampler line at the desired depth with chalk.
4. Attach the tag line to the weighted bottle holding device.
5. Place the stopper in the bottle and verify that it is attached to the tag line at a location above where the end of the tag line is attached to the weighted bottle holding device. From this point on, take care not to release the stopper from the bottle.
6. Attach the free end of the tag line to a secure holding place to keep from losing the sampler.

Procedure No.
7. Being careful not to contact the sampler, slowly lower it into the water until the desired sample depth is reached. Make sure that the rope/line does not become entangled.
8. Remove the stopper from the bottle with a sharp jerk of the tag line to allow the water to fill the bottle completely.
9. Prepare and clear the sample receiving area, and then slowly raise the sampler out of the water.
10. Carefully open the bottle and fill the appropriate sample containers.
11. If collecting samples for VOC analysis, collect these samples first.
12. Complete all required documentation, and place the sample into a cooler or other specified container.
13. Decontaminate the sampler on the inside and outside while open and allow it to dry.

\section*{7. ATTACHMENTS}

None.
8. FORMS

None.

Procedure No.
El-FS113
Revision No.
Date of Revision
9/21/06
Page

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Surface Water Sampling}

\section*{1. PURPOSE}

The purpose of this document is to provide methods, procedures, and guidance for sampling of surface waters or liquids in lakes, streams, pits, sumps, lagoons, and similar reservoirs for environmental analysis.
2. SCOPE

This procedure is applicable to all Shaw E \& I projects where surface water sampling will be performed and where no project/program plan or procedure is in place to direct those activities.

The procedure presents two methods of sampling: direct immersion of sampling containers and use of a pond sampler.

\section*{3. REFERENCES}
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, EM 200-1-3, Appendix C, Washington, D.C.
- U.S. Environmental Protection Agency, 1994, Surface Water Sampling, EPA/ERT SOP 2013.

\section*{4. DEFINITIONS}
- Pond Sampler-A type of liquid sampling device consisting of an adjustable aluminum or fiberglass pole with an adjustable clamp to hold a container on one end. The pole allows for grab samples to be obtained at distances as far as 10 to 12 feet from the edge of the source without the need to contact the medium.
- Grab Sample-A single sample representative of a specific location at a given point in time.

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager or designee is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (checkprints, calculations,

Procedure No.
Revision No.
Date of Revision
reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

Safety Note: Surface water sampling can sometimes require the use of boats for access into or across bodies of water. Observe all boating safety considerations in the HASP including donning of proper life jackets. If sampling from a bank, do not overreach; use a Pond Sampler whenever possible and do not attempt to remove the container from the clamp while still in contact or close proximity to the water body. Do not wade into a water body unless the depth is well known, currents are flowing at a safe speed, appropriate personnel have determined it is safe, and a spotter is available.

\subsection*{6.1 Direct Immersion}

The following procedure shall be used for direct immersion sampling:
- Don a pair of clean gloves.
- Obtain the required sample container(s).
- If entering the water body, always do so with as little bottom disturbance as possible and wait for the water around the planned sampling area to return to its undisturbed state (clarity) before sampling.
- Collect each liquid sample by slowly submerging the sample container with minimal surface disturbance. If sampling in a stream or current, make sure the open end of the sample container is pointed upstream.
- Withdraw the container from the liquid with minimal disturbance; cap and wipe the outside of the container with a towel or cloth.
- If collecting samples for VOC analysis, make sure that the VOA vial is slightly overfilled before capping, and check for bubbles or trapped air by inverting. If the sample integrity is compromised, discard the sample and repeat the collection process.
- Complete all required documentation, and place the sample containers into a cooler or other specified container.

\subsection*{6.2 Pond Sampler}

The following procedure shall be used for sampling with a pond sampler:
- Don a pair of clean gloves.
- Place plastic sheeting around the area where the sampler will be emptied.
- Assemble the pond sampler and secure the sample container or collection jar/bottle/beaker in the adjustable clamp.
- If entering the water body, always do so with as little bottom disturbance as possible and wait for the water around the planned sampling area to return to its undisturbed state (clarity) before sampling.
- Collect each liquid sample by extending the container end outward and slowly submerging the sample container while holding the Pond Sampler handle with minimal surface disturbance. If sampling in a stream or current, make sure the open end is pointed upstream.

Procedure No.
Revision No.
Date of Revision
- Retrieve the container with minimal surface disturbance, retract any extensions, transport the sample while still attached to the emptying area, and remove it from the clamp.
- Alternatively, if sampling with a partner, the partner can remove the collection container from the clamp and carry it to the transfer area.
- If the container is the one to be used for the sample, remove it from the clamp, cap, and label.
- If the sampler was used to collect a fill container, remove the lid(s) from the required sample containers and slowly transfer the sample into the appropriate containers; cap and label each one.
- Fill containers for VOC analysis first, making sure that the VOA vial is slightly overfilled before capping, and check for bubbles or trapped air by inverting. If the sample integrity is compromised, discard the sample and repeat the vial filling process.
- Complete all required documentation, and place the samples into a cooler or other specified container.
- After each use (i.e. between sample locations), the pond sampler must be disassembled and decontaminated, especially at the clamp area.

Sample jars or beakers are attached to the pole using the clamps for collecting the sample. With a pond sampler device, sample jars can be attached directly to the sample pole and the sample directly filled into the sample jar, or a sampling beaker can be attached to the pole and the collected sample then transferred to an appropriate sample jar. If sample jars are filled directly, they should be wiped clean prior to being placed in the cooler for shipment. If sampling beakers are used, they can be disposed of or decontaminated prior to reuse.

\section*{7. ATTACHMENTS}

None.

\section*{8. FORMS}

None.

Date of Revision
Last Review Date
Page

\section*{STANDARD OPERATI NG PROCEDURE}

\section*{Subject: Collection of Water Samples for Dissolved Parameters}

\section*{1. PURPOSE}

The purpose of this procedure is to provide the methods for obtaining water samples for determination of dissolved parameters (metals, radiologicals, etc.). Analysis for dissolved parameters requires that colloidal particles be removed from the sample before any prescribed preservation is performed to prevent the target compounds within the colloidal particles from entering the analytical solution and skewing the result.

\section*{2. SCOPE}

This procedure applies to all Shaw E\&I projects and sampling efforts where dissolved parameters are the target of the analytical suite.

\section*{3. REFERENCES}
- U.S Environmental Protection Agency, 2002, RCRA Waste Sampling Draft Technical Guidance, Planning, Implementation, Assessment, EPA/530-D-02-002, August.
- U.S. Army Corps of Engineers, 2001, Requirements for the Preparation of Sampling and Analysis Plans, Appendix E, EM200-1-3, Washington, D.C.

\section*{4. DEFINITIONS}
- Dissolved Parameter-The portion of a target analyte(s) which is in solution within the water matrix. When determining dissolved parameters, any of the target analyte(s) adhered to colloidal particles within the liquid, and therefore not truly in solution, must be removed from the sample prior to analysis.
- In-line Filter-A filter cartridge that consists of a 0.45 um membrane encased within a small cylinder that allows for flow-through of the liquid removing particles as it passes. In-line filters are used when sampling via pump methods. In some catalogs they are referred to as "Groundwater Sampling Filters."
- Vacuum Filter-A filter apparatus consisting of a 0.45 um membrane attached to the bottom of a plastic funnel/collection unit with a vacuum port. The one-piece unit is attached to a small vacuum pump, and the sample is filtered by applying vacuum to the filter while collecting the filtrate. Vacuum filters can be utilized to remove particulates from samples collected using bailers, pond samplers, and other non-pumped methods. Some catalogs refer to them as "Analytical Filter Units."

\section*{5. RESPONSIBILITIES}

\subsection*{5.1 Procedure Responsibility}

The Field Sampling Discipline Lead is responsible for maintenance, management, and revision of this procedure. Questions, comments, or suggestions regarding this technical SOP should be directed to the Field Sampling Discipline Lead.

\subsection*{5.2 Project Responsibility}

Shaw employees performing this task, or any portion thereof, are responsible for meeting the requirements of this procedure. Shaw employees conducting technical review of task performance are also responsible for following appropriate portions of this SOP.

For those projects where the activities of this SOP are conducted, the Project Manager, or designee, is responsible for ensuring that those activities are conducted in accordance with this and other appropriate procedures. Project participants are responsible for documenting information in sufficient detail to provide objective documentation (i.e. checkprints, calculations, reports, etc.) that the requirements of this SOP have been met. Such documentation shall be retained as project records.

\section*{6. PROCEDURE}

This procedure presents three options for obtaining samples for dissolved parameter determination: Laboratory filtering, in-line filtering, and vacuum filter methods.

\subsection*{6.1 Laboratory Filtering}

The simplest method is to submit the samples "unfiltered" and "unpreserved" to the laboratory and allow the laboratory to filter and preserve the samples upon receipt. Use of this method avoids the cost and effort of field filtering and eliminates the need for corrosive preservatives such as nitric acid to be on-site. This method requires good communication with the laboratory and documentation to clearly instruct the laboratory to filter and preserve the samples.
- Collect the samples using the appropriate procedures and containerize in plastic containers without preservation. If the samples are put in glass containers and shipped without preservation, dissolved target analytes may adhere to the glass matrix.
- Be sure to note in the "Comments" section of the Chain of Custody form that the samples "Require Filtration and Preservation." Verbal and written (faxed) confirmation that the laboratory understands the requirement should also be obtained.

\subsection*{6.2 In Line Filtering}

This method is applicable whenever flow-through sampling methods are being used. The cartridges can be expensive, and water samples with high levels of particulates may clog the cartridge. The cartridges come in different flow-through volumes each requiring a minimum flow to properly function. Cartridge size should be matched to sampling pump type/flow.

\subsection*{6.2.1 Equipment}
- Teflon \({ }^{\text {TM }}\) or Tygon \({ }^{\text {TM }}\) tubing depending upon project requirements, changed for each sample
- In-line Filter Cartridges sized according to the flow characteristics of the sampling pump, one for each sample, plus spares in case of clogging
- Flow-through sampling system/pump

\subsection*{6.2.2 Process}
- Use a new filter for each sample (required). Don clean sample gloves whenever attaching a new cartridge.
- Once the pump system is ready for sample collection (stable properties and/or sufficient purge volume, etc.), pause the flow and attach a clean cartridge to the pump/meter output line. Be sure to orient the cartridge flow arrow correctly (see Attachment 1, Figure 1).
- Turn the pump back on and allow liquid to flow through the cartridge. Do not sample the first \(5-10 \mathrm{~mL}\). This will ensure that the membrane is wetted and functioning when the "sample" is collected.
- After the cartridge membrane has been allowed to properly wet, collect the sample by capturing the cartridge output into an appropriate sample container, pre-preserved is preferred.
- If the filter plugs, turn off the pump, relieve line pressure, and replace the filter cartridge. Make sure to allow the new filter to wet before continuing to collect the sample filtrate.
- If a pre-preserved container was not used add any required preservative, check for proper preservation and correct if necessary, cap and label the sample, complete required documentation, and prepare sample for shipment.
- For quality control (QC) purposes, pump clean (DI) water through a cartridge as an Equipment Blank.
- Dispose of the used cartridges in the same manner as other project solid IDW.

\subsection*{6.3 VACUUM FILTERING}

This method can be used for samples collected in any manner. Filtration may be performed in the field at the sample location or later at a designated location, provided samples are collected, filtered, and preserved within the same day. In general, samples should not be filtered directly from bailers, pond samplers, etc. Containerize samples and then filter them to minimize spillage and lost sample. Samples with high levels of solids can be pre-filtered by placing a filter paper with a larger pore size over the filter unit membrane to remove larger particles before they reach the 0.45 um membrane.

\subsection*{6.3.1 Equipment}
- 0.45um Vacuum Filter/Analytical Filter Units, one for each sample plus spares
- Filter paper pre-filters, sized to the diameter of the filter unit membrane, pore size greater than \(0.45 u m\)
- Small vacuum pump and tubing
- Generator or other power source

\subsection*{6.3.2 Process}
- Collect the samples as normal and containerize in plastic to avoid adhesion of dissolved analytes.
- Don fresh gloves and connect a clean Filter Unit to the vacuum pump. If the sample appears turbid and contains a high amount of suspended solids, place a pre-filter over the membrane to minimize membrane clogging.
- Swirl the sample to mix and slowly fill the receiver; avoid pouring heavy solids/sediments into the receiver (see Attachment 1, Figure 2).
- Turn on the pump and allow the liquid to pass through the membrane. If necessary, slowly add more sample while filtering. Avoid transferring the heavy solids into the unit. DO NOT ALLOW the liquid level in the collection well to reach the vacuum port.
- After a sufficient volume is filtered, turn off the pump, relieve pressure, and disconnect the filter unit before disassembling to transfer the sample to an appropriate container. The same
\begin{tabular}{lr} 
Procedure No. & SOP T-FS-129 \\
Revision No. & 0 \\
Date of Revision & \(6 / 18 / 2004\) \\
Last Review Date & \\
Page & 4 of 4
\end{tabular}
steps should be followed if the required sample amount is greater than the unit's collection well, reassembling the unit and continuing to filter after emptying the collection well.
- Preserve if necessary, verify/correct proper preservation, cap, label, document, and prepare the sample for shipment.
- For QC purposes, run clean (DI) water through a unit as an Equipment Blank.
- Dispose of the used filter units in the same manner as all other project solid IDW.

\section*{7. ATTACHMENTS}
- Attachment 1, Filter Process Illustrations
8. FORMS

None.


\section*{II. Quality Assurance Project Plan (QAPP)}

\title{
Quality Assurance Project Plan \\ Background Study and Geochemical Evaluation \\ Fort Wingate Depot Activity \\ Gallup, New Mexico
}

Contract No. W912BV-07-D-2004
Delivery Order DM01
Revision 0
Final—January 2009

Prepared for:
U.S. Army Corps of Engineers

Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

Prepared by:
Shaw Environmental, Inc.
2440 Louisiana Blvd. NE, Suite 300
Albuquerque, New Mexico 87110

\section*{Table of Contents}
List of Tables ..... ii
List of Attachments ..... ii
Acronyms and Abbreviations ..... iii
1.0 Project Laboratory Organization and Responsibilities. ..... 1-1
2.0 Data Assessment Organization and Responsibilities ..... 2-1
3.0 Data Quality Objectives ..... 3-1
3.1 Data Use Background ..... 3-1
3.2 Measurement Quality Objectives for Chemical Data Measurement ..... 3-2
3.3 Measurement Quality Objectives for Field Sampling ..... 3-3
4.0 Sample Receipt, Handling, Custody, and Holding Time Requirements ..... 4-1
4.1 Verification/Documentation of Cooler Receipt Condition ..... 4-1
4.2 Corrective Action for Incoming Samples ..... 4-1
5.0 Multi-Incremental Sample Processing and Subsampling Procedures ..... 5-1
6.0 Analytical Procedures ..... 6-1
6.1 Preventive Maintenance ..... 6-1
6.2 Calibration Procedures and Frequency ..... 6-1
6.3 Laboratory Quality Control Procedures ..... 6-1
6.4 Performance and System Audits ..... 6-1
6.5 Nonconformance/Corrective Actions ..... 6-2
7.0 Data Reduction/Calculation of Data Quality Indicators ..... 7-1
7.1 Precision ..... 7-1
7.2 Bias ..... 7-1
7.3 Sample Quantitation Limits ..... 7-2
7.4 Completeness ..... 7-2
8.0 Laboratory Operations Documentation ..... 8-1
8.1 Sample Management Records ..... 8-1
8.2 Data Reporting Procedures ..... 8-1
8.3 Data Management Procedures ..... 8-1
9.0 Data Assessment Procedures. ..... 9-1
9.1 Data Quality Control Review ..... 9-1
9.2 Data Verification ..... 9-1
9.3 Data Quality Objective Reconciliation ..... 9-1
9.4 Project Completeness Assessment ..... 9-1
10.0 References ..... 10-1

\section*{List of Tables}

Table 3-1 Advisory Evaluation Criteria, Background and Site Specific Dilution Attenuation Factors; Data Gaps, Fort Wingate, Gallup, New Mexico

\section*{List of Attachments}

Attachment A2 Table of Measurement Quality Objectives
\begin{tabular}{ll} 
\%D & percent difference \\
ADR & Automated Data Review \\
DOD & U.S. Department of Defense \\
DQO & data quality objective \\
EDD & electronic data deliverable \\
EPA & U.S. Environmental Protection Agency \\
FWDA & Fort Wingate Depot Activity \\
GC & gas chromatography \\
ICP & Inductively Coupled Plasma \\
kg & kilogram(s) \\
LIMS & Laboratory Information Management System \\
MDL & method detection limit \\
MI & multi-incremental \\
mg & milligram(s) \\
MQO & measurement quality objective \\
PDF & portable document format \\
PQL & practical quantitation limit \\
QAPP & Quality Assurance Project Plan \\
QC & quality control \\
RL & reporting limit \\
RPD & relative percent difference \\
RSD & relative standard deviation \\
SEDD & staged electronic data deliverables \\
Shaw & Shaw Environmental, Inc. \\
SOP & standard operating procedure \\
TAL & Target Analyte List \\
USACE & U.S. Army Corps of Engineers
\end{tabular}

This page left intentionally blank.

\subsection*{1.0 Project Laboratory Organization and Responsibilities}

The subcontractor analytical laboratories for background data gaps sampling and analysis will be determined prior to mobilization. Depending on the data gaps identified during the background study one or more environmental media may be sampled. Samples may be sent to a single, or multiple, contractor laboratories.

The subcontractor laboratories selected may be pre-qualified subcontractor laboratories holding Strategic Alliance contracts with Shaw Environmental, Inc. (Shaw). The Shaw Strategic Alliance contracts were previously awarded to 12 environmental laboratories following a competitive process that evaluated price, technical capabilities, business status, and geographic coverage. Additionally, subcontractor laboratories will substantively comply with requirements in the current version of the U.S. Department of Defense (DOD) Quality Systems Manual (DOD, 2006).

The subcontractor laboratory facilities are generally organized under a Laboratory Director into major workgroups including the following:
- Sample Control
- Client Services
- Sample Preparation
- Inorganic Analyses
- Gas Chromatography (GC) Volatiles
- GC Extractables
- GC/Mass Spectrometry
- Radiochemical Separations and Chemistry
- Radiation Counting
- Information Systems
- Quality Assurance
- Support Services

Under the Shaw Strategic Alliance contract, there is a single point of contact at the laboratory for administration of all Shaw projects.

This page left intentionally blank.

\subsection*{2.0 Data Assessment Organization and Responsibilities}

The contractor analytical laboratories, in collaboration with Shaw and the U.S. Army Corps of Engineers (USACE), will assess field and analytical data generated during data gaps sampling at the Fort Wingate Depot Activity (FWDA). Each organization has responsibilities during different stages of the data collection and measurement systems.

The subcontractor laboratories will assign a project manager and project team to oversee sample analysis and reporting. The laboratories will have a Laboratory Information Management System (LIMS) to capture sampling and analysis data from sample receipt to invoice generation. Data entry errors, out-of-compliance quality control (QC) results, or nonconforming data or operations can be identified and corrected at the earliest possible indication. The laboratory will check, monitor, and correct, if necessary, its sample receipt data entry, project-specific analysis requirements, analytical detection limits, analytical results, analytical QC checks, and electronic and hard copy reporting. The laboratory will provide staged electronic data deliverables (EDD) in Automated Data Review (ADR) text file format (LDC, 2006) specified by the USACE, as well as complete Level IV analytical data reports in hard copy and electronic portable document format (PDF) files. Data reporting procedures are detailed in Section 8.2 of this Quality Assurance Project Plan (QAPP).

Shaw will follow established field operation and documentation procedures to capture and correctly transmit field sample collection data. Upon receipt of electronic analytical data from the laboratory, Shaw will perform data review, verification, and validation. Analytical results and QC measurements will be verified using the ADR program, Version 8.1 (LDC, 2006). Data verification reports will be generated using the ADR computer software. The electronic data specifications for the ADR are provided in Section 8.2 of this QAPP.

The USACE, Albuquerque or Fort Worth District, will provide Shaw with the ADR software and data acceptance criteria libraries for data verification. The USACE will coordinate with Shaw on construction of the project-specific QC acceptance criteria library that will be used for automated data verification on this project.

This page left intentionally blank.

\subsection*{3.0 Data Quality Objectives}

Data quality objectives (DQO) for the background data gaps sampling and analysis activities at FWDA will necessarily be developed and specified based on the output from the background study. A discussion of general DQOs and inputs relative to FWDA background data gaps sampling is presented below.

\subsection*{3.1 Data Use Background}

The FWDA background study may require additional sampling and analysis using either multiincremental (MI) and/or discrete surface soils and/or sediments, groundwater, and/or surface waters for naturally occurring inorganic constituents. Chemical analysis data will be used to fill data gaps in calculating background distributions and in making geochemical evaluations. Ultimately sample analysis data collected to fill data gaps in the background study will aid in determining whether or not contaminant releases have occurred at the FWDA area.

The DQOs rely on the seven-step statistical approach specified in Guidance for the Data Quality Objectives Process (EPA, 2000). Groundwater is the most likely pathway for constituents of potential concern (COPC) to affect human health or the environment.

Analytical data collected in the field will be screening-level data that may include transient water chemistry and water quality parameters measured during groundwater or surface water sampling. Screening data will be recorded in field logs and other field documentation forms.

Data generated at the subcontractor analytical laboratories will be definitive data. Multiincremental soil and/or sediment samples, groundwater, and/or surface water samples will be analyzed for U.S. Environmental Protection Agency (EPA) Target Analyte List (TAL) metals. Groundwater samples will be collected and analyzed for both total and dissolved fraction TAL metals.

Standard analytical methods, referenced in Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (EPA, 1986), including draft and final updates I through IV-B, will be followed when possible. Analytical methods referenced to other EPA documents or individual laboratory operating procedures may also be acceptable.

Field QC samples will be collected and analyzed for the same parameters as the parent, colocated MI surface soil/sediment, groundwater, or surface water samples. Standard laboratory QC practices will be followed for all samples analyzed at subcontractor laboratories. Chemical analysis QC will comply with the objectives listed in the DOD Quality Systems Manual (DOD, 2006).

Metals concentrations in soil or sediment will be reported in milligrams (mg) per kilogram (kg), corrected for percent moisture, and reported on a "dry weight" basis. Groundwater and surface water sample results will be reported in mg per liter.

Target analytes, TAL metals, are listed with project-specific advisory evaluation criteria in Table 3-1. For soil and sediment samples, the evaluation criteria have been established to represent the more conservative standard of either the New Mexico Environment Department soil screening levels (NMED, 2006) or EPA Region 6 Human Health Medium-Specific Screening Levels (EPA, 2008). For groundwater and surface water samples, evaluation criteria have been established to represent the more conservative standard of either the New Mexico Water Quality Control Commission Standards for Protection of Groundwater (NMWQCC, 2002) or EPA National Drinking Water Standards Maximum Contaminant Levels or Secondary Drinking Water Standards (EPA, 2001).

\subsection*{3.2 Measurement Quality Objectives for Chemical Data Measurement}

Measurement quality objectives (MQO) for chemical data measurements include the routine, standard QC measurements specified in the analytical methods, typically made on laboratoryprepared standard materials and samples to monitor MQOs for accuracy and precision. The MQOs are listed in Attachment A2. Laboratory QC checks may include the following:
- Calibration checks
- Quantitation limits
- Holding times
- Laboratory control samples
- Matrix spike samples
- Duplicate samples
- Method blank samples

For laboratory-generated QC measurement data, the accuracy, or bias, MQOs are those acceptance limits provided by the USACE (DOD, 2006) and project-specific precision MQO values approved by the USACE, Albuquerque District.

Shaw will enter the bias limits specified in the DOD Quality Systems Manual (DOD, 2006) into the ADR software data validation system project-specific library. Tables of acceptable values for the analytical methods, parameters, and sample matrices are included in Attachment A2. Values exceeding acceptance limits may result in qualification of the data, resampling and analysis, or other corrective actions that may be indicated.

The subcontractor analytical laboratory will report method detection limits (MDL) and practical quantitation limits (PQL), or reporting limits (RL), for each parameter analyzed. Parameters that
are detected but are less than the PQL or RL will be qualified as estimated values. In all cases, the RL should be less than the advisory evaluation criteria with which analytical results will be compared. Nondetected results will be reported at the PQL or RL. Evaluation criteria for TAL metals in soil/sediment and groundwater/surface water are listed in Table 3-1.

For MI and discrete soil samples, field precision will be calculated as relative standard deviation (RSD) for detected analytes in co-located field triplicate samples. Field precision for groundwater or surface water samples will be calculated as relative percent difference (RPD) from paired parent and field duplicate samples. Field precision will be monitored but will not be used to control the analytical processes.

Bias objectives for groundwater or surface water and MI or discrete surface soil sample and sediment analytes will be expressed as percent recoveries for laboratory control samples. Values that exceed accuracy objectives may result in qualification of data, resampling and analysis, or other corrective actions that may be indicated. Matrix spiked samples will also be analyzed at the laboratory to assess analytical bias.

\subsection*{3.3 Measurement Quality Objectives for Field Sampling}

RSD will be calculated for field co-located triplicate MI and discrete soil or sediment sample laboratory results for at least one major metal constituent on the TAL metals list. The metal, or metals, constituent selected for RSD measurement will be determined after the background study and before field mobilization. RSD for the laboratory analyzed samples should be less than 30 percent and if so will indicate an adequate number of soil increments have been collected. If RSD is greater than 30 then corrective actions will be applied to achieve the desired sampling precision.

This page left intentionally blank.

\subsection*{4.0 Sample Receipt, Handling, Custody, and Holding Time Requirements}

Soil or sediment samples for TAL metals analyses may be shipped to the subcontractor analytical laboratory at ambient temperature. Preservation by cooling of the MI or discrete soil or sediment samples collected for TAL metals analyses to 6 degrees Celsius, or less, is not recommended except for mercury. If results of the background study indicate that mercury is a potential contaminant of concern then all soil and sediment MI or discrete samples will be temperature preserved prior to shipping to the laboratory.

Groundwater samples should be received at the subcontractor laboratory intact and at temperatures less than or equal to 6 degrees Celsius. The laboratory will document sample receipt conditions either on the submitted Chain-of-Custody Record or other standardized laboratory forms.

Analysis holding times for TAL metals analyses in all samples are 6 months, except mercury is 28 days.

\subsection*{4.1 Verification/Documentation of Cooler Receipt Condition}

The project personnel will contact the subcontractor laboratory the day after sample shipment to confirm sample receipt at the laboratory. Any discrepancies or nonconforming conditions in regard to sample receipt will be discussed and resolved at that time. The laboratory will provide sample receipt documentation and records of nonconformance and corrective actions with the final analytical data report.

\subsection*{4.2 Corrective Action for Incoming Samples}

The subcontractor laboratory will bring nonconforming incoming samples or sample custody documentation errors to the attention of the Project Chemist. Corrective actions may be applied from available alternatives, depending on the type and magnitude of the error or omission. Documentation errors will be corrected by hand, initialed and dated, and the change recorded for the file. Samples arriving at the laboratory outside of temperature acceptance criteria may still be processed, or rejected, after the laboratory notifies and obtains approval from the Project Chemist. When sample containers arrive broken, attempts will be made to recover sufficient sample quantities for analysis from inside the secondary containment. Redundant sample quantities are submitted to mitigate these situations, if they occur.

This page left intentionally blank.

\subsection*{5.0 Multi-Incremental Sample Processing and Subsampling Procedures}

Project-specific sample preparation and subsampling requirements described in this chapter are applicable to analysis of the MI surface soil and/or sediment samples submitted for TAL metals analyses. The subcontractor analytical laboratory will adhere to the procedures for soil sample preparation and subsampling as specified in this chapter.

MI surface soil samples should be at least 1-kilogram mass. Field sampling personnel may pass MI soil or sediment samples through a No. 4 (4.75-millimeter) sieve to remove rocks and gravel. Samples will be collected in NASCO polyethylene Whirl-Paks \({ }^{\circledR}\) and packaged in shipping coolers or other suitable container for shipment to the laboratory. After the samples are received at the laboratory they will be logged in and kept in storage until processing. Sample processing and subsampling will follow the procedure described in the following steps:
1. The entire mass of the MI surface soil sample will be thin-spread onto a baker's tray and air-dried on racks overnight or for approximately 16 to 24 hours.
2. After air-drying, the sample mass will be passed through a Number 10 sieve and thoroughly mixed on the drying tray.
3. The entire, mixed sample will be repeatedly incrementally sub-sampled (30 increments minimum) or processed through a rotary splitter to yield a 10 -gram subsample for metals digestion and analysis. A portion of the sample will also be taken for percent solids determination.
4. The entire 10 -gram subsample for metals analysis will be acid-digested for analysis. Multiple digestions of increments of the 10 -gram subsample, followed by recombination and dilution to volume, may be necessary for soil samples prepared by microwave-assisted acid digestion using EPA Method 3051A (EPA, 1986). Acid and diluent volumes may be proportionally adjusted if the 10 -gram subsample is digested using a hot-plate (EPA Method 3050B) (EPA, 1986).

This page left intentionally blank.

\subsection*{6.0 Analytical Procedures}

Chemical analytical procedures from EPA SW-846 (EPA, 1986), other recognized standard methods, or laboratory-specific standard operating procedures (SOP) will be used for all laboratory analyses. EPA sample preparation and analytical methods to be used are as follows:
- Methods 3005A, 3015, 3050B, 3051A, 6010C, 6020A, Inductively Coupled Plasma (ICP)-Atomic Emission Spectroscopy and ICP-Mass Spectroscopy, as well as Method 7470A or 7471B will be used for definitive analysis of TAL metals in soil and groundwater.

Preparation, i.e. acid digestion, of MI soil and/or sediment samples may follow a modified Method 3050B under a laboratory specific standard operating procedure whereby 10 grams of soil are digested and volumetrically diluted for analysis.

\subsection*{6.1 Preventive Maintenance}

Preventive maintenance for analytical instrumentation and facilities will be conducted in accordance with the laboratory's Quality Assurance Plan and SOPs.

\subsection*{6.2 Calibration Procedures and Frequency}

The calibration of analytical instruments will follow the EPA analytical method requirements, and the laboratory's Quality Assurance Plan and SOPs.

\subsection*{6.3 Laboratory Quality Control Procedures}

Laboratory QC procedures will follow the EPA analytical method requirements and the laboratory's Quality Assurance Plan and SOPs.

\subsection*{6.4 Performance and System Audits}

The subcontractor laboratory will be subject to internal and external performance and system audits as part of the approval process to perform work for the USACE. The selected subcontractor laboratory will be approved to perform work on this project by the USACE. The laboratory will agree to reasonable access by Shaw and the USACE for the purpose of obtaining paper or electronic files, magnetic tapes, and other information that may be requested to resolve technical questions as part of any performance audit that may be conducted. Additional performance or system audits specific to this project are not anticipated.

\subsection*{6.5 Nonconformance/Corrective Actions}

Nonconformances and corrective action procedures at the laboratory will be in accordance with its Quality Assurance Plan and SOPs. The laboratory will provide documentation of any nonconformance/corrective actions in the Level IV analytical data reports generated for this project.

\subsection*{7.0 Data Reduction/Calculation of Data Quality Indicators}

The laboratory will calculate and report data quality indicators for QC sample results. Calculations of data quality indicators are performed automatically using instrument or sample data uploaded or entered into the LIMS. In certain instances, when QC samples are submitted as blind to the analytical laboratory, Shaw will calculate data quality indicators for those measurements.

Data quality indicators for precision, bias, quantitation limits, and completeness will follow standard formulae and guidance in the laboratory's Quality Assurance Plan, EPA SW-846 methods (EPA, 1986), and the DOD Quality Systems Manual (DOD, 2006).

Data quality indicators that will be calculated are summarized in the following sections. Formulae are not reiterated here.

\subsection*{7.1 Precision}

The data quality indicator to be calculated by the laboratory for precision is the RPD, which is the difference between two measurements, divided by their average, and then multiplied by 100 for percentage conversion. An RPD will be reported for each laboratory duplicate and matrix spike duplicate sample. The RPD for field duplicate sample analyses will be calculated by Shaw and included in the final field activities report.

In some instances, the percent difference (\%D) or RSD will be reported as precision indicators when required in analytical method calibration procedures. The \%D is the difference between a parent and duplicate measurement, divided by the parent measurement, and converted to a percentage. The RSD is the standard deviation of a group of measurements divided by the mean. RSD will be calculated and reported by Shaw for the MI field triplicate surface soil sample analyses.

The laboratory will prepare and subsample a field sample in triplicate, i.e., laboratory triplicate. The percent RSD for detected results in the laboratory triplicate should be less than 15 percent. If percent RSD is greater than 15 percent then corrective actions should be applied.

\subsection*{7.2 Bias}

Bias, or analytical accuracy, will be calculated as percent recovery, which is the quantity result obtained from an analysis (e.g., \(\mathrm{mg} / \mathrm{kg}\) ) divided by the known or expected quantity usually spiked into, or certified to be part of, the sample matrix. Percent recoveries will be reported for laboratory control samples.

\subsection*{7.3 Sample Quantitation Limits}

The PQL, or RL, will be calculated and reported by the laboratory. The PQLs or RLs are nominal limits at which reported values have calculable accuracy and precision. The MDL, which is less than the PQL or RL, by which analytes can be detected but not quantified within stated accuracy and precision levels, will also be reported. PQL or RL, MDL, and analytical results will be adjusted for sample moisture content and reported on a dry weight basis by the laboratory for soil samples. Values for detected analytes less than the PQLs but greater than the MDLs will be reported and qualified as estimated values by the laboratory.

\subsection*{7.4 Completeness}

Shaw will calculate completeness following receipt and validation of all laboratory analytical data. Completeness will be calculated as the percent usable data points, or analytical results, compared to the number of data points possible for all samples submitted and analyses requested. Completeness values for technical, analytical, and contract compliance and field sampling will be calculated for inclusion in the project report. The overall completeness goal is 90 percent.

\subsection*{8.0 Laboratory Operations Documentation}

Laboratory operations, analytical results, and QC measures will be documented by the laboratory and provided to Shaw as part of the subcontract deliverables. Types of documentation required are described in the following sections.

\subsection*{8.1 Sample Management Records}

Sample management records, including copies of completed Chain-of-Custody Records, sample receipt inspections, sample log-in assignments, internal chain-of-custody forms, and sample preparation logs will be compiled by the laboratory and provided in its analytical data report package.

\subsection*{8.2 Data Reporting Procedures}

Data reports will be provided as hard copy and PDF electronic files readable with Adobe Acrobat \({ }^{\text {TM }}\) software, as well as electronic data deliverables (EDD) in file formats specified by the USACE.

Data packages, or analytical reports, will be comprehensive; equivalent to the EPA Level IV data packages; and include sample management records, certificates of analysis with sample identifiers, analytical results, detection limits, QC sample results, and calculated data quality indicators, as well as raw data backup to include instrument printouts, calibration summaries, quantitation reports, and laboratory bench sheets. Raw data backup will allow for independent data validation of any result reported. Data packages will be generated that correlate to fieldwork phases or the samples submitted on individual Chain-of-Custody Records. The Level IV data packages will be provided to Shaw by the laboratory in hard copy and on compact disc in computer-readable PDF files.

The laboratory will provide EDDs for the background data gap sampling in the SEDD format and Laboratory Data Consultants, Inc. ADR format, Tables A1 and A3 (LDC, 2006) at a minimum. Electronic data in Tables A1 (Analytical Results) and A3 (Sample Analyses) are required for the EDD. Electronic data in Table A2 (Laboratory Instruments) is optional for the EDD. Shaw or the USACE will provide the laboratory with EDD specifications and the projectspecific ADR library of analytical method MQOs prior to field mobilization.

\subsection*{8.3 Data Management Procedures}

A routine sample analysis turnaround time of 28 days is anticipated for most samples submitted to the subcontractor laboratory. Typically, the analytical data report and EDDs will be received 20 to 60 days after sample submittal. Preliminary data is often available more quickly.

Analytical data packages and project files will be maintained at the subcontractor laboratory in accordance with its routine procedures. Complete Level IV data packages provided by the laboratory in electronic PDF format will be transmitted to the USACE. Hard copy data reports will be retained by Shaw. Data archival storage will comply with federal requirements.

\subsection*{9.0 Data Assessment Procedures}

\subsection*{9.1 Data Quality Control Review}

The subcontractor laboratory will perform initial data QC review prior to releasing the analytical data reports. Upon receipt of the reports, Shaw will review them for accuracy and completeness. The laboratory will be requested to correct obvious typographical errors, review, and correct, if necessary, unexpected or other questionable results.

\subsection*{9.2 Data Verification}

Shaw will perform automated data verification on the laboratory-provided EDDs using the ADR software (LDC, 2006). The USACE will provide the ADR software to Shaw. Shaw will construct a project-specific analytical methods library in ADR prior to mobilization. The project-specific library will be approved by the USACE, Albuquerque District, and provided to the subcontractor laboratory. After Shaw receives the EDD from the laboratory, the data will be uploaded into the ADR. The software will compare data quality indicators for each method, matrix, and analyte against acceptance criteria in the project-specific library. Data verification reports and summaries will be printed as hard copies as well as stored in electronic PDF files using the ADR software.

\subsection*{9.3 Data Quality Objective Reconciliation}

Shaw will review the analytical data and data validation reports, assess the usability of the data, and interpret the data in terms of the project goals. Shaw's interpretation of the data and reconciliation of the DQOs will be provided to the USACE.

\subsection*{9.4 Project Completeness Assessment}

Shaw will assess project completeness using the criteria listed in Section 7.4 of this QAPP. The results of the completeness assessment will be provided to the USACE.

This page left intentionally blank.

\subsection*{10.0 References}

DOD, see U.S. Department of Defense.
EPA, see U.S. Environmental Protection Agency.
Laboratory Data Consultants, Inc. (LDC), 2006, Automated Data Review, Version 8.1, U.S. Army Corps of Engineers, Sacramento District, Sacramento, California.

LDC, see Laboratory Data Consultants, Inc.
New Mexico Environment Department (NMED), 2006, Technical Background Document for Development of Soil Screening Levels, Revision 4.0, Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico.

New Mexico Water Quality Control Commission (NMWQCC), 2002, New Mexico Water Quality Control Commission Regulation, Section 20.6.2 of the New Mexico Administrative Code, New Mexico Water Quality Control Commission, Santa Fe, New Mexico.

NMED, see New Mexico Environment Department.
NMWQCC, see New Mexico Water Quality Control Commission.
U.S. Department of Defense (DOD), 2006, Quality Systems Manual for Environmental Laboratories, Final Version 3, prepared by DOD Environmental Data Quality Workgroup, Department of the Navy, Washington, D.C.
U.S. Environmental Protection Agency (EPA), 1986, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd ed., U.S. Environmental Protection Agency, Washington, D.C.
U.S. Environmental Protection Agency (EPA), 2000, Guidance for the Data Quality Objectives Process, EPA QA/G-4, Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C., August.
U.S. Environmental Protection Agency (EPA), 2001, National Primary Drinking Water Regulations (40 CFR 141), Office of Water, U.S. Environmental Protection Agency, Washington, D.C.
U.S. Environmental Protection Agency (EPA), 2008, Region 6 Human Health Medium-Specific Screening Levels 2008 (Revised 03/08/08), U.S. Environmental Protection Agency Region 6, Dallas, Texas.

This page left intentionally blank.

Tables

Table 3-1
Advisory Evaluation Criteria
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Fort Wingate, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Analyte} & \multirow[b]{3}{*}{CAS Number} & \multicolumn{5}{|c|}{Regulatory Standard} & \multicolumn{2}{|l|}{Advisory Evaluation Criteria} \\
\hline & & \multicolumn{3}{|c|}{Soil} & \multicolumn{2}{|c|}{Groundwater} & & \\
\hline & & \begin{tabular}{l}
NMEDSSLa \\
Residential (mg/kg)
\end{tabular} & \begin{tabular}{l}
EPA \\
Region \(6^{b}\) \\
Residential ( \(\mathrm{mg} / \mathrm{kg}\) )
\end{tabular} & \[
\begin{gathered}
\text { Eco-SSLc } \\
(\mathrm{mg} / \mathrm{kg})
\end{gathered}
\] & NMMQCC Groundwater Standards \({ }^{\text {d }}\) ( \(\mathrm{mg} / \mathrm{L}\) ) & \[
\begin{gathered}
\text { EPA MCLe } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] & Soil (mg/kg) & Water ( \(\mathrm{mg} / \mathrm{L}\) ) \\
\hline
\end{tabular}

Applicable to Multi-Incremental Soil and Sediment Samples and Groundwater and Surface Water Sample Analyses
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{TAL Metals (EPA 6010C/6020A/7470A7471B) \({ }^{\text {f }}\)} \\
\hline Aluminump & 7429-90-5 & 77,800 & 77,000 & pH dependent & 5.0 & 0.05-0.2 \({ }^{\text {h }}\) & 77,000 & 0.05-0.2 \({ }^{\text {h }}\) \\
\hline Antimony & 7440-36-0 & 31.3 & 31 & 0.27 & NE & 0.006 & 31 & 0.006 \\
\hline Arsenic & 7440-38-2 & 3.90 & 0.39 & 18 & 0.1 & 0.010 & 0.39 & 0.010 \\
\hline Barium & 7440-39-3 & 15,600 & 16,000 & 330 & 1.0 & 2 & 15,600 & 1.0 \\
\hline Beryllium & 7440-41-7 & 156 & 160 & 21 & NE & 0.004 & 156 & 0.004 \\
\hline Cadmum & 7440-43-9 & 39 & 39 & 0.36 & 0.01 & 0.005 & 39 & 0.005 \\
\hline Calcium & 7440-70-2 & NE & NE & NA & NE & NE & NE & NE \\
\hline Chromium & 7440-47-3 & 100,000 & 100,000 & 26 & 0.05 & 0.1 & 100,000 & 0.05 \\
\hline Cobalt & 7440-48-4 & 1520 & 900 & 13 & 0.05 & NE & 900 & 0.05 \\
\hline Copper & 7440-50-8 & 3130 & 2900 & 28 & 1.0 & 1.0 & 2900 & 1.0 \\
\hline Iron & 7439-89-6 & 23,500 & 55,000 & NA & 1.0 & 0.3 \({ }^{\text {h }}\) & 23,500 & 0.3 \({ }^{\text {h }}\) \\
\hline Lead & 7439-92-1 & 400 & 400 & 11 & 0.05 & 0.015 & 400 & 0.015 \\
\hline
\end{tabular}

Table 3-1 (Continued)
Advisory Evaluation Criteria
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Fort Wingate, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Analyte} & \multirow[b]{3}{*}{CAS Number} & \multicolumn{5}{|c|}{Regulatory Standard} & \multicolumn{2}{|l|}{Advisory Evaluation Criteria} \\
\hline & & \multicolumn{3}{|c|}{Soil} & \multicolumn{2}{|c|}{Groundwater} & & \\
\hline & & \begin{tabular}{l}
NMED SSL \({ }^{\text {a }}\) \\
Residential ( \(\mathrm{mg} / \mathrm{kg}\) )
\end{tabular} & \begin{tabular}{l}
EPA \\
Region \(6^{b}\) \\
Residential ( \(\mathrm{mg} / \mathrm{kg}\) )
\end{tabular} & \[
\begin{gathered}
\text { Eco-SSLc } \\
(\mathrm{mg} / \mathrm{kg})
\end{gathered}
\] & NMMQCC Groundwater Standards \({ }^{\text {d }}\) ( \(\mathrm{mg} / \mathrm{L}\) ) & \[
\begin{gathered}
\text { EPA MCLe } \\
(\mathrm{mg} / \mathrm{L})
\end{gathered}
\] & \[
\begin{aligned}
& \text { Soil } \\
& (\mathbf{m g} / \mathrm{kg})
\end{aligned}
\] & Water ( \(\mathrm{mg} / \mathrm{L}\) ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{TAL Metals (EPA 6010C/6020A7470A7471B) \({ }^{\text {e }}\) (Continued)} \\
\hline Magnesium & 7439-95-4 & NE & NE & NA & NE & NE & NE & NE \\
\hline Manganese & 7439-96-5 & 3590 & 3500 & 220 & 0.2 & \(0.05^{\text {h }}\) & 3500 & 0.05 \({ }^{\text {h }}\) \\
\hline Mercury (elemental) & 7439-97-6 & 100,000 & NE & 0.013k & 0.002 & 0.002 & 6.7 & 0.002 \\
\hline Nickel & 7440-02-0 & 1560 & 1600 & 38 & 0.2 & NE & 1560 & 0.2 \\
\hline Potassium & 7440-09-7 & NE & NE & NA & NE & NE & NE & NE \\
\hline Selenium & 7782-49-2 & 391 & 390 & 0.52 & 0.05 & 0.05 & 390 & 0.05 \\
\hline Silver & 7440-22-4 & 391 & 390 & 4.2 & 0.05 & 0.10 \({ }^{\text {h }}\) & 390 & 0.05 \\
\hline Sodium & 7440-23-5 & NE & 240 & NA & NE & NE & NE & NE \\
\hline Thallium & 7440-28-0 & 5.16 & 5.5 & 0.032 \({ }^{\text {k }}\) & NE & 0.002 & 5.16 & 0.002 \\
\hline Vanadium & 7440-62-2 & 78.2 & 390 & 7.8 & NE & NE & 78.2 & NE \\
\hline Zinc & 7440-66-6 & 23,500 & 23,000 & 46 & 10 & \(5^{\text {h }}\) & 23,000 & \(5^{\text {h }}\) \\
\hline
\end{tabular}

\footnotetext{
a New Mexico Environment Department, 2006, "Technical Background Document for Development of Soil Screening Levels," Revision 4.0, Hazardous Waste Bureau, New Mexico Environment
Department, Santa Fe, New Mexico.
\({ }^{\text {bu }}\) U.S. Environmental Protection Agency, 2008a, "Region 6 Human Health Medium-Specific Screening Levels 2008 (Revised 03/08/O8)," U.S. Environmental Protection Agency Region 6, Dallas,
Texas.
\({ }^{c}\) U.S. Environmental Protection Agency, 2008b, "Ecological Soil Screening Levels (updated 05/21/08)", <http://uww.epa.gov/ecotox/ecossl>; Iowest available Eco-SSL is presented.
}

\section*{Table 3-1 (Continued)}

\section*{Advisory Evaluation Criteria}

\section*{Background Study and Geochemical Evaluation}

\section*{Fort Wingate Depot Activity}

\section*{Fort Wingate, New Mexico}
\({ }^{\text {aNew Mexico Water Quality Control Commission, 2002, "New Mexico Water Quality Control Commission Regulation," Section 20.6.2 of the New Mexico Administrative Code, New Mexico Water }}\) Quality Control Commission, Santa Fe, New Mexico.
\({ }^{\text {eU }}\) U.S. Environmental Protection Agency, 2001, National Primary Drinking Water Regulations ( 40 CFR 141), Office of Water, U.S. Environmental Protection Agency, Washington, D.C.
\({ }^{\text {f }}\) U.S. Environmental Protection Agency, 1986, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd ed., U.S. Environmental Protection Agency, Washington, D.C.
\({ }^{9}\) Aluminum is identified as an ecological COPC only for soils with a pH less than 5.5 (EPA, 2008b).
\({ }^{n}\) National Secondary Drinking Water Standard. Nonenforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water.
'Chromium III.
\({ }^{\text {j}}\) Action Level that, if exceeded, requires water treatment.
kLos Alamos National Laboratory, 2008, ECORISK Database, Release 2.3, Environmental Programs Directorate, LA-UR-08-6673, Los Alamos National Laboratory, Los Alamos, New Mexico, October.

CAS \(\quad=\) Chemical Abstracts Service.
COPC = Constituent of potential concern.
ECO-SSL = Ecological soil screening level.
EPA = U.S. Environmental Protection Agency.
MCL = Maximum contaminant level.
mg/kg \(\quad=\) Milligram(s) per kilogram
\(\mathrm{mg} / \mathrm{L} \quad=\) Milligram(s) per liter.
NA = Not applicable; analyte is an essential nutrient.
NE = Not established.
NMED = New Mexico Environment Department.
NMMQCC \(=\) New Mexico Water Quality Control Commission.
SSL \(\quad=\) Soil screening level.
TAL \(\quad=\) Target Analyte List.

This page left intentionally blank.

\section*{Attachment A2 \\ Table of Measurement Quality Objectives}

Table A2
Measurement Quality Objectives
Background and Site Specific Dilution Attenuation Factors; Data Gaps
Fort Wingate Depot Activity, Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Evaluation Criteria} & \multicolumn{2}{|l|}{Practical Quantitation Reporting Limits} & \multicolumn{2}{|l|}{Minimum Detection Limits} & \multicolumn{2}{|c|}{Bias \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{Precision \({ }^{\text {a }}\)} \\
\hline Analyte & \[
\begin{aligned}
& \text { Soil } \\
& (\mathbf{m g} / \mathrm{kg})
\end{aligned}
\] & Water ( \(\mathrm{mg} / \mathrm{L}\) ) & Soil & Water & Soil & Water & Soil \%Recovery & Water \%Recovery & \begin{tabular}{l}
Soil \\
RPD
\end{tabular} & Water RPD \\
\hline
\end{tabular}

Applicable to Multi-Incremental Soil and Sediment and Groundwater and Surface Water Sample Analyses
TAL Metals (EPA 6010C/6020A7470A7471B) \({ }^{\text {b }}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Aluminum & 77,000 \({ }^{\text {c }}\) & 0.05-0.2 \({ }^{\text {d }}\) & \(40 \mathrm{mg} / \mathrm{kg}\) & \(0.15 \mathrm{mg} / \mathrm{L}\) & \(10 \mathrm{mg} / \mathrm{kg}\) & \(0.05 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Antimony & \(31^{\text {c }}\) & \(0.006{ }^{\text {e }}\) & \(0.2 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.05 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Arsenic & \(0.39^{\circ}\) & \(0.010^{\circ}\) & \(0.3 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.075 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Barium & 15,600 \({ }^{\circ}\) & \(1.0{ }^{9}\) & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.003 \mathrm{mg} / \mathrm{L}\) & \(0.1 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Beryllium & \(156{ }^{\text {f }}\) & \(0.004^{\text {e }}\) & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.002 \mathrm{mg} / \mathrm{L}\) & \(0.025 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Cadmium & 39 & \(0.005{ }^{\text {e }}\) & \(0.1 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & \(0.025 \mathrm{mg} / \mathrm{kg}\) & \(0.000125 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Calcium & NE & NE & \(20 \mathrm{mg} / \mathrm{kg}\) & \(0.3 \mathrm{mg} / \mathrm{L}\) & \(5 \mathrm{mg} / \mathrm{kg}\) & 0.1 mg/L & 80-120 & 80-120 & 20 & 20 \\
\hline Chromium & 100,000 \({ }^{\text {f }}\) & \(0.05{ }^{\text {9 }}\) & \(1 \mathrm{mg} / \mathrm{kg}\) & \(0.002 \mathrm{mg} / \mathrm{L}\) & \(0.12 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Cobalt & 1520 & \(0.05{ }^{\text {9 }}\) & \(1 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.12 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Copper & \(2900^{\circ}\) & \(1.0{ }^{9}\) & \(0.6 \mathrm{mg} / \mathrm{kg}\) & \(0.002 \mathrm{mg} / \mathrm{L}\) & \(0.15 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Iron & 23,500 \({ }^{\text {f }}\) & \(0.3{ }^{\text {d }}\) & \(2 \mathrm{mg} / \mathrm{kg}\) & 0.1 mg/L & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Lead & 400, \({ }^{\text {,f }}\) & 0.015 \({ }^{\text {e,h }}\) & \(0.4 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.1 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Magnesium & NE & NE & \(50 \mathrm{mg} / \mathrm{kg}\) & 1.0 mg/L & 12.5 mg/kg & \(0.25 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Manganese & \(350{ }^{\text {f }}\) & 0.05 \({ }^{\text {d }}\) & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.002 \mathrm{mg} / \mathrm{L}\) & \(0.1 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Mercury & \(6.7{ }^{\text {c }}\) & \(0.002^{\text {g,e }}\) & 0.1 mg/kg & \(0.0002 \mathrm{mg} / \mathrm{L}\) & \(0.02 \mathrm{mg} / \mathrm{kg}\) & \(0.0001 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Nickel & \(1560^{f}\) & \(0.2{ }^{\text {g }}\) & \(2 \mathrm{mg} / \mathrm{kg}\) & \(0.004 \mathrm{mg} / \mathrm{L}\) & \(0.2 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Potassium & NE & NE & \(100 \mathrm{mg} / \mathrm{kg}\) & \(1.0 \mathrm{mg} / \mathrm{L}\) & \(25 \mathrm{mg} / \mathrm{kg}\) & \(0.25 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline
\end{tabular}

Table A2 (Continued)
Measurement Quality Objectives

\section*{Background and Site Specific Dilution Attenuation Factors; Data Gaps}

\section*{Fort Wingate Depot Activity, Gallup, New Mexico}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Analyte} & \multicolumn{2}{|l|}{Evaluation Criteria} & \multicolumn{2}{|l|}{Practical Quantitation/ Reporting Limits} & \multicolumn{2}{|r|}{Minimum Detection Limits} & \multicolumn{2}{|c|}{Bias \({ }^{\text {a }}\)} & \multicolumn{2}{|c|}{Precision \({ }^{\text {a }}\)} \\
\hline & Soil ( \(\mathrm{mg} / \mathrm{kg}\) ) & Water (mg/L) & Soil & Water & Soil & Water & Soil \%Recovery & Water \%Recovery & Soil RPD & Water RPD \\
\hline \multicolumn{11}{|c|}{TAL Metals (EPA 6010C/6020A7470A7471B) \({ }^{\text {b }}\) (Continued)} \\
\hline Selenium & \(390^{\circ}\) & 0.059, \({ }^{\text {e }}\) & \(0.4 \mathrm{mg} / \mathrm{kg}\) & \(0.0015 \mathrm{mg} / \mathrm{L}\) & \(0.1 \mathrm{mg} / \mathrm{kg}\) & \(0.0005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Silver & \(390^{\circ}\) & \(0.05{ }^{\text {9 }}\) & \(0.2 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.05 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 75-120 & 80-120 & 20 & 20 \\
\hline Sodium & NE & NE & \(25 \mathrm{mg} / \mathrm{kg}\) & \(1.0 \mathrm{mg} / \mathrm{L}\) & \(5 \mathrm{mg} / \mathrm{kg}\) & \(0.25 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Thallium & \(5.16{ }^{\text {c }}\) & \(0.002^{\text {e }}\) & \(0.04 \mathrm{mg} / \mathrm{kg}\) & \(0.0002 \mathrm{mg} / \mathrm{L}\) & \(0.01 \mathrm{mg} / \mathrm{kg}\) & \(0.00005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Vanadium & \(78.2^{\text {f }}\) & NE & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.001 \mathrm{mg} / \mathrm{L}\) & \(0.125 \mathrm{mg} / \mathrm{kg}\) & \(0.00025 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline Zinc & 23,000 \({ }^{\text {c }}\) & \(5^{\text {d }}\) & \(2 \mathrm{mg} / \mathrm{kg}\) & \(0.025 \mathrm{mg} / \mathrm{L}\) & \(0.5 \mathrm{mg} / \mathrm{kg}\) & \(0.005 \mathrm{mg} / \mathrm{L}\) & 80-120 & 80-120 & 20 & 20 \\
\hline
\end{tabular}
 Version 3, prepared by DOD Environmental Data Quality Workgroup, U.S. Department of the Navy, for U.S. Department of Defense, Washington, D.C. or laboratory control values.)
\({ }^{\text {b }}\) U.S. Environmental Protection Agency, 1986, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd ed., U.S. Environmental Protection Agency, Washington, D.C., including draft and final updates I through IV-B.
\({ }^{c}\) U.S. Environmental Protection Agency, 2008, "Region 6 Human Health Medium-Specific Screening Levels 2008 (Revised 03/08/08)," U.S. Environmental Protection Agency Region 6, Dallas, Texas.
\({ }^{1}\) National Secondary Drinking Water Standard. Nonenforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water.
\({ }^{\text {eEPPA Maximum Contaminant Level. (U.S. Environmental Protection Agency, 2001, National Primary Drinking Water Regulations [40 CFR 141], Office of Water, U.S. Environmental Protection }}\) Agency, Washington, D.C.)
\({ }^{f}\) New Mexico Environment Department, 2006, "Technical Background Document for Development of Soil Screening Levels," Revision 4.0, Hazardous Waste Bureau, New Mexico Environment Department, Santa Fe, New Mexico.
\({ }^{\text {g New Mexico Water Quality Control Commission, 2002, "New Mexico Water Quality Control Commission Regulation," Section 20.6.2 of the New Mexico Administrative Code, New Mexico Water }}\) Quality Control Commission, Santa Fe, New Mexico.
\({ }^{h}\) Action level that, if exceeded, requires water treatment.
\begin{tabular}{llll} 
EPA & \(=\) U.S. Environmental Protection Agency. & NE & = Not established. \\
\(m g / \mathrm{kg}\) & \(=\) Milligram(s) per kilogram & RPD & = Relative percent difference. \\
\(m g / L\) & \(=\) Milligram(s) per liter. & TAL & \(=\) Target Analyte List.
\end{tabular}

\title{
Appendix C \\ Site Safety and Health Plan
}

\title{
Site Safety and Health Plan \\ Background Study and Geochemical Evaluation \\ Fort Wingate Depot Activity \\ Gallup, New Mexico
}

Contract No. W912BV-07-D-2004
Delivery Order DM01
Revision 0
Final—January 2009

Prepared for:
U.S. Army Corps of Engineers

Albuquerque District
4101 Jefferson Plaza, NE
Albuquerque, New Mexico 87109

Prepared by:
Shaw Environmental, Inc.
2440 Louisiana Blvd. NE, Suite 300
Albuquerque, New Mexico 87110

\section*{Site Safety and Health Plan Disclaimer}

This Site Safety and Health Plan has been designed for the methods presently planned by Shaw Environmental, Inc. for execution of the proposed work. Therefore, the Site Safety and Health Plan may not be appropriate if the certain tasks are not performed or if the scope of work is modified. Each company or contractor is responsible for the safety and health of its personnel, their actions, and the manner in which its employees perform the work. It is highly recommended that each company or contractor working at the Fort Wingate Depot Activity site perform its duties under the supervision of their internal health and safety professionals.

\section*{Site Safety and Health Plan Approvals and Acknowledgments}

\section*{Approvals}

I have read and approved this Site Safety and Health Plan (SSHP) with respect to project hazards, regulatory requirements, and Shaw Environmental, Inc. procedures.
\begin{tabular}{|l|l|}
\hline Project Name: \\
Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, & Project Number: \\
Gallup, New Mexico & \\
\hline
\end{tabular}

\section*{James Vigerust}

Project Health and Safety Manager / Date

\section*{Acknowledgments}

The final, approved version of this SSHP has been provided to the Task Order Manager. I acknowledge my responsibility to provide the Task Order Manager with the equipment, materials, and qualified personnel to fully implement all safety requirements in this SSHP. I will formally review this plan with the Health \& Safety Staff every six months until project completion.

Michael Goodrich
Project Manager / Date

I acknowledge receipt of this SSHP from the Project Manager, and that it is my responsibility to explain its contents to all site personnel and facilitate the full implementation of these requirements. Any change in conditions, scope of work, or other modification that might affect worker safety requires that I to notify the Project Manager and/or the Health and Safety representative.

\section*{Dale Flores}

Field Team Leader / Date

\section*{Table of Contents}
List of Figures ..... iii
List of Tables ..... iii
List of Attachments ..... iii
Acronyms and Abbreviations ..... iv
1.0 Introduction ..... 1-1
1.1 Objective ..... 1-1
1.2 Site and Facility Description ..... 1-1
1.3 Policy Statement ..... 1-1
1.4 Health and Safety Guidelines ..... 1-2
2.0 Responsibilities ..... 2-1
2.1 All Personnel and Visitors. ..... 2-1
2.2 Health and Safety Manager ..... 2-1
2.3 Project Manager ..... 2-1
2.4 Site Supervisor/Field Team Leader ..... 2-2
2.5 Site Health and Safety Officer ..... 2-2
2.6 Subcontractors ..... 2-2
3.0 Personal Protective Equipment. ..... 3-1
3.1 Levels of Protection ..... 3-1
3.1.1 Level D ..... 3-1
3.1.2 Modified Level D ..... 3-1
3.1.3 Level C ..... 3-1
3.2 Personal Protective Equipment Use ..... 3-2
4.0 Site Monitoring ..... 4-1
4.1 Air Monitoring ..... 4-1
4.2 Noise Monitoring ..... 4-1
4.3 Radiation Monitoring ..... 4-1
4.4 Monitoring Records ..... 4-1
5.0 Site Control ..... 5-1
5.1 Entry Requirements ..... 5-1
5.2 Exit Requirements ..... 5-1
5.3 Emergency Entry and Exit ..... 5-1
6.0 Decontamination ..... 6-1
6.1 Contamination Control Zones ..... 6-1
6.1.1 Exclusion Zone ..... 6-1
6.1.2 Contamination Reduction Zone ..... 6-1
6.1.3 Support Zone. ..... 6-1
6.2 Personnel Decontamination ..... 6-1
6.3 Equipment Decontamination ..... 6-2
6.4 Personal Protective Equipment Decontamination. ..... 6-2
7.0 Training ..... 7-1
7.1 General ..... 7-1
7.2 40-Hour Course ..... 7-1

\section*{Table of Contents (continued)}
7.3 Supervisor Course ..... 7-2
7.4 Site-Specific Training ..... 7-2
7.5 First Aid and CPR ..... 7-2
7.6 Certification Documents ..... 7-2
8.0 Medical Surveillance ..... 8-1
8.1 Medical Examination ..... 8-1
8.2 Medical Restriction ..... 8-1
9.0 Project Hazards and Control Procedures ..... 9-1
9.1 Job Hazard Assessment and Hazard Assessment Resolution Program ..... 9-1
9.2 Field Activities, Hazards, and Control Procedures ..... 9-1
9.2.1 Mobilization/Demobilization ..... 9-1
9.2.2 Surveying and Soil Sampling Activities ..... 9-2
9.3 Chemical Hazards ..... 9-2
10.0 General Control Procedures and Hazards ..... 10-1
10.1 General Practices ..... 10-1
10.2 Buddy System ..... 10-2
10.3 Sanitation ..... 10-2
10.4 Spill Control Plan ..... 10-3
10.5 Sunburn/Ultraviolet Exposure ..... 10-3
10.6 Heat Stress ..... 10-3
10.7 Cold Stress ..... 10-5
10.8 Biological Hazards ..... 10-6
10.9 Noise ..... 10-8
10.10 Compressed Gas. ..... 10-8
10.11 Lifting ..... 10-9
10.12 Dust Control ..... 10-9
11.0 Emergency Procedures ..... 11-1
11.1 General ..... 11-1
11.2 Safety Signals ..... 11-1
11.3 Emergency Response ..... 11-1
11.3.1 Medical Emergency ..... 11-2
11.3.2 First-Aid Treatment ..... 11-2
11.3.2.1 First Aid—Inhalation, Ingestion ..... 11-2
11.3.2.2 First Aid-Skin Contact ..... 11-3
11.3.2.3 First Aid-Eye Contact ..... 11-3
11.3.3 Injury and Illness Reporting ..... 11-3
11.3.4 Fire ..... 11-3
11.3.5 Spill ..... 11-3
11.4 Emergency Information ..... 11-4
12.0 Site Safety and Health Plan Summary ..... 12-1
12.1 Project Summary ..... 12-1

\section*{Table of Contents (continued)}
12.2 Site Characterization and Analysis ..... 12-1
12.3 Personal Protective Equipment Selection Matrix ..... 12-2
13.0 References ..... 13-1

\section*{List of Figures}

Figure 11-1 Rehoboth McKinley Christian Hospital Route Map, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico

\section*{List of Tables}

Table 4-1 PID Use, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 4-2 Real-Time Air Monitoring Action Levels, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 9-1 Chemical Exposure and Hazard Information, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 10-1 Hand Signals to be Used for Communication, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 11-1 Emergency Contacts, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 12-1 Training Requirements, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico
Table 12-2 Personal Protective Equipment Selection Matrix, Background Study and Geochemical Evaluation, Fort Wingate Depot Activity, Gallup, New Mexico

\section*{List of Attachments}

\author{
Attachment B1 SSHP Declaration
}

Attachment B2 Job Hazard Analysis
Attachment B3 Material Safety Data Sheets

\section*{Acronyms and Abbreviations}
\begin{tabular}{ll} 
ANSI & American National Standards Institute \\
CFR & Code of Federal Regulations \\
CPR & cardiopulmonary resuscitation \\
DAF & dilution attenuation factor \\
\({ }^{\circ}\) F & degrees Fahrenheit \\
FWDA & Fort Wingate Depot Activity \\
HAZWOPER & Hazardous Waste Operations \\
H\&S & health and safety \\
HSM & Health and Safety Manager \\
MSDS & Material Safety Data Sheet \\
OSHA & Occupational Safety and Health Administration \\
PID & photoionization detector \\
PM & Project Manager \\
PPE & personal protective equipment \\
Shaw & Shaw Environmental, Inc. \\
SHSO & Site Health and Safety Officer \\
SPF & skin protection factor \\
SSHP & Site Safety and Health Plan \\
SS & Site Supervisor \\
UV & ultraviolet
\end{tabular}

\subsection*{1.0 Introduction}

\subsection*{1.1 Objective}

The purpose of this project is to conduct a background study to develop a baseline inorganic geochemical assessment establishing concentrations of naturally occurring inorganic constituents in soil, groundwater, surface water, and sediment for the Fort Wingate Depot Activity (FWDA). Geologic, hydrogeologic, and geochemical processes that control the distributions of naturally occurring minerals and inorganic compounds within the boundaries Fort Wingate will be identified.

In addition, site-specific dilution attenuation factors (DAF) or other approved and appropriate models will be developed for "non-naturally" occurring compounds, such as 1,2-dichloroethane; toluene; total explosives (based on a list of 14 separate explosive compounds); perchlorate; and other potential non-naturally occurring constituents potentially released to the environment. The objective of developing DAF values is to determine potential impacts to groundwater through release at the surface and migration to groundwater. Hence, the overall objective of this project is to determine whether a release has occurred to the environment above natural background levels, and whether a release has the potential to impact groundwater.

\subsection*{1.2 Site and Facility Description}

This project will target areas that may have been missed in previous soil background investigations. Details of this site are presented in the Work Plan.

\subsection*{1.3 Policy Statement}

The policy of Shaw Environmental, Inc. (Shaw) is to provide a safe and healthy work environment for all employees. Shaw considers no phase of operations or administration to be of greater importance than injury and illness prevention. Safety takes precedence over expediency and shortcuts. Shaw considers all accidents and injuries preventable and will take every reasonable step to reduce the possibility of injury, illness, or accident.

This Site Safety and Health Plan (SSHP) describes the procedures that must be followed during site activities at the site. Operational changes that could affect the health and safety (H\&S) of personnel, the community, or the environment will not be made without the prior approval of the Project Manager (PM) and Health and Safety Manager (HSM).

The provisions of this plan are mandatory for all personnel and subcontractors assigned to the project. All visitors to the work site must abide by the requirements of this plan.

\subsection*{1.4 Health and Safety Guidelines}

This SSHP complies with applicable Occupational Safety and Health Administration (OSHA), U.S. Environmental Protection Agency, and Shaw H\&S policies and procedures. This plan follows the guidelines established in the following documents:
- Standard Operating Safety Guides (EPA, June 1992).
- Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH et al., October 1985).
- Title 29 of the Code of Federal Regulations (CFR), Part 1910.120.
- 29 CFR 1910 and 1926.
- National Institute for Occupational Safety and Health Pocket Guide to Chemical Hazards (NIOSH, September 2005).
- Quick Selection Guide to Chemical Protective Clothing (Forsberg and Mansdorf, 1997)
- Shaw Environmental Health and Safety Policies and Procedures Manual (Shaw, 2008).

\subsection*{2.0 Responsibilities}

\subsection*{2.1 All Personnel and Visitors}

All personnel must be familiar with and adhere to these H\&S procedures during the performance of work. Each person is responsible for completing tasks safely and reporting any unsafe acts or conditions to his or her immediate supervisor, the Site Health and Safety Officer (SHSO), or the Site Supervisor (SS) or Field Team Leader. No person may work in a manner that conflicts with the specified safety and environmental precautions or the intent of these procedures. After due warnings, the Field Team Leader or the PM will dismiss from the site any person who violates safety procedures. If necessary, Shaw's employees are subject to progressive discipline and may be terminated for blatant or continued violations.

All personnel and site visitors must read and acknowledge understanding of this SSHP on the form provided as Attachment B1, abide by the requirements of the plan, and cooperate with site supervision personnel in ensuring a safe and healthy work site. Site personnel will immediately report any of the following to the SS or SHSO:
- Accidents and injuries, no matter how minor
- Unexpected or uncontrolled release of chemical substances
- Symptoms of chemical exposure
- Unsafe or malfunctioning equipment
- Changes in site conditions that may affect the H\&S of project personnel

\subsection*{2.2 Health and Safety Manager}

The HSM is responsible for the technical H\&S aspects of the project, including review, changes to, and approval of this SSHP. If changes to this SSHP are required, the HSM will work with the PM to formalize the change. The HSM is to address inquiries regarding Shaw procedures, project procedures, and other technical or regulatory issues. The HSM for this project is James Vigerust.

\subsection*{2.3 Project Manager}

The PM is ultimately responsible for ensuring that all project activities are completed in accordance with the requirements and procedures in this plan. The PM will formally review this plan with the SHSO or HSM every six months until the project is completed. The PM is responsible for providing the Field Team Leader/SS with the equipment, materials, and qualified personnel necessary to fully implement all safety requirements outlined in this SSHP. The PM for this project is Mike Goodrich.

It is the PM's responsibility to make sure that tasks are completed as documented in the Work Plan. The PM will thoroughly investigate all accidents and incidents on the project.

\subsection*{2.4 Site Supervisor/Field Team Leader}

The SS/Field Team Leader is also the on-site project geologist and is responsible for implementation of the SSHP, including communication of site requirements to all on-site project personnel (including subcontractors) and consultation with the SHSO. The SS is responsible for informing the PM and the SHSO of any changes in the work plan or procedures so that those changes may be addressed in this SSHP. The SS for this project is Dale Flores.

Other responsibilities of the SS include the following:
- Stopping work as necessary to ensure personal safety and protection of property, or in cases of life- or property-threatening safety noncompliance.
- Determining and posting routes to medical facilities and maintaining a list of emergency telephone numbers, as well as arranging emergency transportation to medical facilities.
- Establishing evacuation routes and assembly areas.
- Notifying local public emergency officers of the nature of the site operations and posting emergency telephone numbers in an appropriate location.
- Observing on-site project personnel for signs of chemical or physical trauma.
- Ensuring that all site personnel have proper medical clearance, have met applicable training requirements, and have access to training documentation.

\subsection*{2.5 Site Health and Safety Officer}

The SHSO can make changes to this SSHP in cooperation with the HSM based upon field conditions. Any changes will be documented in the Field Activity Daily Log and Daily Safety Report by the SHSO. Field changes can be implemented appropriately in this manner without causing delays. The SHSO will advise the SS concerning H\&S issues. The SHSO will ensure that all on-site Shaw and contractor personnel provide copies of certification as described in Chapter 7.0. The SHSO will conduct daily Tailgate Safety Meetings and will serve as the primary site contact on occupational H\&S. The SHSO for this project is to-be-determined.

\subsection*{2.6 Subcontractors}

Shaw may use only pre-qualified subcontractors on this project. Subcontractors will abide by all the requirements of this SSHP.

\subsection*{3.0 Personal Protective Equipment}

Personal protective equipment (PPE) is required to safeguard site personnel from possible hazards. Varying levels of protection are required depending upon the possible level of contaminants and the degree of physical hazard. The following sections present the various levels of protection and define the conditions of use for each level.

\subsection*{3.1 Levels of Protection}

The level of PPE will be selected by the SS or SHSO based upon the potential for contact with contaminated materials, site conditions, ambient air quality, and the judgment of supervising site personnel and H\&S professionals. PPE will be effective against the compounds present at the site. A summary of the levels of protection is presented in this section. The PPE selection matrix is presented in Section 12.3.

\subsection*{3.1.1 Level D}

The minimum level of protection required of Shaw personnel and subcontractors at the site is Level D, which will be worn as the initial protection level for site operations. The following equipment will be used:
- Work clothing as prescribed by weather, pants
- Steel-toed work boots, American National Standards Institute (ANSI) approved
- Safety glasses with side shields or goggles, ANSI approved
- Leather work gloves at the discretion of the SS or SHSO

\subsection*{3.1.2 Modified Level D}

Modified Level D is required for personnel who come into direct contact with potential site contaminants during drilling and sampling activities. The following equipment will be used:
- Work clothing as prescribed by weather, pants
- Steel-toed work boots, ANSI approved
- Safety glasses, ANSI approved
- Disposable gloves (nitrile or latex during soil sampling)
- Hearing protection (at the discretion of the SS or SHSO)
- Leather work gloves

\subsection*{3.1.3 Level C}

Upgrade to level C is not anticipated. If conditions warrant higher levels of protection than modified Level D, site work will be suspended until such conditions can be rectified or until this

SSHP is amended to address such hazards. All upgrades and downgrades will be approved by the SS or SHSO with the concurrence of the HSM.

\subsection*{3.2 Personal Protective Equipment Use}

All personnel and visitors entering the exclusion zone must wear the recommended PPE in accordance with the requirements of this plan. When leaving the exclusion zone, PPE will be removed as described in Section 6.1 to minimize the spread of contamination.

\subsection*{4.0 Site Monitoring}

\subsection*{4.1 Air Monitoring}

Air monitoring will not be necessary during this project. However, a photoionization detector (PID) (equipped with an 11.7 electron volt lamp) will be with the soil sampling team in the event an unnatural odor is encountered.

The monitoring results will dictate work procedures and the selection of PPE, according to the Table 4-2. At a minimum, all readings will be recorded on air monitoring logs every half hour.

\subsection*{4.2 Noise Monitoring}

Noise monitoring will not be necessary during this project. Hearing protection will be required during all drilling operations and at the discretion of the SS or SHSO during other activities.

\subsection*{4.3 Radiation Monitoring}

Radiation monitoring will not be required during this project.

\subsection*{4.4 Monitoring Records}

In the event that site monitoring is conducted, the PM must ensure that site monitoring records are complete and incorporated into the project file. The SS or SHSO is responsible for establishing, maintaining, and forwarding the following required monitoring information:
- Employee name, employee number
- The date, time, pertinent task information, and exposure information
- Description of the analytical methods, equipment used, and calibration data
- Type of PPE worn
- Engineering controls used to reduce exposure

This page left intentionally blank.

\subsection*{5.0 Site Control}

This section describes the procedures used to control entry and exit of persons from the site. Site control is necessary to ensure that anyone on site is informed of the potential hazards and is trained in handling such.

\subsection*{5.1 Entry Requirements}

No person will be allowed in the work area during site operations without a hazard briefing. In general, the briefing will consist of a review of the Tailgate Safety Meeting form. All people in the work area, including visitors, must sign the site-specific Tailgate Safety Meeting form. Tailgate Safety Meetings will be conducted by the SS or SHSO at the beginning of each shift, as conditions change, and for visitors as needed. In addition to the hazard briefing, no person will be allowed in the work area unless he or she is wearing the required PPE as described in Section 3.1. The SS or SHSO will maintain a list of authorized personnel who are allowed within the exclusion and contamination reduction zones.

\subsection*{5.2 Exit Requirements}

Personnel will follow the decontamination procedures described in Chapter 6.0 prior to leaving the contamination reduction zone. All trash and equipment will be removed from the site before the completion of fieldwork.

\subsection*{5.3 Emergency Entry and Exit}

People who must enter the site on an emergency basis will be briefed on the hazards by the SS or SHSO. All work activities will cease in the event of an emergency and any sources of emissions will be controlled, if possible.

People exiting the site because of an emergency will gather in the safe area previously designated by the SS or SHSO for a head count. The SS or SHSO is responsible for ensuring that all people who entered the work area have exited in the event of an emergency.

This page left intentionally blank.

\subsection*{6.0 Decontamination}

This section describes the work zones, break area, and decontamination procedures.

\subsection*{6.1 Contamination Control Zones}

Contamination control zones are maintained to prevent the spread of contamination and to prevent unauthorized people from entering hazardous areas. Eating, drinking, chewing gum, and tobacco use is prohibited in the exclusion and contamination reduction zones.

\subsection*{6.1.1 Exclusion Zone}

The exclusion zone is the specific work area or the entire area of suspected contamination. The exclusion zone is the defined area where there is possible contact with a health hazard. All employees entering the exclusion zone must use the required PPE and have the appropriate training for hazardous waste work.

\subsection*{6.1.2 Contamination Reduction Zone}

The contamination reduction zone will be established as a transition area, if necessary, to perform decontamination of personnel, equipment, and PPE. All personnel entering or leaving the exclusion zone will pass through this area to prevent cross-contamination and for accountability. PPE outer garments will be removed in the contamination reduction zone and prepared for cleaning or disposal. This is the only appropriate corridor between the exclusion zone and the support zone.

\subsection*{6.1.3 Support Zone}

The support zone is a clean area located outside the contamination reduction zone to prevent employee exposure to hazardous substances. Eating, drinking, and tobacco use are permitted in the support zone only after washing hands.

\subsection*{6.2 Personnel Decontamination}

All personnel working in the exclusion zone must undergo personal decontamination prior to entering the support zone. Personal decontamination will consist of the following steps:
1. Go to end of the exclusion zone
2. Remove gloves and discard in the labeled trash receptacle
3. Remove protective suit (if applicable)
4. Wash hands

\subsection*{6.3 Equipment Decontamination}

Decontamination of nondisposable sampling equipment will consist of scrubbing the equipment with a soft bristled brush and an Alconox and water mix, then rinsing the equipment with distilled water. The decontamination water will be temporarily contained on site and allowed to evaporate. If necessary, sample containers from the contamination reduction zone will be wiped off prior to being introduced into the support zone.

\subsection*{6.4 Personal Protective Equipment Decontamination}

Soil sampling activities will be conducted in Modified Level D PPE as described in Section 3.1.2. This protective clothing will be disposed of as solid waste.

\subsection*{7.0 Training}

\subsection*{7.1 General}

All on-site project personnel must have completed at least 40 hours of Hazardous Waste Operations (HAZWOPER) training, as required by OSHA Regulation 29 CFR 1910.120. All field employees must receive a minimum of three days of actual field experience under the direct supervision of a trained, experienced supervisor. Those personnel who have completed the 40-hour training more than 12 months prior to the start of the project must have completed an 8 -hour refresher course within 12 months prior to the start of the project. The SS or SHSO must have completed an additional eight hours of H\&S training for supervisors and must have a current first-aid/cardiopulmonary resuscitation (CPR) certificate.

\subsection*{7.2 40-Hour Course}

The following is a list of the topics typically covered in the 40 -hour HAZWOPER training course:
- Physical hazards (fall protection, noise, heat stress, cold stress)
- Job descriptions of key personnel responsible for site H\&S measures
- General safety procedures
- Safety, health, and other hazards typically present at hazardous waste sites
- Use, application, and limitations of PPE
- Work practices by which employees can minimize risks from hazards
- Safe use of engineering controls and equipment on site
- Medical surveillance requirements
- Recognition of symptoms and signs that might indicate overexposure to hazards
- Worker right-to-know (Hazard Communication OSHA 29 CFR 1910.1200)
- Routes of exposure to contaminants
- Engineering controls and safe work practices
- Components of a site H\&S program and SSHP
- Decontamination practices for personnel and equipment
- Confined-space entry procedures
- General emergency response procedures

\subsection*{7.3 Supervisor Course}

Managers and supervisors must complete an additional eight hours of training that typically includes the following topics:
- General site H\&S procedures
- PPE programs
- Air monitoring techniques

\subsection*{7.4 Site-Specific Training}

Site-specific training will be accomplished through a review of this SSHP before fieldwork activities begin. All workers will review and sign the SSHP acknowledgment form at the beginning of this plan. In addition, the daily Tailgate Safety Meeting and Job Hazard Analysis will cover the work to be accomplished, hazards anticipated, protective clothing and procedures required to minimize site hazards, and emergency procedures. No work will be performed before the Tailgate Safety Meeting has been conducted and workers have signed the form.

\subsection*{7.5 First Aid and CPR}

At least two employees with current certification in first aid/CPR will be assigned to the work crew and will be on the site whenever operations are in progress. Refresher training in first aid (triennially) and CPR (annually) are required to keep the certificate current. These individuals must also receive training as to the precautions and protective equipment necessary to protect against exposure to blood-borne pathogens.

\subsection*{7.6 Certification Documents}

A training and medical file must be established for the project and kept on site during all operations. The 40-hour training, 8-hour refresher, other training (first-aid/CPR), and medical clearance certificates for all project field personnel will be maintained in that file. All Shaw and subcontractor personnel must provide their training and medical documentation to the SS or SHSO prior to the start of fieldwork activities.

\subsection*{8.0 Medical Surveillance}

\subsection*{8.1 Medical Examination}

All on-site personnel must have successfully completed a pre-placement or annual physical examination, which is provided free-of-charge to the employee. This medical surveillance program will comply with OSHA Regulation 29 CFR 1910.120.

\subsection*{8.2 Medical Restriction}

When the examining physician identifies a need to restrict work activity, the employee's supervisor must communicate the restriction to the employee and the SS or SHSO. The terms of the restriction will be discussed with the employee and the SS or SHSO. Every attempt should be made to keep the employee working; while not violating the terms of the medical restriction.

This page left intentionally blank.

\subsection*{9.0 Project Hazards and Control Procedures}

\subsection*{9.1 Job Hazard Assessment and Hazard Assessment Resolution Program}

Job hazard assessments in conjunction with the hazard assessment resolution program are necessary to identify potential safety, health, and environmental hazards associated with each type of field activity. Each site task has been analyzed for potential hazards for which control measures are provided in Attachment B2, Job Hazard Analysis. Because of the complex and changing nature of field projects, supervisors must continually inspect the work site to identify hazards that may harm site personnel, the community, or the environment. The SS or SHSO must be aware of these changing conditions and discuss them with the HSM and the PM whenever these changes impact the health, safety, or performance of the project. The SS or SHSO will keep subcontractors informed of the changing conditions and will write addenda to modify the Job Hazard Analysis and associated hazard controls as necessary.

\subsection*{9.2 Field Activities, Hazards, and Control Procedures}

No significant health hazards from chemical contaminants or radiation are anticipated for this project. In accordance with Chapter 3.0, decisions regarding PPE for the chemical hazards will be based upon measurements made before and during work activities. This section discusses the hazards associated with each phase of the project. General hazards that can occur when working at any field site are presented in Chapter 10.0. Control and prevention measures are presented in Attachment B2.

\subsection*{9.2.1 Mobilization/Demobilization}

Site mobilization will include establishing work, contamination control, and support zones. A break area will be set up outside the regulated work area. Mobilization will involve staging sample coolers, setting up a sample management area, and performing decontamination of nondisposable sample equipment. During this initial phase, project personnel will conduct a site walk-through to identify safety issues that may have arisen since the submission of this plan.

Demobilization will involve the removal of all tools, sample equipment, supplies, and vehicles from the site.

The hazards of these phases of activity are associated with biological hazards, equipment failure, lifting, sharp objects, slips/trips/falls, and temperature. The site is maintained and access to the sample sites is not an issue.

\subsection*{9.2.2 Surveying and Soil Sampling Activities}

Soil samples will be collected for subsequent analysis and evaluation of potential site contamination. The site will also be surveyed on foot. The primary hazards associated with the sampling and surveying activities include contact with contaminated substances, as well as physical hazards including lifting, slips/trips/falls, temperature, and biological hazards. Control and prevention measures are presented in Attachment B2.

\subsection*{9.3 Chemical Hazards}

The chemical hazards associated with the collection of samples are related to inhalation, ingestion, and skin/eye exposure to potential site contaminants and chemicals.

The constituents of concern are explosive compounds and RCRA metals (see Section 1.1). Constituents of concern at the site are anticipated to be found at very low levels of environmental contamination or not detected and will not represent a significant occupational health threat to project personnel. Control will be achieved by ensuring that airborne particulates are not generated, following the procedure listed in Section 10.12. Additionally, proper sanitation (Section 10.3) and decontamination practices (Chapter 6.0) will be followed to avoid contact with potential hazardous constituents.

Other chemical hazards associated with the fieldwork exist.
- Diesel fuel, gasoline, motor oil, and hydraulic oil will be required for vehicle operation.
- Isobutylene will be used as the calibration gas for the PID.
- Decontamination will include the use of Alconox solution.

Table 9-1 lists the chemical, physical, and toxicological properties of the potential site contaminants. The table should not be considered an indicator of actual exposure potentials for any given individual or activity. This table will be reviewed at the initial Tailgate Safety Meeting to ensure personnel are familiar with the terms and hazards. The Material Safety Data Sheets (MSDS) for materials used on site are included in Attachment B3 to satisfy the requirements of the Hazard Communication Standard, OSHA 29 CFR 1910.1200. None of the preservative, decontamination, equipment related, or installation materials are expected to pose a significant health hazard.

\subsection*{10.0 General Control Procedures and Hazards}

\subsection*{10.1 General Practices}
- At least one copy of this plan must be at the project site in a location readily accessible to all personnel.
- All site personnel must use the buddy system (working in pairs or teams).
- Legible and understandable precautionary labels that comply with the hazard communication standard must be affixed prominently to tightly closed containers of contaminated waste, debris, and clothing.
- Removing contaminated soil from protective clothing or equipment by blowing, shaking, or any other means that disperses contaminants into the air is prohibited.
- Food, beverages, or tobacco products must not be present or consumed in the exclusion or contamination reduction zones. A support zone will be established away from the exclusion and contamination reduction zones where site workers can take breaks and where sanitation facilities are available.
- Cosmetics must not be applied within the exclusion or contamination reduction zones.
- Containers must be moved only with the proper equipment and must be secured to prevent dropping or loss of control during transport.
- Emergency equipment must be removed from storage areas and staged in readily accessible locations. This includes such items as the first-aid kit, fire extinguishers, and eyewash.
- Employees must inform their partners or fellow team members of nonvisible effects of exposure to toxic materials. The symptoms of such exposure may include the following:
- Headaches
- Dizziness
- Nausea
- Blurred vision
- Cramps
- Irritation of eyes, skin, or respiratory tract
- Visitors to the site must abide by the following guidelines:
- All visitors must be instructed to stay outside the contaminated zones (exclusion and contamination reduction zones) and remain within the clean zone (support area) during the extent of their stay.
- Visitors requesting to observe work in the exclusion zone must sign the Tailgate Safety Meeting form acknowledging that they have been briefed on the site hazards, don all appropriate PPE prior to entry, and must present the certifications described in Chapter 7.0.
- Visitor inspection of the contaminated area is at the discretion of the SS or SHSO.

\subsection*{10.2 Buddy System}

All on-site personnel must use the buddy system. Visual contact must be maintained between crew members at all times, and crew members must observe each other for signs of chemical exposure. Indication of adverse effects include, but are not limited to, the following:
- Changes in complexion and skin coloration
- Changes in coordination
- Changes in demeanor
- Excessive salivation and pupillary response
- Changes in speech pattern

Team members must also be aware of potential exposure to possible safety hazards, unsafe acts, or noncompliance with safety procedures.

Personnel must stay within the line of sight of another team member. If PPE or noise levels impair communications, prearranged hand signals must be used for communication (see Table 10-1).

\subsection*{10.3 Sanitation}

Breaks will be taken in a clean "support zone" away from the active work area. An adequate supply of potable water will be provided in this zone. Portable containers used to dispense drinking water must be clearly marked, not used for any other purpose, be capable of being tightly closed, and must be equipped with a tap dispenser. Employees must not drink directly from the container or put cups in the container. Disposable cups will be supplied. Labeled trash receptacles will be set up in the contamination and support zones. Trash collected from the exclusion and decontamination zones will be separated as investigation-derived waste. Trash collected in the support area will be disposed of as nonhazardous waste. Personnel will use onsite permanent sanitation and lavatory facilities. Personnel will wash their hands before eating or drinking to prevent exposure to possible hazardous constituents.

\subsection*{10.4 Spill Control Plan}

A spill control plan is not applicable to the Background Study and Geochemical Evaluation Work Plan. Liquids generated during the investigation will be rinsate, which are nonhazardous and will be disposed of within the site boundaries following completion of fieldwork.

\subsection*{10.5 Sunburn/Ultraviolet Exposure}

Overexposure to ultraviolet (UV) radiation may damage the skin and cause sunburn. Chronic exposure to sunlight, especially the UVB component, accelerates skin aging and increases the risk of skin cancer. Fair-skinned individuals are more prone to this effect. Sunburn increases an individual's susceptibility to other forms of heat stress. Any worker with sunburn must pay particular attention to the prevention of heat cramps, heat exhaustion, and/or heat stroke.

The following methods can be used to avoid overexposure to UV rays from the sun:
- Avoid exposure to the sun between 10:00 a.m. and 2:00 p.m. as UV rays are most intense during this period.
- Wear protective clothing (long sleeves, hat with protective brim, pants) that provide the most coverage, consistent with the job to be performed.
- Protect eyes during sun exposure with UV-absorbing sunglasses or tinted safety glasses. Ophthalmologists recommend lenses that have a UV absorption of at least 90 percent.
- Use a commercial sunscreen product.

The American Academy of Dermatology recommends daily use of sunscreen with a Sun Protection Factor of at least 15 and one that provides protection from UVA and UVB rays. Sunscreen should be applied 15 to 30 minutes before exposure to the sun and reapplied every two hours. (American Academy of Dermatology, 2006)

\subsection*{10.6 Heat Stress}

Wearing PPE may put site personnel at increased risk of heat stress, the effects of which range from transient heat fatigue to serious illness and death. Heat stress is caused by a number of interacting factors, including environmental conditions, clothing, workload, and individual characteristics of the worker. Because heat stress is one of the most common and potentially serious illnesses that occur during field operations, awareness of the symptoms and knowledge of preventive measures are vital.

Heat-stress monitoring should commence when personnel are wearing impermeable PPE and the ambient temperature exceeds 78 degrees Fahrenheit ( \({ }^{\circ} \mathrm{F}\) ). If impermeable garments are not worn, heat stress monitoring should commence at \(90^{\circ} \mathrm{F}\).

One or more of the following control measures can be used to help control heat stress and are mandatory if a site worker either has a heart rate (measured as early as possible during a rest period) exceeding 75 percent of the calculated maximum heart rate, which is 200 minus the person's age, or a temperature of \(99.6^{\circ} \mathrm{F}\) :
- Site personnel will be encouraged to drink plenty of water and electrolyte replacement fluids throughout the day.
- On-site drinking water will be kept cool (50 to \(\left.60^{\circ} \mathrm{F}\right)\).
- A work regimen that provides adequate rest periods for cooling down will be established, as required, but generally a one-third work shift reduction until sustained heart rate is below 75 percent of the calculated maximum heart rate and oral temperatures are kept at or below \(99.6{ }^{\circ} \mathrm{F}\). A worker will not be permitted to return to work if the sustained heart rate is above the 75-percent calculated maximum or the oral temperature exceeds \(100.4^{\circ} \mathrm{F}\).
- Cooling devices, such as vortex tubes or cooling vests, should be used when personnel must wear impermeable clothing in conditions of extreme heat.
- Employees should be instructed to monitor themselves and coworkers for signs of heat stress and to take additional breaks as necessary.
- A shaded rest area must be provided, and all breaks should take place in this area.
- Site personnel must not be assigned to other tasks during breaks.
- Employees must remove impermeable garments during rest periods. This includes white Tyvek-type garments.
- All personnel will be advised of the dangers and symptoms of heat stroke, heat exhaustion, and heat cramps.
- All employees must be informed of the importance of adequate rest, acclimation, and proper diet in the prevention of heat stress disorders.

Heat Cramps. Heat cramps are caused by heavy sweating and inadequate electrolyte replacement. Signs and symptoms include muscle spasms and pain in the hands, feet, and abdomen.

Heat Exhaustion. Heat exhaustion is caused by increased stress on various body organs. Signs and symptoms include pale, cool, moist skin; heavy sweating; dizziness; nausea; and fainting.

Heat Stroke. Heat stroke is the most serious form of heat stress and should always be treated as a medical emergency. The body's temperature regulation system fails, and the body temperature rapidly rises to critical levels. Immediate action must be taken to cool the body before serious
injury or death occurs. Signs and symptoms of heat stroke include red, hot, usually dry skin; lack of, or reduced, perspiration; nausea; dizziness and confusion; strong, rapid pulse; and coma.

\subsection*{10.7 Cold Stress}

Cold and/or wet environmental conditions can place workers at risk of a cold-related illness. Most cold-related worker fatalities have resulted from failure to escape low environmental air temperatures or from immersion in low-temperature water. Site workers should be protected from exposure to cold so that the deep core temperature does not fall below \(96.8^{\circ} \mathrm{F}\). Lower body temperatures will very likely result in reduced mental alertness, reduction in rational decisionmaking, or loss of consciousness with the threat of fatal consequences. To prevent such an occurrence, the following measures will be implemented:
- Site personnel must wear warm clothing, including mittens, hats, heavy socks, etc., when the air temperature is below \(45^{\circ} \mathrm{F}\). Protective clothing, such as Tyvek or other disposable coveralls, may be used to shield employees from the wind.
- When the air temperature is below \(35^{\circ} \mathrm{F}\), employees must wear clothing for warmth, in addition to chemical protective clothing, that will include the following:
- Insulated suits, such as whole body thermal underwear
- Wool socks or polypropylene socks to keep moisture off the feet
- Insulated gloves
- Insulated boots
- Insulated head cover such as a hard hat, winter liner, or knit cap
- Insulated jacket, with a wind- and water-resistant outer layer
- At air temperatures below \(35^{\circ} \mathrm{F}\), the following work practices must be implemented:
- If the clothing of a site worker might become wet on the job site, the outer layer of clothing must be water-impermeable.
- If an employee's underclothing becomes wet in any way, the worker must change into dry clothing immediately. If the clothing becomes wet from sweating (and the employee is not uncomfortable), the employee may finish the task at hand prior to changing into dry clothing.
- Site personnel must have a warm ( \(65^{\circ} \mathrm{F}\) or above) break area.
- Hot liquids must be provided in the break area. The intake of coffee and tea should be limited, due to their circulatory and diuretic effects.
- The buddy system must be practiced at all times on site. Any employee observed to be severely shivering must leave the work area immediately.
- Site personnel should dress in layers with thinner lighter clothing worn next to the body.
- Site personnel should avoid overdressing when going into warm areas or when performing strenuous activities.

Hypothermia. The single most important aspect of life-threatening hypothermia is a decrease in the deep core temperature of the body. Hypothermia can occur whenever temperatures are below \(45^{\circ} \mathrm{F}\), and is most common during wet, windy conditions, with temperatures between 30 and \(40^{\circ} \mathrm{F}\). The principal cause of hypothermia in these conditions is loss of insulating properties of clothing due to moisture, coupled with heat loss due to wind and evaporation of moisture on the skin.

Frostbite. The other illness associated with cold exposure is frostbite. Frostbite is the freezing of body tissue, which ranges from superficial freezing of surface skin layers to deep freezing of underlying tissue. Frostbite will only occur when ambient temperatures are below \(32{ }^{\circ} \mathrm{F}\). The risk of frostbite increases as the temperature drops and wind speed increases.

\subsection*{10.8 Biological Hazards}

Spiders, ticks, bees, wasps, ants, centipedes, scorpions, rattlesnakes, and rodents can be found throughout New Mexico. Project personnel should be aware of the presence of any animals and droppings and notify the SS or SHSO if encountered. To minimize the threat of bites, all on-site personnel must avoid actions that could increase the chance of encounters, such as turning over logs or rocks and walking through brush. This section describes potentially harmful creatures that may be found on the site and details the symptoms and treatments for bites.

Should a bite or sting occur, first aid should be given immediately. First aid for these bites includes applying ice to decrease pain and swelling, elevating the area (if possible) above the level of the heart, washing the area thoroughly with cool water and mild soap, and avoiding strenuous activity. Acetaminophen can be given for pain relief.

Brown Recluse Spider (Loxosceles spp.). The brown recluse spider is a small, nonhairy, yellowish to dark brown spider. These spiders are not aggressive and bite only when threatened, usually when pressed up against a person's skin. Brown recluse spider bites often go unnoticed initially, because they are painless or only induce minor burning and redness. Symptoms usually develop two to eight hours after a bite and include severe pain at bite site, itching, nausea, vomiting, chills, fever, and muscle and joint pain. Most commonly, the bite site will become firm and heal with little scaring over the next few days or weeks. In very severe cases, a red zone appears around the bite, then a crust forms and falls off. The wound blisters with necrosis of skin, grows deeper, and does not heal for several months. Seek immediate medical care for brown recluse bites.

Black Widow Spider (Latrodectus spp.). Only the female black widow spiders bite if threatened or disturbed. The female spider is usually black with a red hourglass shape on the underside of the abdomen. The first symptom of a bite is acute pain at the site of the bite. Symptoms vary in severity and start within 20 minutes to 1 hour after the bite. Local pain may be followed by severe muscle cramps, abdominal pain, weakness, and tremor. In severe cases, nausea, vomiting, fainting, dizziness, chest pain, and respiratory difficulties may follow. Abdominal pain may mimic such conditions as appendicitis or gallbladder problems. Chest pain may be mistaken for a heart attack. Blood pressure and heart rate may be elevated. Treatment for serious reactions to a black widow bite may require the use of narcotics and antivenin. If more than minor pain or whole-body symptoms occur, seek immediate medical care.

Ticks (class Arachnida). Ticks are small, blood-sucking external parasites that can transmit disease. Tick-borne diseases in the United States include Lyme disease, Rocky Mountain spotted fever, and tick paralysis. The most effective way to combat tick-borne diseases is to prevent ticks from attaching to the body by wearing long-sleeved shirts, long pants cinched at the ankle, and closed-toe shoes, and using insect repellant. Keeping away from vegetation also decreases the opportunity for tick attachment. The attachment bite is usually painless and can go unnoticed. Redness, itching, and swelling are commonly seen at the site of a tick bite. Once attached, ticks are difficult to remove but should be removed promptly. To remove a tick, use rounded tweezers, grasp the tick as close as possible to the skin surface, and then pull with slow steady pressure in a direction away from the skin. Take care not to crush or squeeze the body of the tick because fluid from the tick may contain infectious agents. After the tick is removed, wash the bite site with soap and water or an antiseptic.

Bees, Wasps, Ants (order Hymenoptera). In a person who is allergic, one sting can cause death from an anaphylactic reaction. Bee stings produce immediate pain and a red, swollen area about 0.5 inch across. In some people, the area swells to a diameter of 2 inches or more over the next three days. The stinger should be removed as quickly as possible. A fire ant sting usually produces immediate pain and a red, swollen area, which disappears within 45 minutes. A blister or rash may develop. An antihistamine/analgesic/corticosteroid cream can be used to decrease pain and inflammation. People who are allergic to stings should always carry a preloaded syringe of epinephrine.

Centipedes (class Chilopoda). Centipedes are arthropods with long bodies, many legs, and a pair of poison claws. Centipedes normally have a drab coloration combining shades of brown and red. They can range from one to nine inches in size and are found in soil and leaf litter, under stones, and inside logs. A centipede bite will cause local inflammation and pain, generally lasting a few hours. To treat a centipede bite, clean the site well with soap and water and apply a cool compress. If pain is severe or lasts longer than 12 hours, seek medical attention.

Scorpions (Hadrurus arizonensis, Vaejovis spinigerus, Centruroides sculpturatus). Scorpions range from 1 to 6 inches and have a tail tipped with a venomous stinger. They have four pairs of legs and two pincers and can be yellow to black. The first symptom of a bite is painful, tingling, burning sensation at the sting site. The reaction may appear mild; however, severe symptoms throughout the body may develop. These symptoms include numbness, difficulty swallowing, swollen tongue, blurred vision, roving eye movements, seizures, salivation, and difficulty breathing. Seek immediate medical care. All but the mildest of symptoms require hospital admission for 24 hours of observation.

Rattlesnakes (Crotalinae). Seven species of poisonous snakes are found in New Mexico. The primary way to distinguish a rattlesnake from other snakes is the presence of a rattle at the end of the snake body. The symptoms of a poisonous bite are pain, tingling, bruising/discoloration, and swelling at the area of the bite, numbness, nausea, weakness, lightheadedness, and difficulty breathing. Apply first aid and seek immediate medical attention. If unable to reach medical care within 30 minutes, a bandage, wrapped two to four inches above the bite, may help slow venom movement. The bandage should not cut off blood flow. A suction device may be placed over the bite to help draw venom out of the wound.

\subsection*{10.9 Noise}

Exposure to noise over the OSHA action level of 85 A-weighted decibels can cause temporary impairment of hearing; prolonged and repeated exposure can cause permanent damage to ears. The risk and severity of hearing loss increases with the intensity and duration of exposure to noise. In addition to damaging ears, noise can impair voice communication, thereby increasing the risk of on-site accidents.

All personnel must wear hearing protection with a Noise Reduction Rating of at least 20 during the operation of noise-producing machinery such as the drill rig. All personnel working in the vicinity of a drilling operation will be required to wear hearing protection. All site personnel who may be exposed to noise must also receive baseline and annual audiograms and training as to the causes and prevention of hearing loss.

\subsection*{10.10 Compressed Gas}

Compressed gases present numerous hazards, including fire/explosions, asphyxiation in poorly ventilated areas, and missile-type projectiles from punctured or damaged cylinders releasing pressure. Resulting injuries can include burns, contusions, bone fractures, and/or death.

Compressed gas cylinders shall be properly secured in at all times, with caps in place when not in use. Compressed gas cylinders being transported shall also be properly secured (e.g., strapped to the wall of the truck bed) to prevent damage or rupture. Calibration gas cylinders will be stored/secured in accordance with the manufacturer's instructions and/or in designated shipping
containers. Compressed gas cylinders shall either be stored at a sufficient distance from welding or cutting operations to prevent sparks, hot slag, or flame from reaching the cylinders or have heat-resistant shields. Shaw Health and Safety Procedure HS304, Compressed Gas Cylinders (Shaw, August 2002), will be maintained on site and provides additional guidance on the safe handling and use of compressed gas cylinders.

\subsection*{10.11 Lifting}

Back strain or injury may be prevented by using proper lifting techniques. The fundamentals of proper lifting are listed below.
- Consider the size, shape, and weight of the object to be lifted. Seek help if the object cannot be lifted safely alone or is more than 60 pounds. A worker should not carry a load that he or she cannot see around or over.
- The object should be free of dirt, grease, jagged edges, and rough or slippery surfaces.
- Gloves must be used and fingers kept away from points which could crush or pinch them, especially when putting an object down.
- Feet must be placed far enough apart for balance. The footing should be solid and the intended pathway should be clear.
- The load should be kept as low as possible, close to the body with the knees bent.
- To lift the load, grip firmly and lift with the legs, keeping the back as straight as possible.
- When putting an object down, the stance and position are identical to that for lifting, with the legs bent at the knees and the back as straight as possible while lowering the object.

\subsection*{10.12 Dust Control}

Although dust generation is not likely to occur during this project, field personnel will remain upwind of any intrusive or dust-creating activity. If dust becomes a problem, work will stop and not continue until appropriate dust control measures are employed. Air monitoring requirements for airborne contaminants are presented in Section 4.1.

This page left intentionally blank.

\subsection*{11.0 Emergency Procedures}

\subsection*{11.1 General}

The SS or SHSO will establish evacuation routes and assembly areas for each site. All personnel entering the site will be informed of these routes and assembly areas on a daily basis. If the site is large and the evacuation routes are not obvious, a site plan marking the evacuation routes will be posted at conspicuous locations.

Each site will be evaluated for the potential for fire, explosion, chemical release, or other catastrophic events. Unusual events, activities, chemicals, and conditions will be reported to the SS or SHSO immediately. All employees must report to their immediate supervisor or the SS or SHSO any near-miss incident, accident, injury, or illness.

All emergency assistance is obtained by calling 911. It is important to provide the exact location, such as the nearest building number and address or cross street. Call 911 before reporting to any other individual listed in the approved SSHP. Other emergency numbers are listed in Table 11-1.

\subsection*{11.2 Safety Signals}

Vehicle or portable air horns will be used for safety signals as follows:
- One long blast indicates emergency evacuation of the site.
- Two short blasts alerts personnel to clear the area around powered or moving equipment.
- Hand signals are described in Table 10-1.

\subsection*{11.3 Emergency Response}

This section describes procedures to be taken in cases of medical emergency, first aid situations, fires, and spills. If an incident occurs, the following general procedures will be implemented:
- The SS or SHSO will evaluate the incident and assess the need for assistance.
- The SS or SHSO will call for outside assistance as needed and act as the liaison between outside agencies and on-site personnel.
- The SS or SHSO will take appropriate measures to stabilize the incident scene.
- The SS or SHSO will ensure that the PM and HSM are notified promptly of the incident.

\subsection*{11.3.1 Medical Emergency}

All employee injuries must be promptly reported to the SS or SHSO who will ensure that the injured employee receives prompt first aid and medical attention, assist with decontamination of the injured worker, and initiate an investigation of the incident.

\subsection*{11.3.2 First-Aid Treatment}

If needed, first aid will be provided by a trained, on-site first aid provider. First-aid kits are kept in the contamination reduction zone. First aid for specific injuries and instances are provided in Section 10.8 for biological hazards, and for inhalation, ingestion, skin contact, and eye contact in Sections 11.3.2.1-11.3.2.3 below. The general procedure for first aid is:
- Survey the scene. Determine if it is safe to proceed. Protect yourself from exposure before attempting to rescue the victim.
- Do a primary survey of the victim. Check for airway obstruction, breathlessness, and pulse. Examine the eyes, mouth, nose, and skin of the victim for symptoms.
- Call 911. Give the location, telephone number, situation description, number of victims, victims' condition, and care being administered.
- Perform rescue breathing and CPR as necessary.
- Do a secondary survey of the victim. Check vital signs and perform a head-to-toe exam.
- Treat other conditions as necessary. If the victim can be moved, take the victim to a location away from the work area where emergency medical personnel can gain access.

If treatment beyond first aid is required, the injured person should be transported to the Rehoboth McKinley Christian Hospital shown in Figure 11-1. If the injured worker shows any sign of not being in a comfortable and stable condition for transport, then an ambulance/paramedic service should be summoned. If there is any doubt as to the injured worker's condition, it is best to let the local paramedic or ambulance service attendants examine and transport the worker. After the injuries have been addressed by medical professionals, the employee will report to the Presbyterian Occupational Medicine Clinic for examination.

\subsection*{11.3.2.1 First Aid-Inhalation, Ingestion}

Any employee experiencing symptoms of chemical overexposure as described in Table 9-1 will be removed from the work area and transported to the designated medical facility for examination and treatment. Consult Table 9-1 and call 911 and the Poison and Drug Information Center for advice. If available, refer to the MSDS for information on inducing vomiting, if
recommended. If unconscious, keep the victim on his or her side and clear the airway if vomiting occurs.

\subsection*{11.3.2.2 First Aid-Skin Contact}

Project personnel who have had skin contact with contaminants will, unless the contact is severe, proceed to the contamination reduction zone. Personnel will remove any contaminated clothing and wash the affected area with water for at least 15 minutes. The worker should be transported to the medical facility shown in Figure 11-1 if signs of skin reddening or irritation appear, or if they request a medical examination.

\subsection*{11.3.2.3 First Aid—Eye Contact}

Project personnel who have had eye contact with chemicals or who have experienced eye irritation while in the contaminated zone must immediately proceed to the eyewash station in the contamination reduction zone. Do not decontaminate prior to using the eyewash. Remove whatever protective clothing is necessary to use the eyewash. Flush the eye with clean, running water for at least 15 minutes. Arrange prompt transport to the designated medical facility.

\subsection*{11.3.3 Injury and IIIness Reporting}

All injuries and illnesses, however minor, will be reported to the SS or SHSO immediately. The SS or SHSO must conduct an accident investigation as soon as emergency conditions no longer exist and first aid and/or medical treatment has been ensured. The accident and injury reports must be completed and submitted to the PM and HSM within 24 hours after the incident, as specified in Shaw Health and Safety Procedure HS020, Accident Prevention Program: Reporting, Investigation, and Review (Shaw, May 2003).

\subsection*{11.3.4 Fire}

In the case of a fire on the site, the SS or SHSO will assess the situation and direct fire-fighting activities. The SS or SHSO will ensure that the client representative (as appropriate) is immediately notified of any fires. Site personnel, if trained, will attempt to extinguish the fire with available extinguishers, if safe to do so. In the event of a fire that site personnel are unable to safely extinguish, the local fire department will be summoned via 911. The SS or SHSO will notify FWDA staff regarding fires successfully extinguished.

\subsection*{11.3.5 Spill}

If a spill occurs, the following procedures will be followed:
- Notify the SS or SHSO immediately.
- Evacuate immediate area of spill.
- If a small spill, don chemical resistant gloves and absorb or otherwise clean up the spill and containerize the material, absorbent, and affected soils. In case of a large spill, contact the USACE and FWDA staff.

The SS or SHSO has the authority to commit resources as needed to contain and control released material and to prevent its spread to off-site areas.

\subsection*{11.4 Emergency Information}

Local public response agencies will be reviewed in the daily Tailgate Safety Meeting. Emergency contact information is listed in Table 11-1.

\subsection*{12.0 Site Safety and Health Plan Summary}

This section summarizes the work, training requirements, site characterization and analysis, and required PPE. This summary does not replace the complete SSHP, which must be available on site and must be read and acknowledged by all site personnel. This summary is only intended to be used as a guide for preparing site-specific training and as a supplement to the SSHP.

\subsection*{12.1 Project Summary}

Project Name: Background Study and Geochemical Evaluation Fort Wingate Depot Activity
Project Number: 133366.10

Date:
November 2008
Site: Fort Wingate, New Mexico
Prepared By: Patrick Ostrye/Michael Goodrich
Reviewed and Approved By: Michael Goodrich, PM and
James Vigerust, Certified Safety Professional

Objective. This project will conduct a background study and geochemical evaluation and fill data gaps by supplemental sampling and analyses.

Personnel Training Requirements. Table 12-1 outlines the required training for each personnel level.

\subsection*{12.2 Site Characterization and Analysis}

The following provides the general site characterization:
- Location of site: Fort Wingate Military Reservation, Gallup, New Mexico
- Duration of planned activity: 5 days
- Site topography: uneven, canyons and arroyos, steep and gentle grades
- Pathways for hazardous substance dispersion: soil and groundwater

The following are possible hazards during this project:
- Physical: lifting, sharp objects, slips/trips/falls, temperature
- Biological: contact dermatitis, insect/animal bites
- Chemical: explosive compounds and RCRA metals
- Mechanical: equipment failure, compressed gas cylinders, utilities, noise
- Fire: low potential

\subsection*{12.3 Personal Protective Equipment Selection Matrix}

Table 12-2 presents the PPE selection matrix for the project.

\subsection*{13.0 References}

American Academy of Dermatology, 2006, "Skin Cancer Prevention," <http://www.skincarephysicians.com/skincancernet/prevention.html> accessed 5/23/2008.

EPA, see U.S. Environmental Protection Agency.
Forsberg, K., and S.Z. Mansdorf, 1997, Quick Selection Guide to Chemical Protective Clothing, 3rd ed., Wiley Publishers, Indianapolis, Indiana.

National Institute for Occupational Safety and Health (NIOSH), Occupational Safety and Health Administration, U.S. Coast Guard, and U.S. Environmental Protection Agency, October 1985, Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activity, 85-115, U.S. Department of Health and Human Services, Public Health Services, Centers for Disease Control, and National Institute for Occupational Safety and Health, Washington, D.C.

National Institute for Occupational Safety and Health (NIOSH), September 2005, Pocket Guide to Chemical Hazards, NIOSH Publication No. 2005-149, U.S. Department of Health and Human Services, Public Health Services, Centers for Disease Control, and National Institute for Occupational Safety and Health, Washington, D.C.

NIOSH, see National Institute for Occupational Safety and Health.
Shaw, see Shaw Environmental, Inc.
Shaw Environmental, Inc. (Shaw), August 2002, HS304, Compressed Gas Cylinders, Shaw Environmental, Inc., Baton Rouge, Louisiana, <http://shawnet3.shawgrp.com/sites/benecopp/ Shaw\%20Beneco\%20\%20Health\%20and\%20Safety\%20\%20Policies\%20and\%20proce/HS304 \%20Compressed\%20Gas\%20Cylinders.pdf> accessed 5/26/2008.

Shaw Environmental, Inc. (Shaw), May 2003, HSO20, Accident Prevention Program: Reporting, Investigation, and Review, Shaw Environmental, Inc., Baton Rouge, Louisiana, <http://shawnet3.shawgrp.com/sites/handspps/Policies\%20and\%20Procedures\%20\%20Health\% 20and\%20Safety/HS020\%20.pdf> accessed 5/26/2008.

Shaw Environmental, Inc. (Shaw), 2008, EHS Policies and Procedures Manual, Shaw Environmental, Inc., Baton Rouge, Louisiana, <http://shawnet3.shawgrp.com/sites/ PP_HS_Corporate/default.aspx> accessed 5/26/2008.
U.S. Environmental Protection Agency (EPA), June 1992, Standard Operating Safety Guides, OSWER Directive 9285.1-03, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

This page left intentionally blank.

Figures


Figure 11-1
Rehoboth McKinley Christian Hospital Route Map
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico

Tables

Table 4-1
PID Use
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|}
\hline Instrument & Surveillance Frequency & Monitoring Location and Tasks & Calibration \\
\hline PID (Lamp 11.7 eV ) or FID & If surveillance is deemed necessary, then the frequency will be determined in the field by the SS or SHSO & At sampling locations or borehole opening, downwind, and in workers' breathing zone & Factory calibration per manufacturer's recommendation; field calibration/function test at start/end of work shift per manufacturer's directions \\
\hline \multicolumn{4}{|l|}{eV = Electron volt.} \\
\hline \multicolumn{4}{|l|}{FID = Flame ionization detector.} \\
\hline \multicolumn{4}{|l|}{PID = Photoionization detector.} \\
\hline \multicolumn{4}{|l|}{SHSO = Site Health and Safety Officer.} \\
\hline \multicolumn{4}{|l|}{SS = Site Supervisor.} \\
\hline
\end{tabular}

Table 4-2
Real-Time Air Monitoring Action Levels
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{c|l|l}
\hline Parameter & \multicolumn{1}{|c|}{ Reading } & \multicolumn{1}{c}{ Action } \\
\hline \multirow{2}{*}{ Total Hydrocarbons } & 0 PID/FID units to \(<5\) PID/FID ppm & Normal operations (Level D PPE, Modified Level D PPE) \\
\cline { 2 - 3 } & \(>5\) PID ppm \(^{\text {a }}\) & Stop work, leave area, and contact HSM \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Sustained in the breathing zone for 15 minutes.
FID = Flame ionization detector.
HSM = Health and Safety Manager.
\(\mu \mathrm{g} / \mathrm{m}^{3} \quad=\) Microgram(s) per cubic meter.
PID = Photoionization detector.
PPE = Personal protective equipment.
ppm = Parts per million.
}

Table 9-1
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & Physical/ Chemical Properties & Exposure Route & Symptoms of Exposure & \multicolumn{2}{|r|}{Treatment} & Exposure Limits & \begin{tabular}{l}
IDLH \\
Concentration
\end{tabular} \\
\hline Alconox (sodium dodecylbenzenesulfonate, sodium carbonate, tetrasodium pyrophosphate, sodium phosphate) [see specific compound MSDS] & \begin{tabular}{l}
Molecular weight, boiling point: NA \\
Solubility: 10-100\% \\
Vapor pressure: NA \\
Specific gravity: 0.85-1.10 \\
Flash point, upper explosive limit, lower explosive limit: NA \\
Nonflammable, almost odorless, white granular powder
\end{tabular} & \begin{tabular}{l}
Inhalation \\
Ingestion Skin/eye contact
\end{tabular} & Inhalation may cause irritation; ingestion may cause vomiting, diarrhea, abdominal pain, gastric distress & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: \\
Ingestion:
\end{tabular} & Irrigate immediately Soap wash promptly Seek fresh air Drink water and seek medical attention & Vary by ingredient & Varies by ingredient \\
\hline Arsenic (As), Inorganic [7440-38-2] (metal) [2002-1 & \begin{tabular}{l}
IP: NA \\
MN: 74.9 \\
BP: Sublimes \\
FZP: \(1135^{\circ} \mathrm{F}\) (Sublimes) \\
SOL: Insoluble \\
VP: 0 mm Hg \\
SG: 5.73 (metal) \\
FLP: NA \\
LFL: NA \\
UEL: NA \\
FLAMM: Metal: Noncombustible Solid
\end{tabular} & \begin{tabular}{l}
Inh \\
Abs \\
Ing \\
Con
\end{tabular} & Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, respiratory irritation, hyperpigmentation of skin, potential occupational carcinogen & \begin{tabular}{l}
Eye: \\
Skin: \\
Breath: \\
Swallow.
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Soap wash \\
promptly \\
Respiratory \\
support \\
Immediate \\
medical attention
\end{tabular} & & \begin{tabular}{l}
Ca \\
\(\left[5 \mathrm{mg} / \mathrm{m}^{3}\right.\) \\
(as As)]
\end{tabular} \\
\hline Barium chloride (as Barium [Ba]) [10361-37-2] \(\mathrm{BaCl}_{2}\) [7440-39-3] Ba [2002-1] & \begin{tabular}{l}
IP: ? \\
BP: \(2840^{\circ} \mathrm{F}\) \\
FZP: \(1765^{\circ} \mathrm{F}\) \\
VP: Low \\
SG: 3.86 \\
FLP: NA \\
LEL: NA \\
UEL: NA \\
FLAMM: \\
Noncombustible Solid
\end{tabular} & \begin{tabular}{l}
Inh \\
Ing Con
\end{tabular} & Irritation eyes, skin, upper respiratory system; skin burns; gastroenteritis; muscle spasm; slow pulse, extra heart contractions; low potassium in the blood. & \begin{tabular}{l}
Eye: \\
Skin: \\
Breath: \\
Swallow.
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Water flush \\
immediately \\
Respiratory \\
support \\
Immediate \\
medical attention
\end{tabular} & & \[
\begin{aligned}
& 50 \mathrm{mg} / \mathrm{m}^{3} \\
& \text { (as Ba) }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & Physical/ Chemical Properties & Exposure Route & Symptoms of Exposure & Treatment & Exposure Limits & \begin{tabular}{l}
IDUH \\
Concentration
\end{tabular} \\
\hline \begin{tabular}{l}
Cadmium \\
[7440-43-9] (metal) \\
(2002-1)
\end{tabular} & \begin{tabular}{l}
IP: NA \\
MN. 112.4 \\
BP: \(1409^{\circ} \mathrm{F}\) \\
FZP: \(610^{\circ} \mathrm{F}\) \\
SOL: Insoluble \\
VP: 0 mmHg \\
SG: 8.65 \\
FLP: NA \\
LEL: NA \\
UEL: NA \\
FLAMM: Metal: Noncombustible Solid
\end{tabular} & \[
\begin{aligned}
& \text { Inh } \\
& \text { Ing }
\end{aligned}
\] & Pulmonary edema, dyspnea (breathing difficulty), cough, chest tightness, substernal (occurring beneath the sternum) pain; headache; chills, muscle aches; nausea, vomiting, diarrhea; anosmia (loss of the sense of smell), emphysema, proteinuria, mild anemia; potential occupational carcinogen & \begin{tabular}{ll} 
Eye: & \begin{tabular}{l} 
Irrigate \\
immediately
\end{tabular} \\
Skin: & \begin{tabular}{l} 
Soap wash \\
\\
promptly
\end{tabular} \\
Breath: & \begin{tabular}{l} 
Respiratory \\
support
\end{tabular} \\
Swallow. & \begin{tabular}{l} 
Immediate \\
\\
\\
\\
medical attention
\end{tabular}
\end{tabular} & & \[
\begin{aligned}
& \mathrm{Ca} \\
& {\left[9 \mathrm{mg} / \mathrm{m}^{3} \text { (as Cd) }\right]}
\end{aligned}
\] \\
\hline ```
Chromium(III) compounds
(as Cr)
[16065-83-1] C+3
(2000-2)
``` & Properties vary depending upon the specific compound. & Inh Abs Con & Irritation eyes; sensitization dermatitis & \begin{tabular}{ll} 
Eye: & Wash \\
immediately \\
Skin: & Wash promptly \\
Breath: & \begin{tabular}{l}
Respiratory \\
support
\end{tabular} \\
Swallow. & \begin{tabular}{l}
Immediate \\
\\
\\
medical attention
\end{tabular}
\end{tabular} & & \(25 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline Diesel fuel [68334-30-5] & \begin{tabular}{l}
Molecular weight: NA \\
Boiling point: \(30-806^{\circ} \mathrm{F}\) \\
Freezing point: \(-51^{\circ} \mathrm{F}\) \\
Solubility: <1\% \\
Vapor pressure: < 0.5 pounds per \\
square inch \\
Specific gravity: 0.78-0.955 \\
Flash point: \(129^{\circ} \mathrm{F}\) \\
Upper explosive limit: 10\% \\
Lower explosive limit: 0.3\% \\
Color varies: clear, yellow, red, blue, or blue-green liquid. Petroleum odor.
\end{tabular} & Inhalation Ingestion Skinveye contact & Irritates eyes, skin, respiratory tract; dizziness; headache; nausea; chemical pneumonitis (from aspiration of liquid); contact dermatitis; eye redness, pain; kidney \& lung damage; suspected carcinogen & \begin{tabular}{ll}
Eye: & \begin{tabular}{l}
Irrigate \\
immediately
\end{tabular} \\
Skin: & \begin{tabular}{l}
Soap wash \\
immediately
\end{tabular} \\
Inhalation: & \begin{tabular}{l}
Respiratory \\
support
\end{tabular} \\
Ingestion: & Immediate \\
& \begin{tabular}{l}
medical \\
attention
\end{tabular}
\end{tabular} & TWA 100 ppm \({ }^{\text {a }}\) & NA \\
\hline
\end{tabular}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & Physical/ Chemical Properties & Exposure Route & Symptoms of Exposure & \multicolumn{2}{|r|}{Treatment} & Exposure Limits & IDUH Concentration \\
\hline \begin{tabular}{l}
Gasoline \\
[8006-61-9]
\end{tabular} & \begin{tabular}{l}
Molecular weight: 110 \\
Boiling point: \(102^{\circ} \mathrm{F}\) \\
Freezing point: NA \\
Solubility: Insoluble \\
Vapor pressure: \(38-300 \mathrm{~mm} \mathrm{Hg}\) \\
Specific gravity: 0.72-0.76 \\
Flash point: \(-45^{\circ} \mathrm{F}\) \\
Upper explosive limit: 7.6\% \\
Lower explosive limit: 1.4\% \\
Clear liquid, characteristic odor
\end{tabular} & \begin{tabular}{l}
Inhalation \\
Ingestion Skirleye contact Skin absorption
\end{tabular} & Irritates eyes, skin, mucous membrane; dermatitis; headache; lassitude; blurred vision; dizziness; slurred speech; confusion; convulsions; chemical pneumonitis (aspiration liquic); possible liver \& kidney damage & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: \\
Ingestion:
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Soap flush \\
immediately \\
Respiratory \\
support \\
Immediate \\
medical \\
attention
\end{tabular} & Carcinogen \({ }^{\text {b }}\) None \({ }^{\text {c }}\) & Carcinogen \\
\hline Hydraulic oil [NA] & \begin{tabular}{l}
Molecular weight: NA \\
Boiling point: \(>600^{\circ} \mathrm{F}\) \\
Melting point: NA \\
Solubility: Negligible \\
Vapor pressure: \(<0.1 \mathrm{mmHg}\) \\
Specific gravity: NA \\
Fash point: \(410^{\circ} \mathrm{F}\) \\
Upper explosive limit:, lower explosive limit: NA \\
Amber-colored liquid, mild odor
\end{tabular} & Ingestion Skiveye contact & Repeated/prolonged exposure may irritate skin, eyes, respiratory tract & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: Ingestion:
\end{tabular} & Irrigate immediately Soap wash promptly Fresh air Immediate medical attention & TWA \(5 \mathrm{mg} / \mathrm{m}^{3 \mathrm{a}, \mathrm{c}}\) ST \(10 \mathrm{mg} / \mathrm{m}^{3 \mathrm{a}}\) & NA \\
\hline \begin{tabular}{l}
Isobutylene \\
[15-11-7]
\end{tabular} & \begin{tabular}{l}
Molecular weight: NA \\
Boiling point: \(19.5^{\circ} \mathrm{F}\) \\
Freezing point: \(-220.6^{\circ} \mathrm{F}\) \\
Solubility: Insoluble \\
Vapor pressure: 39 pounds per square \\
inch \\
Specific gravity: NA \\
Flash point: \(-105^{\circ} \mathrm{F}\) \\
Upper explosive limit: \(9.6 \%\) \\
Lower explosive limit: 1.8\% \\
Colorless gas, unpleasant odor similar to that of burning coal
\end{tabular} & Inhalation Skin/eye contact & Irritates eyes, mucous membrane, respiratory system; inhalation of high concentrations may cause dizziness, disorientation, incoordination, narcosis, nausea & Inhalation: & Immediate medical attention, respiratory support & NA & LC \({ }_{50} 620 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline
\end{tabular}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & Physical/ Chemical Properties & Exposure Route & Symptoms of Exposure & \multicolumn{2}{|r|}{Treatment} & Exposure Limits & IDUH Concentration \\
\hline \begin{tabular}{l}
Mercury \\
[7439-97-6] (metal) \\
(2002-1)
\end{tabular} & \begin{tabular}{l}
IP:? \\
MN: 200.6 \\
BP: \(674{ }^{\circ} \mathrm{F}\) \\
FZP: - \(38^{\circ} \mathrm{F}\) \\
SOL: Insoluble \\
VP: 0.0012 mm Hg \\
SG: 13.6 (metal) \\
FLP: Not applicable. \\
LEL: NA \\
UEL: NA \\
FLAMM: Metal: Noncombustible Liquid
\end{tabular} & \begin{tabular}{l}
Inh \\
Abs \\
Ing Con
\end{tabular} & Iritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis pneumonitis; tremor, insomnia, irritability, indecision, headache, fatigue, weakness; stomatitis (inflammation of the mouth mucous membranes), salivation; gastrointestinal disturbance, anorexia (loss of appetite), weight loss; proteinuria (protein in the urine) & \begin{tabular}{l}
Eye: \\
Skin: \\
Breath: \\
Swallow.
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Wash with soap \\
and water \\
Respiratory \\
support \\
Immediate \\
medical attention
\end{tabular} & \begin{tabular}{l}
\(c 0.1 \mathrm{mg} / \mathrm{m}^{3}\) \\
\(C 0.1 \mathrm{mg} / \mathrm{m}^{3}\) \\
Skin
\end{tabular} & \(10 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline Motor Oil [NA] & \begin{tabular}{l}
Molecular weight: NA \\
Boiling point: \(>600^{\circ} \mathrm{F}\) \\
Melting point: NA \\
Solubility: Insoluble \\
Vapor pressure: \(<0.01 \mathrm{~mm} \mathrm{Hg}\) \\
Flash point: \(392^{\circ} \mathrm{F}\) \\
Upper explosive limit, lower explosive \\
limit: NA \\
Amber liquid
\end{tabular} & \begin{tabular}{l}
Inhalation \\
Ingestion Skin/eye contact Skin absorption
\end{tabular} & Prolonged/repeated inhalation: respiratory irritation & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: \\
Ingestion:
\end{tabular} & \begin{tabular}{l}
Irrigate \\
Immediately \\
Soap wash \\
At excessive \\
levels, seek \\
fresh air and \\
medical \\
attention \\
Seek medical advice
\end{tabular} & \begin{tabular}{l}
TWA \(5 \mathrm{mg} / \mathrm{m}^{3 \mathrm{a}, \mathrm{c}}\) \\
ST \(10 \mathrm{mg} / \mathrm{m}^{3 a}\)
\end{tabular} & NA \\
\hline
\end{tabular}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & Physical/ Chemical Properties & Exposure Route & Symptoms of Exposure & \multicolumn{2}{|r|}{Treatment} & Exposure Limits & IDLH Concentration \\
\hline \begin{tabular}{l}
Selenium \\
[7782-49-2] \\
[2002-1]
\end{tabular} & \begin{tabular}{l}
IP: NA \\
MN: 79.0 \\
BP: \(1265^{\circ} \mathrm{F}\) \\
FZP: \(392^{\circ} \mathrm{F}\) \\
SOL: Insoluble \\
VP: 0 mmHg \\
SG: 4.28 \\
FLP: NA \\
LEL: NA \\
UEL: NA \\
FLAMM: Combustible Solid
\end{tabular} & \begin{tabular}{l}
Inh \\
Con Ing
\end{tabular} & Irritation eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breathing, gastrointestinal disturbance; dermatitis; eye, skin burns; in animals: anemia (low red blood cells); liver necrosis, cirrhosis (liver damage); kidney, spleen damage & \begin{tabular}{l}
Eye: \\
Skin: \\
Breath: \\
Swallow.
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Soap wash \\
immediately \\
Respiratory support Immediate medical attention
\end{tabular} & & \(1 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline \[
\begin{aligned}
& \text { Silver } \\
& {[7440-22-4] \text { (metal) }} \\
& (2002-1)
\end{aligned}
\] & \begin{tabular}{l}
IP: NA \\
MN. 107.9 \\
BP: \(3632^{\circ} \mathrm{F}\) \\
FZP: \(1761^{\circ} \mathrm{F}\) \\
SOL: Insoluble \\
VP: 0 mmHg \\
SG: 10.49 (metal) \\
FLP: Not applicable. \\
LE: NA \\
UEL: NA \\
FLAMM: Metal: Noncombustible Solid
\end{tabular} & \begin{tabular}{l}
Inh \\
Ing \\
Con
\end{tabular} & Blue-gray eyes, nasal septum, throat, skin; irritation, ulceration skin; gastrointestinal disturbance & \begin{tabular}{l}
Eye: \\
Skin: Breath: \\
Swallow.
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Water flush \\
Respiratory support Immediate medical attention
\end{tabular} & & \(10 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline SVOC (e.g. phenol, naphthalene) [see specific compound \&/or product specific MSDSs] & Semi-volatile, vary by compound & Inhalation Ingestion Skinveye contact Skin absorption & Irritates eyes, nose, throat; respiratory sensitization; coughing; pulmonary secretion; chest pain; dyspnea; asthma; anorexia; weight loss; lassitude; muscle ache; dark urine; cyanosis; liver \& kidney damage; skin burns; dermatitis; tremor; convulsions; twitching & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: \\
Ingestion:
\end{tabular} & \begin{tabular}{l}
Irrigate \\
immediately \\
Soap wash \\
immediately \\
Respiratory \\
support \\
Immediate \\
medical \\
attention
\end{tabular} & Vary by compound & Varies by compound \\
\hline
\end{tabular}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance [CAS number] & \begin{tabular}{l}
Physical/ \\
Chemical Properties
\end{tabular} & Exposure Route & Symptoms of Exposure & \multicolumn{2}{|r|}{Treatment} & Exposure Limits & \begin{tabular}{l}
IDLH \\
Concentration
\end{tabular} \\
\hline \begin{tabular}{l}
VOC (e.g. acetone, carbon tetrachloride, benzene, freon, trichloroethane, xylene, tetrachlorethylene, toluene) \\
[see specific compound \&/or product specific MSDSs]
\end{tabular} & Volatile, vary by compound & Inhalation Ingestion Skinveye contact Skin absorption & Irritates eyes, skin, respiratory system; nausea; vomiting; dermatitis; cardiac arrhythmias; paresthesia; dizziness; lassitude; drowsiness; headache; visual disturbance; confusion; tremor; convulsions; liver \& kidney injury; pulmonary edema; asphyxia & \begin{tabular}{l}
Eye: \\
Skin: \\
Inhalation: \\
Ingestion:
\end{tabular} & Irrigate immediately Soap wash immediately Respiratory support Immediate medical attention & Vary by compound & Varies by compound \\
\hline \[
\begin{aligned}
& \text { Zinc (as Zinc oxide dust) } \\
& \text { [7440-66-6] Zn } \\
& {[1314-13-2] \text { ZnO }} \\
& (2000-4)
\end{aligned}
\] & \begin{tabular}{l}
IP: ? \\
MN: 81.4 \\
BP: ? \\
FZP: \(3587^{\circ} \mathrm{F}\) \\
SOL: 0.0004 \% \\
VP: 0 mm Hg \\
SG: 5.61 \\
FLP: NA \\
LEL: NA \\
UEL: NA \\
FLAMM: Noncombustible Solid \\
INCOMP: Chlorinated rubber (at \\
\(419^{\circ} \mathrm{F}\)), water \\
NOTE : Slowly decomposed by water.
\end{tabular} & Inh & Metal fume fever: chills, muscle ache, nausea, fever, dry throat, cough; weakness, lassitude (weakness, exhaustion); metallic taste; headache; blurred vision; low back pain; vomiting; fatigue; malaise (vague feeling of discomfort); tightness chest; dyspnea (breathing difficulty), rales, decreased pulmonary function & Breath: & Respiratory support & \[
\begin{aligned}
& \mathrm{C} 15 \mathrm{mg} / \mathrm{m}^{3} \text { * } \\
& \text { * } 15 \mathrm{~min}
\end{aligned}
\] & \(500 \mathrm{mg} / \mathrm{m}^{3}\) \\
\hline
\end{tabular}

\footnotetext{
Notes:
IDLH represents the maximum concentration from which (according to National Institute for Occupational Safety and Health.), in the event of respirator failure, one could escape within 30 minutes without a respirator and without experiencing any escape-impairing or irreversible health effects.
The TWA concentration for a normal work day (usually 8 or 10 hours) and a 40-hour work week, to which nearly all workers may be repeatedly exposed, day after day without adverse effect.
\({ }^{\text {a }}\) American Conference of Governmental Industrial Hygiene threshold limit value.
\({ }^{\text {b }}\) National Institute for Occupational Safety and Health recommended exposure limit.
\({ }^{\text {concupational Safety and Health Administration permissible exposure limit (29 CFR 1910.1028, Table Z). }}\)
}

Table 9-1 (Continued)
Chemical Exposure and Hazard Information
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico

Table 10-1
Hand Signals to be Used for Communication
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{l|l}
\hline \multicolumn{1}{c|}{ Hand Position or Action } & \multicolumn{1}{c}{ Message Communicated } \\
\hline Either hand on head & \begin{tabular}{l}
"Are you OK?" or "Yes, I'm OK." or "Do you understand?" or \\
"Yes, I understand."
\end{tabular} \\
\hline Either hand or both hands over head waving back and forth & "I'm in trouble." or "I need help." \\
\hline Either hand making choking motion on throat & "I'm out of air." or "I'm having trouble breathing." \\
\hline Thumbs up & "Yes." or "OK." or "Successful." \\
\hline Thumbs down & "No." or "Not successful." or "Disagree." \\
\hline
\end{tabular}

Table 11-1
Emergency Contacts
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|}
\hline Agency & Telephone Number \\
\hline Ambulance, Hospital Emergency Care, Fire, Police, Explosives Control & 911 \\
\hline New Mexico Poison and Drug Information Center & 800-222-1222 \\
\hline Chemical Transportation Emergency Center (CHEMTREC) & 800-424-9300 \\
\hline Toxic Substances Control Act Hotline & 202-554-1404 \\
\hline Centers for Disease Control & 404-498-1515 \\
\hline National Response Center & 800-424-8802 \\
\hline National Pesticide Information Center & 800-858-7378 \\
\hline Resource Conservation and Recovery Act Hotline & 800-424-9346 \\
\hline Bureau of Explosives & 903-223-8430 \\
\hline \begin{tabular}{l}
Other Phone Numbers: \\
Project Manager (Michael Goodrich) \\
Site Supervisor (Dale Flores) \\
Site Safety and Health Officer (TBD) \\
Health \& Safety Manager (James Vigerust) \\
U.S. Army Corps of Engineers Representative (David Henry)
\end{tabular} & \[
\begin{aligned}
& 505-262-8908 \\
& 505-262-8908 \\
& \text { TBD } \\
& \text { 505-262-8800 or } 505-410-4995 \\
& 505-342-3139
\end{aligned}
\] \\
\hline Occupational Physician & \begin{tabular}{l}
Jerry Berke M.D. \\
Shaw Medical Director
800-350-4511
\end{tabular} \\
\hline \begin{tabular}{l}
Emergencies: \\
Hospital: Rehoboth McKinley Christian Hospital 1900 Red Rock Drive Gallup, New Mexico (Directions provided in Figure 11-1)
\end{tabular} & 505-863-7000 \\
\hline \begin{tabular}{l}
Follow-Up Care: \\
Presbyterian Occupational Medicine Clinic 5901 Harper Drive NE \\
Albuquerque, NM
\end{tabular} & 505-823-8450 \\
\hline
\end{tabular}

Table 12-1
Training Requirements
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{|c|c|c|c|}
\hline Responsibility & 40-Hour HAZWOPER & HAZWOPER Supervisor & Other (Specify) \\
\hline Field Team Leader & X & X & \\
\hline Health and Safety Manager & X & X & CPR/First-Aid Training \\
\hline Site Supervisor/Site Health and Safety Officer & X & X & CPR/First-Aid Training \\
\hline Environmental Technician & X & & CPR/First-Aid Training \\
\hline Driller & X & & \\
\hline Laborer & X & & \\
\hline Sampler & X & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
CPR = Cardiopulmonary resuscitation. \\
HAZWOPER = Hazardous Waste Operations.
\end{tabular}} \\
\hline
\end{tabular}

Table 12-2
Personal Protective Equipment Selection Matrix
Background Study and Geochemical Evaluation
Fort Wingate Depot Activity

\section*{Gallup, New Mexico}
\begin{tabular}{l|l|l|l}
\hline Task & \multicolumn{1}{|c|}{ Description } & Level of Protection & \multicolumn{1}{c}{ Description } \\
\hline 1 & \begin{tabular}{l}
Mobilization/ \\
Demobilization
\end{tabular} & Level D & \begin{tabular}{l}
Work clothing as prescribed by weather, pants; ANSI \\
approved steel-toed work boots; ANSI approved safety \\
glasses
\end{tabular} \\
\hline 2 \& 3 & Well Surveying & Level D & \begin{tabular}{l}
Work clothing as prescribed by weather, pants; ANSI \\
approved steel-toed work boots; ANSI approved safety \\
glasses
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Soil Sample \\
Collection
\end{tabular} & Modified Level D & \begin{tabular}{l}
Work clothing as prescribed by weather, pants; ANSI \\
approved steel-toed work boots; ANSI approved safety \\
glasses; disposable gloves
\end{tabular} \\
\hline 5 & \begin{tabular}{l}
Equipment \\
Decontamination
\end{tabular} & Modified Level D & \begin{tabular}{l}
Work clothing as prescribed by weather, pants; ANSI \\
approved steel-toed work boots; ANSI approved safety \\
glasses; disposable gloves (during high pressure washing: \\
ANSI approved hard hat; hearing protectio; leather work \\
gloves; poly-coated Tyvek \({ }^{\oplus}\) coverall, full-face shield)
\end{tabular} \\
\hline
\end{tabular}

This page left intentionally blank.

\section*{Attachments}

\section*{Attachment B1 \\ SSHP Declaration}

\section*{Site Safety and Health Plan Declaration/Acknowledgement Form}

\section*{Background Study and Geochemical Evaluation \\ Fort Wingate Depot Activity, Fort Wingate, New Mexico}

I have reviewed, understand, and agree to follow the Site Safety and Health Plan for the applicable U.S. Army Corps of Engineers activities. I also understand that there are additional safety and health requirements, which are presented in the attached Job Hazard Analyses. I agree to abide by the requirements of the Job Hazard Analyses for the work that I perform.
\begin{tabular}{l|l|l|l}
\hline Printed Name & Signature & Company & Date \\
\hline & & & \\
\hline
\end{tabular}

\section*{Attachment B2}

Job Hazard Analysis
\begin{tabular}{l|l|l|l}
\hline \multicolumn{4}{c}{ Job Hazard Analysis for Site Mobilization/Demobilization (Task 1) } \\
\hline \(\begin{array}{l}\text { Potential } \\
\text { Hazards }\end{array}\) & \multicolumn{3}{c}{ Critical Safety Practices }
\end{tabular}\(]\)\begin{tabular}{l}
PPE
\end{tabular}

\section*{Job Hazard Analysis for Well Surveying/Grid Surveying for Sample Collection Multi-Incremental (MI) Surface Soil Sampling Collection}
(Tasks 2, 3, \& 4)
\begin{tabular}{|c|c|c|}
\hline Potential Hazards & Hazard Control Measures & PPE \\
\hline Contact Dermatitis/ Poison Ivy & \begin{tabular}{l}
- Wear sleeved shirts and long pants \\
- Identify and review poisonous plants with workers \\
- If poisonous plants are present: \\
- Avoid unnecessary clearing of plant/vegetation areas \\
- Cover vegetation with plastic \\
- Apply protective cream/lotion to exposed skin to prevent reactions
\end{tabular} & Level D \\
\hline Contact with Hazardous Substances & \begin{tabular}{l}
- Ensure hazardous levels of vapors are not present \\
- Only essential, trained personnel will be allowed in the exclusion and contamination reduction zones \\
- Open wells from an upwind position \\
- Use proper PPE and decontamination procedures \\
- Handle samples with care \\
- All liquids and materials used for decontamination will be contained and disposed of in accordance with federal, state, and local regulations \\
- Review hazardous properties of site contaminants before sampling operations begin \\
- Review first-aid procedures
\end{tabular} & Modified Level D \\
\hline Compressed Gas Cylinders & \begin{tabular}{l}
- Secure with straps when transporting \\
- Secure in upright position with bungee cords and with caps in place \\
- Transport to well site with cylinder dolly or vehicle
\end{tabular} & Modified Level D \\
\hline Equipment Failure & - Perform daily maintenance inspections on operating equipment and vehicles & Modified Level D \\
\hline Handling Heavy Objects & \begin{tabular}{l}
- Use proper lifting techniques and obey lifting procedures \\
- Use mechanical lifting equipment (hand carts, trucks) to move large, awkward loads \\
- Review lifting posture/techniques regularly at safety meetings
\end{tabular} & Modified Level D \\
\hline Slips, Trips, Falls & \begin{tabular}{l}
- Clear walkways and work areas of equipment, tools, vegetation, excavated material, and debris \\
- Mark, identify, or barricade other obstructions/holes \\
- Clean mud and grease from boots before mounting drill platform \\
- Watch for slippery ground when dismounting from the platform
\end{tabular} & Modified Level D \\
\hline
\end{tabular}

\title{
Job Hazard Analysis for Well Surveying/Grid Surveying for Sample Collection Multi-Incremental (MI) Surface Soil Sampling Collection \\ (Tasks 2, 3, \& 4)
}
\begin{tabular}{l|l|l|l}
\hline \begin{tabular}{l}
Potential \\
Hazards
\end{tabular} & \multicolumn{3}{|c}{ Hazard Control Measures }
\end{tabular}
\begin{tabular}{ll}
JHA & \(=\) Job Hazard Analysis. \\
KV & \(=\) Kilivolt(s). \\
MSDS & \(=\) Material Safety Data Sheet. \\
PPE & \(=\) Personal protective equipment. \\
SSHP & \(=\) Site Safety and Health Plan.
\end{tabular}

\section*{Attachment B3 \\ Material Safety Data Sheets \\ (See folder on this compact disc)}

\section*{List of Material Safety Data Sheets}

\author{
Alconox \({ }^{\circledR}\)
}

Diesel Fuel

Gasoline
Hydraulic oil
Hydrochloric acid
Isobutylene
Motor oil

\section*{MATERIAL SAFETY DATA SHEET}

\section*{SECTION 1-PRODUCT AND COMPANY IDENTIFICATION}

\author{
PRODUCT NAME: Diesel Fuel; SYNONYMS: Diesel Fuel \#1 - LS Dyed; Diesel Fuel \#2 - DSL2, Off-Road, On-Road, HS-Dyed, LS-Dyed, LS-Undyed, LS Diesel; Winter Blend; Fuel Oil \#2 - Diesel Fuel Oil, No. 2 Diesel Fuel Oil, Non-Hwy Dyed; Diesel Fuel - Premium, Super, Supreme, Powerblend, Non-Taxed LS Dyed; Additized; Russian Summer; Arctic; -10 and -35 F pour point depressed diesel; Lago; Burner Oil; Aleyska Turbine Fuel; Distillate - Mid; No. 2; Marine - Marine Gas Oil, MGO, DFM; Navy Fuel; F76; Marine Diesel Fuel (MDO); Intermediate Marine Fuel IF-30 to IF-460; IMF; RR Diesel Fuel - No. 40, No. 35, RR Power Fuel HS Off-Road; CARB Diesel Fuel -On-Road, Off-Road, Tax Exempt Blends, TF3, 10\%; EPA - LS Diesel Fuel Dyed, Undyed, OffRoad HS Dyed - Ultra Low Sulfur Diesel
}

GENERAL USE: Fuel
PRODUCT DESCRIPTION: Liquid. Color varies, clear, yellow (pale to straw), red, blue, blue-green color. Petroleum odor.

\section*{MATERIAL SAFETY DATA SHEET}

PRODUCT NAME: Diesel Fuel; SYNONYMS: Diesel Fuel \#1 - LS Dyed; Diesel Fuel \#2 - DSL2, Off-Road, On-Road, HS-Dyed, LS-Dyed, LS-Undyed, LS Diesel; Winter Blend; Fuel Oil \#2-Diesel Fuel Oil, No. 2 Diesel Fuel Oil, Non-Hwy Dyed; Diesel Fuel - Premium, Super, Supreme, Powerblend, Non-Taxed LS Dyed; Additized; Russian Summer; Arctic; -10 and -35 F pour point depressed diesel; Lago; Burner Oil; Aleyska Turbine Fuel; Distillate - Mid; No. 2; Marine - Marine Gas Oil, MGO, DFM; Navy Fuel; F76; Marine Diesel Fuel (MDO); Intermediate Marine Fuel IF-30 to IF-460; IMF; RR Diesel Fuel No. 40, No. 35, RR Power Fuel HS Off-Road; CARB Diesel Fuel - On-Road, Off-Road, Tax Exempt Blends, TF3, 10\%; EPA LS Diesel Fuel Dyed, Undyed, Off-Road HS Dyed - Ultra Low Sulfur Diesel
September 16, 2004

\section*{SECTION 3-HAZARDS IDENTIFICATION}

\section*{EMERGENCY OVERVIEW}

Various colored liquid, potentially hazardous vapors. Flammable as defined by DOT and TDG. May be classified by DOT as Combustible. Classified as Combustible by OSHA. Can cause eye and skin irritation upon contact. Inhalation of vapors can cause anesthetic effect leading to death in poorly ventilated areas. Hazard symbols for this product - Xn Risk Phrases - R10 20 36/38

\section*{POTENTIAL HEALTH EFFECTS}

INHALATION: High concentrations are irritating to the respiratory tract; may cause headache, dizziness, nausea, vomiting and malaise.

SKIN: Brief contact may cause slight irritation; prolonged contact may cause moderate irritation or dermatitis.

EYES: High vapor concentration or contact may cause irritation and discomfort.

INGESTION: May result in vomiting; aspiration of vomitus into the lungs must be avoided; DO NOT induce vomiting. Minute amounts aspirated into the lungs can produce severe lung injury, chemical pneumonitis, pulmonary edema or death.

CARCINOGENICITY NTP? No IARC MONOGRAPHS? No No This product contains a mixture of petroleum hydrocarbons called middle distillates. Because of this broad description, many products are considered middle distillates yet they are produced by a variety of different petroleum refining processes. Toxicology data developed on some middle distillates found that they caused positive responses in some mutagenicity tests and caused skin cancer when repeatedly applied to mice over their lifetime.

\section*{SECTION 4-FIRST AID MEASURES}

INHALATION: Remove affected person to fresh air; provide oxygen if breathing is difficult; if affected person is not breathing, administer CPR and seek emergency medical attention.

SKIN: Remove contaminated clothing; wash affected area with soap and water; launder contaminated clothing before reuse; if irritation persists, seek medical attention.

EYES: Remove contact lenses. Flush eyes with clear running water for 15 minutes while holding eyelids open; if irritation persists, seek medical attention.

INGESTION: DO NOT induce vomiting; if vomiting occurs spontaneously, keep head below hips to prevent aspiration of liquid into lungs; seek immediate medical attention. Vomiting may be induced only under the supervision of a physician.

\section*{SECTION 5-FIRE FIGHTING MEASURES}
\begin{tabular}{c|lll|l|l}
\hline FLASH POINT (METHOD USED) & FLAMMABLE LIMITS & LEL: & \(0.3 \%\) & UEL: & \(10.0 \%\) \\
\cline { 2 - 6 } \(100^{\circ}-199^{\circ} \mathrm{F}\left(38^{\circ}-93^{\circ} \mathrm{C}\right)\) TCC & AUTOIGNITION TEMPERATURE: & \(350^{\circ}-625^{\circ} \mathrm{F}\) & NFPA CLASS: & II \\
\hline
\end{tabular}

GENERAL HAZARDS: Product is considered combustible. Products of combustion include compounds of carbon, hydrogen and oxygen, including carbon monoxide.

EXTINGUISHING MEDIA
Carbon dioxide, water fog, dry chemical, chemical foam

\section*{FIRE FIGHTING PROCEDURES}

Firefighters must wear full facepiece self - contained breathing apparatus in positive pressure mode. Do not use solid stream of water since stream will scatter and spread fire. Fine water spray can be used to keep fire - exposed containers cool.
UNUSUAL FIRE AND EXPLOSION HAZARDS
Closed containers can explode due to buildup of pressure when exposed to extreme heat. Do not use direct stream of water on pool fires as product may reignite on water surface. Caution - Material is combustible!
HAZARDOUS COMBUSTION PRODUCTS
Smoke, fumes, oxides of carbon

MATERIAL SAFETY DATA SHEET
PRODUCT NAME: Diesel Fuel; SYNONYMS: Diesel Fuel \#1 - LS Dyed; Diesel Fuel \#2 - DSL2, Off-Road, On-Road,
HS-Dyed, LS-Dyed, LS-Undyed, LS Diesel; Winter Blend; Fuel Oil \#2 - Diesel Fuel Oil, No. 2 Diesel Fuel Oil, Non-Hwy
Dyed; Diesel Fuel - Premium, Super, Supreme, Powerblend, Non-Taxed LS Dyed; Additized; Russian Summer; Arctic; -10
and -35 F pour point depressed diesel; Lago; Burner Oil; Aleyska Turbine Fuel; Distillate - Mid; No. 2; Marine - Marine Gas
Oil, MGO, DFM; Navy Fuel; F76; Marine Diesel Fuel (MDO); Intermediate Marine Fuel IF-30 to IF-460; IMF; RR Diesel Fuel -
No. 40, No. 35, RR Power Fuel HS Off-Road; CARB Diesel Fuel - On-Road, Off-Road, Tax Exempt Blends, TF3, 10\%; EPA -
LS Diesel Fuel Dyed, Undyed, Off-Road HS Dyed - Ultra Low Sulfur Diesel
September 16, 2004

\section*{SECTION 6-ENVIRONMENTAL RELEASE MEASURES}

STEPS TO BE TAKEN IN CASE MATERIAL IS RELEASED OR SPILLED: COMBUSTIBLE. Evacuate and ventilate area; confine and absorb into absorbent; place material into approved containers for disposal; for spills in excess of allowable limits (RQ) notify the National Response Center (800) 424-8802; refer to CERCLA 40 CFR 302 and SARA Title III, Section 31340 CFR 372 for detailed instructions concerning reporting requirements. Do not discharge into lakes, ponds, streams or public waters.

\section*{SECTION 7-HANDLING AND STORAGE}

PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE: This material is combustible. It should be stored in tightly closed containers in a cool, well ventilated area. Vapor may form explosive mixtures in air. All sources of ignition should be controlled. This material may be classified as COMBUSTIBLE by DOT unless transported by vessel or aircraft. Refer to 49 CFR 173.120. Keep this and other chemicals out of reach of children. Avoid inhaling concentrated fumes or vapors.

\section*{SECTION 8-EXPOSURE CONTROLS /PERSONAL PROTECTION}

ENGINEERING CONTROLS
The use of local exhaust ventilation is recommended to control emissions near the source. Provide mechanical ventilation of confined spaces. Use explosion-proof ventilation equipment. See Section 2 for Component Exposure Guidelines.

\section*{PERSONAL PROTECTION:}

RESPIRATORY PROTECTION (SPECIFY TYPE): None required while threshold limits (Section 2) are kept below maximum allowable concentrations; if TWA exceeds limits, NIOSH approved respirator must be worn. Refer to 29 CFR 1910.134 or European Standard EN 149 for complete regulations.

PROTECTIVE GLOVES: Neoprene or rubber gloves with cuffs.
EYE PROTECTION: Protective eyeglasses or chemical safety goggles. Refer to 29 CFR 1910.133 or European Standard EN166.
OTHER PROTECTIVE CLOTHING OR EQUIPMENT: Safety eyebath nearby
WORK / HYGIENIC PRACTICES: Practice safe workplace habits. Minimize body contact with this, as well as all chemicals in general.
SECTION 9-PHYSICAL AND CHEMICAL PROPERTIES

SECTION 11-TOXICOLOGICAL INFORMATION
\begin{tabular}{|c|c|c|c|c|}
\hline Hazardous Ingredients (All products may not be listed if information is not available) & CAS \# & EINECS \# & LD50 of Ingredient (Species and Route) & LC50 of Ingredient (Species) \\
\hline Contains or May Contain: & & & & \\
\hline Diesel Fuel \#2 & 68476-34-6 & 270-676-1 & Not established & Not established \\
\hline Fuel Oil \#2 & 68476-30-2 & 270-671-4 & Not determined & Not determined \\
\hline Tower Residues, atmospheric & 64741-45-3 & 265-045-2 & Not established & Not established \\
\hline Residues (petroleum), Vacuum & 64741-56-6 & 265-057-8 & Not established & Not established \\
\hline Heavy catalytically cracked distillate (e,f,g) & 64741-61-3 & 265-063-0 & Not established & Not established \\
\hline Light thermally cracked distillate (h) & 64741-59-9 & 265-060-4 & Not established & Not established \\
\hline Catalytically cracked clarified oil (e,g) & 64741-62-4 & 265-064-6 & Not established & Not established \\
\hline Xylene (mixed) (a,b,c) & 1330-20-7 & 215-535-7 & \[
\begin{gathered}
4300 \mathrm{mg} / \mathrm{kg} \\
\text { Oral - rat } \\
\hline
\end{gathered}
\] & \[
5000 \mathrm{ppm} / 4 \mathrm{H}
\] \\
\hline Trimethylbenzene 1,2,4 (a) & 95-63-6 & 202-436-9 & \[
\begin{gathered}
5 \mathrm{gm} / \mathrm{kg} \\
\text { Oral-mouse }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 18 \mathrm{gm} / \mathrm{m3} / 4 \mathrm{H} \\
& \text { Inhalation - rat }
\end{aligned}
\] \\
\hline Nonane & 111-84-2 & 203-913-4 & \begin{tabular}{l}
\(218 \mathrm{mg} / \mathrm{kg}\) \\
Oral - mouse
\end{tabular} & \[
\begin{aligned}
& \hline 3200 \mathrm{ppm} / 4 \mathrm{H} \\
& \text { Inhalation - rat }
\end{aligned}
\] \\
\hline Sulfur, precipitated & 7704-34-9 & 231-722-6 & Not available & Not available \\
\hline Naphthalene (a,b,c,d) & 91-20-3 & 202-049-5 & \[
\begin{gathered}
1780 \mathrm{mg} / \mathrm{kg} \\
\text { Oral - rat } \\
\hline
\end{gathered}
\] & Not established \\
\hline Red Dye & not specified & not specified & Not determined & Not determined \\
\hline \multicolumn{5}{|c|}{SECTION 12-ECOLOGICAL INFORMATION} \\
\hline
\end{tabular}

No data are available on the adverse effects of this material on the environment. Neither COD nor BOD data are available. Release of this product should be prevented from contaminating soil and water and from entering drainage and sewer systems. U.S.A. regulations require reporting spills of this material that could reach any surface waters. The toll free number for the U.S. Coast Guard National Response Center is (800) 424-8802. Naphthalene (91-20-3) one of the ingredients in this mixture is classified as a Marine Pollutant.

\section*{SECTION 13-DISPOSAL CONSIDERATIONS}

WASTE DISPOSAL METHOD: Dispose of in accordance with Local, State, and Federal Regulations. This product may produce hazardous vapors or fumes in a closed disposal container creating a dangerous environment. Refer to " 40 CFR Protection of Environment Parts 260 299" for complete waste disposal regulations. Consult your local, state, or Federal Environmental Protection Agency before disposing of any chemicals. Do not flush to sanitary sewer or waterway.

\section*{SECTION 14-TRANSPORT INFORMATION}

PROPER SHIPPING NAME: Diesel Fuel

REFERENCE: 49 CFR 173.150, .203, . 242
UN / NA IDENTIFICATION NUMBER: NA 1993
LABEL: Flammable
HAZARD SYMBOLS: F

IATA HAZARD CLASS / Pack Group: Not applicable IMDG HAZARD CLASS: Not applicable RID/ADR Dangerous Goods Code: Not applicable UN TDG Class / Pack Group: Not applicable

Note: Transportation information provided is for reference only. Client is urged to consult CFR 49 parts 100-177, IMDG, IATA, EC, United Nations TDG, and WHMIS (Canada) TDG information manuals for detailed regulations and exceptions covering specific container sizes, packaging materials and methods of shipping.

\section*{MATERIAL SAFETY DATA SHEET}

PRODUCT NAME: Diesel Fuel; SYNONYMS: Diesel Fuel \#1 - LS Dyed; Diesel Fuel \#2 - DSL2, Off-Road, On-Road, HS-Dyed, LS-Dyed, LS-Undyed, LS Diesel; Winter Blend; Fuel Oil \#2-Diesel Fuel Oil, No. 2 Diesel Fuel Oil, Non-Hwy Dyed; Diesel Fuel - Premium, Super, Supreme, Powerblend, Non-Taxed LS Dyed; Additized; Russian Summer; Arctic; -10 and -35 F pour point depressed diesel; Lago; Burner Oil; Aleyska Turbine Fuel; Distillate - Mid; No. 2; Marine - Marine Gas Oil, MGO, DFM; Navy Fuel; F76; Marine Diesel Fuel (MDO); Intermediate Marine Fuel IF-30 to IF-460; IMF; RR Diesel Fuel No. 40, No. 35, RR Power Fuel HS Off-Road; CARB Diesel Fuel - On-Road, Off-Road, Tax Exempt Blends, TF3, 10\%; EPA LS Diesel Fuel Dyed, Undyed, Off-Road HS Dyed - Ultra Low Sulfur Diesel
September 16, 2004

\section*{SECTION 15-REGULATORY INFORMATION}

TSCA (Toxic substance Control Act)
All components of this product are listed on the U.S. Toxic Substances Control Act Chemical Inventory (TSCA Inventory) or are exempted from listing because a Low Volume Exemption has been granted in accordance with 40 CFR 723.50.
SARA TITLE III (Superfund Amendments and Reauthorization Act)
311/312 Hazard Categories
Acute health, flammable
313 Reportable Ingredients:
(a) A "Yes" in the SARA TITLE III column in Section 2 indicates a toxic chemical subject to annual reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR 372.
CERCLA (Comprehensive Response Compensation and Liability Act)
(c) The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) has notification requirements for releases or spills to the environment of the Reportable Quantity (\(R Q\) for this mixture \(>24,000 \mathrm{lbs}\)) or greater amounts, according to 40 CFR 302.

\section*{CPR (Canadian Controlled Products Regulations)}

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all the information required by the Controlled Products Regulations.
IDL (Canadian Ingredient Disclosure List)
Components of this product identified by CAS number are listed on the Canadian Ingredient Disclosure List are shown in Section 2.
DSL / NDSL (Canadian Domestic Substances List / Non-Domestic Substances List) Components of this product identified by CAS number are listed on the DSL or NDSL and may or may not be listed in Section 2 of this document. Only ingredients classified as "hazardous" are listed in Section 2 unless otherwise indicated.
EINECS (European Inventory of Existing Commercial Chemical Substances)
Components of this product identified by CAS numbers are on the European Inventory of Existing Commercial Chemical Substances.
\begin{tabular}{|l|c|l|}
\hline EC Risk Phrases & SYMBOL(S) REQUIRED & EC Safety Phrases \\
R10 Flammable & FOR LABEL & S23 Do not breathe vapor \\
R20 Harmful by inhalation & & S25 Avoid contact with eyes \\
R36/38 Irritating to eyes and skin. & Harmful & S28 After contact with skin, wash immediately with \\
R51 Toxic to aquatic organisms. & & plenty of soap and water. \\
R65 Damaging to lungs when swallowed & & \begin{tabular}{l}
S29 Do not empty into drains \\
\\
S62 If swallowed, do not induce vomiting; seek \\
medical advice immediately and show this label.
\end{tabular} \\
\hline
\end{tabular}

\section*{SECTION 16 - OTHER INFORMATION}

Values do not reflect absolute minimums and maximums; these values are typical which may vary from time to time.
\begin{tabular}{llll}
HMIS HAZARD RATINGS & HEALTH & 1 & \(0=\) INSIGNIFICANT \\
& FLAMMABILITY & 2 & \(1=\) SLIGHT \\
& PHYSICAL HAZARD & 0 & \(2=\) MODERATE
\end{tabular}
REVISION SUMMARY:
This MSDS has been revised in the following
sections:

Section 1, add name; Section 3, Hazard Symbols; Section 11, add EINECS \#; Section 15, TSCA text, add symbol; Section 16, HMIS Text sections:

MSDS Prepared by: Chem-Tel, Inc.
1305 N. Florida Ave.
Tampa, Florida USA 33602
(800) 255-3924 Outside USA (813) 248-0573

DISCLAIMER The information supplied in this data sheet is obtained from currently available sources, which are believed to be reliable HOWEVER, THE INFORMATION IS PROVIDED WITHOUT ANY WARRANTY, EXPRESSED OR IMPLIED, REGARDING THE ACCURACY OF THE INFORMATION OR THE RESULTS TO BE OBTAINED FROMITS USE.
Handling, storage, use or disposal of the above-referenced product is beyond our control and may occur under conditions with which we are unfamiliar, FOR THESE AND OTHER REASONS, WE DO NOT ASSUME RESPONSIBILITY AND EXPRESSLY DISCLAIM ANY LIABILITY FOR DAMAGE, INJURY AND COST ARISING FROM OR RELATED TO THE USE OF THE PRODUCT

PRODUCT NUMBER (s): BHPP-1052, BHPP-1054, MSDS-1054, 2, 3, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 46, 75, 88, 89, 90, 94, 97, 98, 99, 100, 101 \(102,103,104,105,106,108,109,111,116,117,118,282,290,291,294,304,319,351,352,1000,1001,1071,1076\)

\section*{MATERIAL SAFETY DATA SHEET}

\section*{SECTION 7 - SPILL OR LEAK PROCEDURES}

Environmental Impact: This material is not expected to present any environmental problems other than those associated with oil spills. If spilled into a watercourse, call the Coast Guard Toll Free No. 800-424-8802.
Procedures To Be Taken If Material Is Released or Spilled: Eliminate all sources of ignition. Absorb spills with absorbent clay. Ventilate confined spaces. Keep out of sewers and watercourses.
Waste Disposal Method: Dispose of at an approved waste or disposal site facility in accordance with all applicable federal, state and local laws and regulations. This product is considered to be an RCRA hazardous waste due to the presence of Benzene CAS\#71-43-2 DO18 and its flammability D001.
\begin{tabular}{|ll|}
\hline & \multicolumn{1}{c|}{ SECTION 8 - SPECIAL PROTECTION INFORMATION } \\
\hline Respiratory Protection: & \begin{tabular}{l}
Use NIOSH/MSHA approved fullface respirator with an organic vapor cartridge if the recommended \\
exposure limits are exceeded.
\end{tabular} \\
\hline Ventilation: & Use local exhaust ventilation to control mists or vapors. \\
\hline Eye Protection: & Goggles of face shield.
\end{tabular}

SECTION 10 - ADDITIONAL HEALTH AND TOXICOLOGICAL DATA
```

HMIS \& NFPA Ratings: Health = 2 Fire = 2 Reactivity = 1

```

Contaminated clothing should be disposed of properly and/or decontaminated before reuse. Under no circumstance should vomiting be induced. Vomiting can cause aspiration of the product into the lungs. If aspirated into the lungs, chemical pneumonia, which may cause death in spite of treatment with oxygen and antibiotics, may result.

Probable mucosal damage may contraindicate the use of gastric lavage. Measures against circulatory shock, respiratory depression and convulsion may be needed.

This product contains \(0.039 \%\) of Benzene which is listed as potential cancer causing agents as determined by the National Toxicology Programs Annual Reports, OSHA's Subpart Z list, the International Agency for Cancer Research's Monographs.

Proposition 65 State of California Warning: This product contains \(.0039 \%\) of Benzene CAS\#71-43-2 which has been found by the State of California to be a potential reproductive toxin and/or cancer-causing agent.

This product is an IRC (ignitable, reactive, corrosive) substance under CERCLA. If 2,779 gallons of the material is spilled which will release 100 lbs of 2-Ethylhexyl Nitrate into the environment and unless the material is cleaned up immediately for reprocessing, recycling or reuse this may trigger the reporting requirements of CERCLA Section 103.

For SARA Title III Information, see last page
The materials in this product are listed on the US TSCA Inventory and are in compliance with the Canadian Environmental Protection Act.

DOT Non Bulk Description: Flammable liquids, N.O.S., (Heavy Aromatic Naphtha,2-Butoxyethanol , Hydrotreated Heavy Naphtha),3, UN1993, PGIII

Bulk: Flammable Liquids: N.O.S., (Heavy Aromatic Naphtha,2-Butoxyethanol, Hydrotreated Heavy Naphtha),3, UN1993, PG III

\section*{SARA TITLE III INFORMATION}
I. Section 302/304 Extremely Hazardous
\begin{tabular}{llllll}
Component & CAS\# & \(\%\) & \(R Q(l b s)\). & RQ (gal.)* \\
Benzene & \(71-43-2\) & .0039 & 10 & 35,638
\end{tabular}
II. Section 102(a) CERCLA Hazardous Substance
\begin{tabular}{lllllll}
Component & CAS\# & \(\%\) & RQ (lbs.) & \multicolumn{2}{l}{ RQ (gals.) } \\
Cumene & \(98-82-6\) & 0.154 & 5000 & 42,3621 & \\
Xylene & \(1330-20-7\) & \(2-3\) & & 100 & 6,352 & \\
Benzene & \(71-43-2\) & .0039 & & 10 & 35,638 & \\
Ethylbenzene & \(100-41-4\) & & 3.7 & & 1000 & \\
Naphthalene & \(91-20-3\) & 0.1521 & & 100 & & 9,138
\end{tabular}
*Product RQ for Stationary Sources in case of spill in order to release Regulatory Requirements RQ as specified by CERCLA
III. Title Section 311 Hazardous Categorization
\begin{tabular}{llllll}
Acute & & Chronic & Fire & Pressure & Reactivity \\
\(X\) & \(X\) & & \(X\)
\end{tabular}
IV. Section 313 Toxic Chemical
\begin{tabular}{llllll}
Component & CAS\# & \multicolumn{2}{l}{\(\%\)} & & \\
Xylene & \(1330-20-7\) & \multicolumn{2}{l}{\(32-34\)} & & \\
Benzene & \(71-43-2\) & .000385 & & \\
Vinyl Acetate & \(108-05-4\) & & 0.14 & \\
2-Butoxyethanol & \(104-76-7\) & & \(9-11\) & \\
Ethylbenzene & \(100-41-4\) & & 0.91 & \\
Cumene & \(98-82-6\) & 0.77 & & 0.425 \\
Diethylene Glycol Monoethyl & & & \(111-77-3\) & & 0.4
\end{tabular}

Although the information and recommendations set forth herein (hereafter referred to as information) are presented in good faith and believed to be accurate and factual as of the date hereof, Schaeffer Mfg. Company makes no representation as to the completeness or accuracy thereof. Information is supplied upon the condition that the person receiving the same will make their own determination as to its safety and suitability for their purposes prior to use. In no event will Schaeffer Mfg. Company be responsible for damages of any natures whatsoever resulting from the use or reliance upon information. No representation or warranty, either expressed or implied, of merchantability or fitness for a particular purpose is made with respect to information of the product to which the information refers.

\section*{PRODUCT NAME: ISOBUTYLENE}

\section*{1. Chemical Product and Company Identification}

BOC Gases,
Division of
The BOC Group, Inc.
575 Mountain Avenue
Murray Hill, NJ 07974
TELEPHONE NUMBER: (908) 464-8100
24-HOUR EMERGENCY TELEPHONE NUMBER: CHEMTREC (800) 424-9300

BOC Gases
Division of
BOC Canada Limited
5975 Falbourne Street, Unit 2
Mississauga, Ontario L5R 3W6
TELEPHONE NUMBER: (905) 501-1700
24-HOUR EMERGENCY TELEPHONE NUMBER: (905) 501-0802

EMERGENCY RESPONSE PLAN NO: 20101

PRODUCT NAME: ISOBUTYLENE
CHEMICAL NAME: Isobutylene
COMMON NAMES/SYNONYMS: 2-Methylpropene, Isobutene
TDG (Canada) CLASSIFICATION: 2.1
WHMIS CLASSIFICATION: A, B1, D2B
PREPARED BY: Loss Control (908)464-8100/(905)501-1700
PREPARATION DATE: 6/1/95
REVIEW DATES: 6/7/96

\section*{2. Composition, Information on Ingredients}
\begin{tabular}{|c|c|c|c|c|}
\hline INGREDIENT & \% VOLUME & PEL-OSHA \({ }^{1}\) & TLV-ACGIH \({ }^{2}\) & \(L_{50}\) or \(\mathrm{LC}_{50}\) Route/Species \\
\hline \begin{tabular}{l}
Isobutylene FORMULA: C4H8 CAS: 115-11-7 \\
RTECS \#: UD0890000
\end{tabular} & 99.0 to 99.8 & Simple Asphyxiant & Simple Asphyxiant & \[
\begin{aligned}
& \begin{array}{l}
\mathrm{LC}_{50} \\
620 \mathrm{mg} / \mathrm{m}^{3} / 3 \mathrm{H} \\
\text { (rat) }
\end{array}
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1}\) As stated in 29 CFR 1910, Subpart Z (revised July 1, 1993)
\({ }^{2}\) As stated in the ACGIH 1994-95 Threshold Limit Values for Chemical Substances and Physical Agents

\section*{3. Hazards Identification}

EMERGENCY OVERVIEW
This product does not contain oxygen and may cause asphyxia if released in a confined area. Simple hydrocarbons can cause irritation and central nervous system depression at high concentrations. flammable.

ROUTE OF ENTRY:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
Skin Contact \\
Yes
\end{tabular} & \begin{tabular}{c}
Skin Absorption \\
No
\end{tabular} & \begin{tabular}{c}
Eye Contact \\
Yes
\end{tabular} & \begin{tabular}{c}
Inhalation \\
Yes
\end{tabular} & \begin{tabular}{c}
Ingestion \\
No
\end{tabular} \\
\hline
\end{tabular}

HEALTH EFFECTS:
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Exposure Limits } & Irritant & Sensitization \\
No & Yes & No \\
\hline Teratogen & Reproductive Hazard & Mutagen \\
No & No & No \\
\hline \begin{tabular}{l}
Synergistic Effects \\
None Reported
\end{tabular} & & \\
\hline
\end{tabular}

Carcinogenicity: -- NTP: No IARC: No OSHA: No

\section*{EYE EFFECTS:}

Irritation may occur.

\section*{SKIN EFFECTS:}

None anticipated as product is a gas at room temperature.

\section*{INGESTION EFFECTS:}

Ingestion is unlikely.

\section*{INHALATION EFFECTS:}

Product is relatively nontoxic. Simple hydrocarbons can irritate the eyes, mucous membranes and respiratory system at high concentrations.

Inhalation of high concentrations may cause dizziness, disorientation, incoordination, narcosis, nausea or narcotic effects.

This product may displace oxygen if released in a confined space. Maintain oxygen levels above \(19.5 \%\) at sea level to prevent asphyxiation.

Effects of oxygen deficiency resulting from simple asphyxiants may include: rapid breathing, diminished mental alertness, impaired muscular coordination, faulty judgement, depression of all sensations, emotional instability, and fatigue. As asphyxiation progresses, nausea, vomiting, prostration, and loss of consciousness may result, eventually leading to convulsions, coma, and death.

Oxygen deficiency during pregnancy has produced developmental abnormalities in humans and experimental animals.

\section*{NFPA HAZARD CODES}

Health: 1
Flammability: 4
Reactivity: 0

\section*{HMIS HAZARD CODES}
\(\begin{array}{ll}\text { Health: } & 1 \\ \text { Flammability: } & 4\end{array}\)
Reactivity: 0

\section*{RATINGS SYSTEM}
\(0=\) No Hazard
1 = Slight Hazard
2 = Moderate Hazard
3 = Serious Hazard
4 = Severe Hazard

\section*{4. First Aid Measures}

\section*{EYES:}

Never introduce oil or ointment into the eyes without medical advice! If pain is present, refer the victim to an ophthalmologist for further treatment and follow up.

\section*{SKIN:}

MSDS: G-53

Remove contaminated clothing and wash affected area with soap and water. If irritation persists, seek medical attention.

\section*{INGESTION:}

Not normally required. Seek immediate medical attention.

\section*{INHALATION:}

PROMPT MEDICAL ATTENTION IS MANDATORY IN ALL CASES OF OVEREXPOSURE TO PRODUCT. RESCUE PERSONNEL SHOULD BE EQUIPPED WITH SELF-CONTAINED BREATHING APPARATUS. Conscious persons should be assisted to an uncontaminated area and inhale fresh air. Quick removal from the contaminated area is most important. Unconscious persons should be moved to an uncontaminated area, given assisted (artificial) respiration and supplemental oxygen. Further treatment should be symptomatic and supportive.

\section*{5. Fire Fighting Measures}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Conditions of Flammability: Flammable liquid and vapor } \\
\hline \begin{tabular}{l|l|l|}
\hline Flash point: \\
\(-105{ }^{\circ} \mathrm{F}\left(-76^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{l}
Method: \\
Closed Cup
\end{tabular} & \begin{tabular}{l}
Autoignition \\
Temperature: \(869^{\circ} \mathrm{F}\left(465{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \\
\hline LEL(\%): 1.8 & \(\mathrm{UEL}(\%): 9.6\) \\
\hline \multicolumn{3}{|l|}{ Hazardous combustion products: Carbon monoxide, Carbon dioxide } \\
\hline Sensitivity to mechanical shock: None \\
\hline Sensitivity to static discharge: Not Available \\
\hline
\end{tabular}

\section*{FIRE AND EXPLOSION HAZARDS:}

Isobutylene is heavier than air and may travel a considerable distance to an ignition source. Isobutylene is a flammable gas! Keep away from open flame and other sources of ignition. Do not allow smoking in storage areas or when handling.

\section*{EXTINGUISHING MEDIA:}

Water, carbon dioxide, dry chemical.

\section*{FIRE FIGHTING INSTRUCTIONS:}

If possible, stop the flow of gas with a remote valve. Use water spray to cool fire exposed containers. If fire is extinguished and flow of gas is continued, increase ventilation to prevent a build up of a flammable/ explosive atmosphere. Extinguish sources of ignition.

Be cautious of a Boiling Liquid Evaporating Vapor Explosion, BLEVE, if flame is impinging on surrounding containers. Direct 500 GPM water stream onto containers above the liquid level with remote monitors. Limit the number of personnel in proximity to the fire. Evacuate surrounding areas to at least 3000 feet in all directions.

\section*{6. Accidental Release Measures}

Evacuate all personnel from affected area. Use appropriate protective equipment. Increase ventilation to prevent build up of a flammable/explosive atmosphere. Extinguish all sources of ignition! If leak is in user's equipment, be certain to purge piping with inert gas prior to attempting repairs. If leak is in container or container valve, contact the appropriate emergency telephone number listed in Section 1 or call your closest BOC location

\section*{7. Handling and Storage}

Earth bond and ground all lines and equipment associated with the product system. Electrical equipment should be non-sparking and explosion proof.

Use only in well-ventilated areas. Valve protection caps must remain in place unless container is secured with valve outlet piped to use point. Do not drag, slide or roll cylinders. Use a suitable hand truck for cylinder movement. Use a pressure regulator when connecting cylinder to lower pressure (\(<250 \mathrm{psig}\)) piping or systems. Do not heat cylinder by any means to increase the discharge rate of product from the cylinder. Use a check valve or trap in the discharge line to prevent hazardous back flow into the cylinder.

Protect cylinders from physical damage. Store in cool, dry, well-ventilated area away from heavily trafficked areas and emergency exits. Do not allow the temperature where cylinders are stored to exceed \(130^{\circ} \mathrm{F}\left(54^{\circ} \mathrm{C}\right)\). Cylinders should be stored upright and firmly secured to prevent falling or being knocked over. Full and empty cylinders should be segregated. Use a "first in-first out" inventory system to prevent full cylinders from being stored for excessive periods of time.

Post "No Smoking" signs in storage or use areas.
For additional recommendations consult Compressed Gas Association Pamphlet P-1.
Never carry a compressed gas cylinder or a container of a gas in cryogenic liquid form in an enclosed space such as a car trunk, van or station wagon. A leak can result in a fire, explosion, asphyxiation or a toxic exposure.

\section*{8. Exposure Controls, Personal Protection}

EXPOSURE LIMITS \({ }^{1}\) :
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ INGREDIENT } & \% VOLUME & \multicolumn{1}{|c|}{ PEL-OSHA \(^{2}\)} & TLV-ACGIH \({ }^{3}\) & \begin{tabular}{l}
LD \\
Loute or LC \(_{50}\) \\
Routies
\end{tabular} \\
\hline Isobuylene & 99.0 to 99.8 & Simple Asphyxiant & Simple Asphyxiant & LC 50 \\
FORMULA: C4H8 & & & & \(620 \mathrm{mg} / \mathrm{m}^{3} / 3 \mathrm{H}\) \\
CAS: 115-11-7 & & & & (rat) \\
RTECS \#: UD0890000 & & \\
\hline
\end{tabular}
\({ }^{1}\) Refer to individual state of provincial regulations, as applicable, for limits which may be more stringent than those listed here.
\({ }^{2}\) As stated in 29 CFR 1910, Subpart Z (revised July 1, 1993)
\({ }^{3}\) As stated in the ACGIH 1994-1995 Threshold Limit Values for Chemical Substances and Physical Agents.

\section*{ENGINEERING CONTROLS:}

Use local exhaust to prevent accumulation. Use general ventilation to prevent build up of flammable concentrations. May use hood with forced ventilation when handling small quantities. If product is handled routinely where the potential for leaks exists, all electrical equipment must be rated for use in potentially flammable atmospheres. Consult the National Electrical Code for details.

\section*{EYE/FACE PROTECTION:}

Safety goggles or glasses.

\section*{SKIN PROTECTION:}

Protective gloves made of plastic or rubber.

\section*{PRODUCT NAME: ISOBUTYLENE}

\section*{RESPIRATORY PROTECTION:}

Positive pressure air line with full-face mask and escape bottle or self-contained breathing apparatus should be available for emergency use.

OTHER/GENERAL PROTECTION:
Safety shoes, safety shower, eyewash.

\section*{9. Physical and Chemical Properties}
\begin{tabular}{lll}
PARAMETER & VALUE & UNITS \\
\hline Physical state (gas, liquid, solid) & \(:\) Gas & \\
Vapor pressure at \(70^{\circ} \mathrm{F}\) & \(: 39\) & psia \\
Vapor density at \(\mathrm{STP}(\) Air \(=1)\) & \(: 1.98\) & \\
Evaporation point & \(:\) Not Available & \({ }^{\circ} \mathrm{F}\) \\
Boiling point & \(: 19.5\) & \({ }^{\circ} \mathrm{C}\) \\
& \(:-6.9\) & \({ }^{\circ} \mathrm{F}\) \\
Freezing point & \(:-220.6\) & \({ }^{\circ} \mathrm{C}\) \\
& \(:-140.3\) & \\
pH & \(:\) Not Available & \\
Specific gravity & \(:\) Not Available & \\
Oil/water partition coefficient & \(:\) Not Available & \\
Solubility (H20) & \(:\) Insoluble & \\
Odor threshold & \(:\) Not Available & \\
Odor and appearance & \(:\) A colorless gas with an unpleasant odor similar to \\
& that of burning coal.
\end{tabular}

\section*{10. Stability and Reactivity}

STABILITY:
Stable

CONDITIONS TO AVOID (STABILITY):
None

\section*{INCOMPATIBLE MATERIALS:}

Oxidizers

\section*{HAZARDOUS DECOMPOSITION PRODUCTS:}

Carbon monoxide

\section*{11. Toxicological Information}

Oxygen deficiency during pregnancy has produced developmental abnormalities in humans and experimental animals.

No chronic effects data given in the Registry of Toxic Effects of Chemical Substances (RTECS) or Sax, Dangerous Properties of Industrial Materials, 7th ed.

\section*{12. Ecological Information}

No data given.

\section*{13. Disposal Considerations}

Do not attempt to dispose of residual waste or unused quantities. Return in the shipping container PROPERLY LABELED, WITH ANY VALVE OUTLET PLUGS OR CAPS SECURED AND VALVE PROTECTION CAP IN PLACE to BOC Gases or authorized distributor for proper disposal.

\section*{14. Transport Information}
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & United States DOT & Canada TDG \\
\hline PROPER SHIPPING NAME: & Isobutylene & Isobutylene \\
\hline HAZARD CLASS: & 2.1 & 2.1 \\
\hline IDENTIFICATION NUMBER: & UN 1055 & UN 1055 \\
\hline SHIPPING LABEL: & FLAMMABLE GAS & FLAMMABLE GAS \\
\hline
\end{tabular}

\section*{15. Regulatory Information}

Isoutylene is listed under the accident prevention provisions of section 112(r) of the Clean Air Act (CAA) with a threshold quantity (TQ) of 10,000 pounds.

\section*{SARA TITLE III NOTIFICATIONS AND INFORMATION}

SARA TITLE III - HAZARD CLASSES:
Acute Health Hazard
Fire Hazard
Sudden Release of Pressure Hazard

\section*{16. Other Information}

Compressed gas cylinders shall not be refilled without the express written permission of the owner. Shipment of a compressed gas cylinder which has not been filled by the owner or with his/her (written) consent is a violation of transportation regulations.

\section*{PRODUCT NAME: ISOBUTYLENE}

\section*{DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES:}

Although reasonable care has been taken in the preparation of this document, we extend no warranties and make no representations as to the accuracy or completeness of the information contained herein, and assume no responsibility regarding the suitability of this information for the user's intended purposes or for the consequences of its use. Each individual should make a determination as to the suitability of the information for their particular purpose(s).

\section*{Material Safety Data Sheet}

\section*{Havoline® Motor Oil}

MSDS: 8599 Revision \#: 1 Revision Date: 9/13/2002

Click here to search the product data sheet database

\section*{Material Safety Data Sheet}

\section*{24-Hour Emergency Telephone Numbers}

HEALTH : ChevronTexaco Emergency Information Center (800) 231-0623 or (510) 231-0623
TRANSPORTATION : CHEMTREC (800) 424-9300 or (703) 527-3887
Emergency Information Centers are located in the U.S.A. International collect calls accepted.

SECTION 1 PRODUCT AND COMPANY IDENTIFICATION

\section*{Havoline \({ }^{\circledR}\) Motor Oil}

Product Number(s): CPS222190, CPS222191, CPS222193, CPS222194, CPS222195, CPS222196, CPS222197
Synonyms: Havoline® Motor Oil SAE 5W-20, Havoline® Motor Oil SAE 5W-30, Havoline® Motor Oil SAE 10W-30, Havoline \(®\) Motor Oil SAE 10W-40, Havoline \({ }^{\circledR}\) Motor Oil SAE 20W-50, Havoline \({ }^{\circledR}\) Motor Oil SAE 30, Havoline® Motor Oil SAE 40

\section*{Company Identification}

ChevronTexaco Global Lubricants
6001 Bollinger Canyon Road
San Ramon, CA 94583
United States of America

\section*{Product Information}

Product Information: 800-LUBE-TEK
email : lubemsds@chevron.com

SECTION 2 COMPOSITION/ INFORMATION ON INGREDIENTS
\begin{tabular}{|l|l|l|}
\hline COMPONENTS & CAS NUMBER & AMOUNT \\
\hline \hline Highly refined mineral oil (C15-C50) & Mixture & \(75-94.99\) \%weight \\
\hline \hline & & \\
\hline
\end{tabular}
\begin{tabular}{|l||l|||}
\hline Additives including & Mixture \\
\hline & \(10-24.99 \%\) weight \\
\hline \hline Zinc dialkyldithiophosphate & \(68649-42-3\)
\end{tabular}

SECTION 3 HAZARDS IDENTIFICATION

\section*{EMERGENCY OVERVIEW}

\section*{IMMEDIATE HEALTH EFFECTS}

Eye: Not expected to cause prolonged or significant eye irritation.
Skin: Contact with the skin is not expected to cause prolonged or significant irritation. Not expected to be harmful to internal organs if absorbed through the skin.
Ingestion: Not expected to be harmful if swallowed.
Inhalation: Not expected to be harmful if inhaled. Contains a petroleum-based mineral oil. May cause respiratory irritation or other pulmonary effects following prolonged or repeated inhalation of oil mist at airborne levels above the recommended mineral oil mist exposure limit. Symptoms of respiratory irritation may include coughing and difficulty breathing.

\section*{SECTION 4 FIRST AID MEASURES}

Eye: No specific first aid measures are required. As a precaution, remove contact lenses, if worn, and flush eyes with water.
Skin: No specific first aid measures are required. As a precaution, remove clothing and shoes if contaminated. To remove the material from skin, use soap and water. Discard contaminated clothing and shoes or thoroughly clean before reuse.
Ingestion: No specific first aid measures are required. Do not induce vomiting. As a precaution, get medical advice.
Inhalation: No specific first aid measures are required. If exposed to excessive levels of material in the air, move the exposed person to fresh air. Get medical attention if coughing or respiratory discomfort occurs.

SECTION 5 FIRE FIGHTING MEASURES

\section*{FIRE CLASSIFICATION:}

OSHA Classification (29 CFR 1910.1200): Not classified by OSHA as flammable or combustible.
NFPA RATINGS: Health: 0 Flammability: 1 Reactivity: 0

\section*{FLAMMABLE PROPERTIES:}

Flashpoint: (Cleveland Open Cup) \(392{ }^{\circ} \mathrm{F}\left(200{ }^{\circ} \mathrm{C}\right)\) (Min)
Autoignition: NDA
Flammability (Explosive) Limits (\% by volume in air): Lower: NA Upper: NA
EXTINGUISHING MEDIA: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish flames.

\section*{PROTECTION OF FIRE FIGHTERS:}

Fire Fighting Instructions: This material will burn although it is not easily ignited. For fires involving this material, do not enter any enclosed or confined fire space without proper protective equipment, including selfcontained breathing apparatus.
Combustion Products: Highly dependent on combustion conditions. A complex mixture of airborne solids, liquids, and gases including carbon monoxide, carbon dioxide, and unidentified organic compounds will be
evolved when this material undergoes combustion. Combustion may form oxides of: Calcium, Sulfur, Zinc, Boron, Molybdenum, Nitrogen .

\section*{SECTION 6 ACCIDENTAL RELEASE MEASURES}

\begin{abstract}
Protective Measures: Eliminate all sources of ignition in vicinity of spilled material.
Spill Management: Stop the source of the release if you can do it without risk. Contain release to prevent further contamination of soil, surface water or groundwater. Clean up spill as soon as possible, observing precautions in Exposure Controls/Personal Protection. Use appropriate techniques such as applying noncombustible absorbent materials or pumping. Where feasible and appropriate, remove contaminated soil. Place contaminated materials in disposable containers and dispose of in a manner consistent with applicable regulations.
\end{abstract}

Reporting: Report spills to local authorities and/or the U.S. Coast Guard's National Response Center at (800) 424-8802 as appropriate or required.

SECTION 7 HANDLING AND STORAGE

Precautionary Measures: Keep out of the reach of children.
General Handling Information: Avoid contaminating soil or releasing this material into sewage and drainage systems and bodies of water.
Static Hazard: Electrostatic charge may accumulate and create a hazardous condition when handling this material. To minimize this hazard, bonding and grounding may be necessary but may not, by themselves, be sufficient. Review all operations which have the potential of generating an accumulation of electrostatic charge and/or a flammable atmosphere (including tank and container filling, splash filling, tank cleaning, sampling, gauging, switch loading, filtering, mixing, agitation, and vacuum truck operations) and use appropriate mitigating procedures. For more information, refer to OSHA Standard 29 CFR 1910.106, 'Flammable and Combustible Liquids', National Fire Protection Association (NFPA 77, 'Recommended Practice on Static Electricity', and/or the American Petroleum Institute (API) Recommended Practice 2003, 'Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents'.
Container Warnings: Container is not designed to contain pressure. Do not use pressure to empty container or it may rupture with explosive force. Empty containers retain product residue (solid, liquid, and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, static electricity, or other sources of ignition. They may explode and cause injury or death. Empty containers should be completely drained, properly closed, and promptly returned to a drum reconditioner or disposed of properly.

SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

\section*{GENERAL CONSIDERATIONS:}

Consider the potential hazards of this material (see Section 3), applicable exposure limits, job activities, and other substances in the work place when designing engineering controls and selecting personal protective equipment. If engineering controls or work practices are not adequate to prevent exposure to harmful levels of this material, the personal protective equipment listed below is recommended. The user should read and understand all instructions and limitations supplied with the equipment since protection is usually provided for a limited time or under certain circumstances.

Special note: Do not use in breathing air apparatus or medical equipment.

\section*{ENGINEERING CONTROLS:}

Use in a well-ventilated area.

\section*{PERSONAL PROTECTIVE EQUIPMENT}

Eye/Face Protection: No special eye protection is normally required. Where splashing is possible, wear safety glasses with side shields as a good safety practice.
Skin Protection: No special protective clothing is normally required. Where splashing is possible, select
protective clothing depending on operations conducted, physical requirements and other substances. Suggested materials for protective gloves include: 4H (PE/EVAL), Nitrile Rubber, Silver Shield, Viton.
Respiratory Protection: No respiratory protection is normally required.
If user operations generate an oil mist, determine if airborne concentrations are below the occupational exposure limit for mineral oil mist. If not, wear an approved respirator that provides adequate protection from the measured concentrations of this material. For air-purifying respirators use a particulate cartridge.
Use a positive pressure air-supplying respirator in circumstances where air-purifying respirators may not provide adequate protection.

\section*{Occupational Exposure Limits:}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Component & Limit & TWA & STEL & Ceiling & Notation \\
\hline \hline \begin{tabular}{l}
Highly refined mineral oil (C15 - \\
C50)
\end{tabular} & ACGIH_TLV & \(5 \mathrm{mg} / \mathrm{m} 3\) & \(10 \mathrm{mg} / \mathrm{m} 3\) & & \\
\hline \begin{tabular}{l}
Highly refined mineral oil (C15 - \\
C50)
\end{tabular} & OSHA_PEL & \(5 \mathrm{mg} / \mathrm{m} 3\) & & & \\
\hline
\end{tabular}

\section*{SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES}

Attention: the data below are typical values and do not constitute a specification.
Color: Amber
Physical State: liquid
Odor: NDA
pH: NA
Vapor Pressure: \(<0.01 \mathrm{mmHg} @ 100^{\circ} \mathrm{C}\)
Vapor Density (\(\mathrm{Air}=1\)): \(>1\)
Boiling Point: >600 \({ }^{\circ} \mathrm{F}\) (\(>315 \mathrm{C}\))
Solubility: Soluble in hydrocarbons; insoluble in water
Freezing Point: NA
Melting Point: NA
Specific Gravity: 0.86-0.88@15.6 \({ }^{\circ} \mathrm{C} / 15.6^{\circ} \mathrm{C}\)
Viscosity: \(8.3 \mathrm{cSt}-18.6 \mathrm{cSt}\) @ \(100^{\circ} \mathrm{C}\) (Min)

SECTION 10 STABILITY AND REACTIVITY

Chemical Stability: This material is considered stable under normal ambient and anticipated storage and handling conditions of temperature and pressure.
Incompatibility With Other Materials: May react with strong oxidizing agents, such as chlorates, nitrates, peroxides, etc.
Hazardous Decomposition Products: Hydrogen Sulfide (Elevated temperatures)
Hazardous Polymerization: Hazardous polymerization will not occur.

\section*{SECTION 11 TOXICOLOGICAL INFORMATION}

\section*{IMMEDIATE HEALTH EFFECTS}

Eye Irritation: The eye irritation hazard is based on evaluation of data for similar materials or product components.
Skin Irritation: The skin irritation hazard is based on evaluation of data for similar materials or product

\section*{components.}

Skin Sensitization: No product toxicology data available.
Acute Dermal Toxicity: The acute dermal toxicity hazard is based on evaluation of data for similar materials or product components.
Acute Oral Toxicity: The acute oral toxicity hazard is based on evaluation of data for similar materials or product components.
Acute Inhalation Toxicity: The acute inhalation toxicity hazard is based on evaluation of data for similar materials or product components.

\section*{ADDITIONAL TOXICOLOGY INFORMATION:}

This product contains petroleum base oils which may be refined by various processes including severe solvent extraction, severe hydrocracking, or severe hydrotreating. None of the oils requires a cancer warning under the OSHA Hazard Communication Standard (29 CFR 1910.1200). These oils have not been listed in the National Toxicology Program (NTP) Annual Report nor have they been classified by the International Agency for Research on Cancer (IARC) as; carcinogenic to humans (Group 1), probably carcinogenic to humans (Group 2A), or possibly carcinogenic to humans (Group 2B).

During use in engines, contamination of oil with low levels of cancer-causing combustion products occurs. Used motor oils have been shown to cause skin cancer in mice following repeated application and continuous exposure. Brief or intermittent skin contact with used motor oil is not expected to have serious effects in humans if the oil is thoroughly removed by washing with soap and water.

SECTION 12 ECOLOGICAL INFORMATION

\section*{ECOTOXICITY}

The toxicity of this material to aquatic organisms has not been evaluated. Consequently, this material should be kept out of sewage and drainage systems and all bodies of water.

\section*{ENVIRONMENTAL FATE}

This material is not expected to be readily biodegradable.
SECTION 13 DISPOSAL CONSIDERATIONS

Oil collection services are available for used oil recycling or disposal. Place contaminated materials in containers and dispose of in a manner consistent with applicable regulations. Contact your sales representative or local environmental or health authorities for approved disposal or recycling methods. (See B.C. Reg. GY/92 Waste Management Act; R.R.O. 1990, Reg. 347 General-Waste Management; C.C.SM.c. W40 The Waste Reduction and Prevention Act; N.S. Reg. 51/95 and N.S. Reg. 179/96 for examples of Provincial legislation.)

\section*{SECTION 14 TRANSPORT INFORMATION}

The description shown may not apply to all shipping situations. Consult 49CFR, or appropriate Dangerous Goods Regulations, for additional description requirements (e.g., technical name) and mode-specific or quantity-specific shipping requirements.

DOT Shipping Name: NOT REGULATED AS A HAZARDOUS MATERIAL FOR TRANSPORTATION UNDER 49 CFR
DOT Hazard Class: NOT APPLICABLE
DOT Identification Number: NOT APPLICABLE
DOT Packing Group: NOT APPLICABLE
Additional Information: NOT HAZARDOUS BY U.S. DOT. ADR/RID HAZARD CLASS NOT APPLICABLE.

SECTION 15 REGULATORY INFORMATION

\section*{SARA 311/312 CATEGORIES: 1. Immediate (Acute) Health Effects: NO}
2. Delayed (Chronic) Health Effects:
3. Fire Hazard: NO
4. Sudden Release of Pressure Hazard: NO
5. Reactivity Hazard: NO

\section*{REGULATORY LISTS SEARCHED:}
\begin{tabular}{ll}
4_I1=IARC Group 1 & \(15=\) SARA Section 313 \\
4_I2A=IARC Group 2A & \(16=\) CA Proposition 65 \\
4_I2B=IARC Group 2B & \(17=\) MA RTK \\
\(05=\) NTP Carcinogen & \(18=\) NJ RTK \\
\(06=\) OSHA Carcinogen & \(19=\) DOT Marine Pollutant \\
\(09=\) TSCA 12(b) & \(20=\) PA RTK
\end{tabular}

The following components of this material are found on the regulatory lists indicated.

Zinc dialkyldithiophosphate
15

CERCLA REPORTABLE QUANTITIES(RQ)/SARA 302 THRESHOLD PLANNING QUANTITIES(TPQ):
\begin{tabular}{|l|l|l|}
\hline Component & Component RQ & Component TPQ \\
\hline Product RQ \\
\hline Zinc dialkyldithiophosphate & 1 lbs & None
\end{tabular}

\section*{CHEMICAL INVENTORIES:}

CANADA: All the components of this material are on the Canadian DSL or have been notified under the New Substance Notification Regulations, but have not yet been published in the Canada Gazette.
EUROPEAN UNION: All the components of this material are in compliance with the EU Seventh Amendment Directive 92/32/EEC.
UNITED STATES: All of the components of this material are on the Toxic Substances Control Act (TSCA)
Chemical Inventory.

\section*{NEW JERSEY RTK CLASSIFICATION:}

Under the New Jersey Right-to-Know Act L. 1983 Chapter 315 N.J.S.A. \(34: 5 \mathrm{~A}-1\) et. seq., the product is to be identified as follows:
PETROLEUM OIL (Motor oil)
WHMIS CLASSIFICATION:
This product is not considered a controlled product according to the criteria of the Canadian Controlled Products Regulations.

SECTION 16 OTHER INFORMATION

\section*{HMIS RATINGS: Health: 1 Flammability: 1 Reactivity: 0}
(0-Least, 1-Slight, 2-Moderate, 3-High, 4-Extreme, PPE:- Personal Protection Equipment Index recommendation, *- Chronic Effect Indicator). These values are obtained using the guidelines or published evaluations prepared by the National Fire Protection Association (NFPA) or the National Paint and Coating Association (for HMIS ratings).

REVISION STATEMENT: This revision corrects the Product name. Other changes have been made throughout this Material Safety Data Sheet. Please read the entire document.

ABBREVIATIONS THAT MAY HAVE BEEN USED IN THIS DOCUMENT:
\begin{tabular}{|c|c|c|c|c|c|}
\hline TLV & - & Threshold Limit Value & TWA & - & Time Weighted Average \\
\hline STEL & - & Short-term Exposure Limit & PEL & - & Permissible Exposure Limit \\
\hline & & & CAS & - & Chemical Abstract Service Number \\
\hline NDA & - & No Data Available & NA & - & Not Applicable \\
\hline <= & - & Less Than or Equal To & >= & - & Greater Than or Equal To \\
\hline
\end{tabular}

Prepared according to the OSHA Hazard Communication Standard (29 CFR 1910.1200) and the ANSI MSDS Standard (Z400.1).

The above information is based on the data of which we are aware and is believed to be correct as of the date hereof. Since this information may be applied under conditions beyond our control and with which we may be unfamiliar and since data made available subsequent to the date hereof may suggest modifications of the information, we do not assume any responsibility for the results of its use. This information is furnished upon condition that the person receiving it shall make his own determination of the suitability of the material for his particular purpose.

\section*{ALCONOX MSDS}

\section*{Section 1 : MANUFACTURER INFORMATI ON}

Product name: Alconox
Supplier: Same as manufacturer.
Manufacturer: Alconox, Inc.
30 Glenn St.
Suite 309
White Plains, NY 10603.
Manufacturer emergency 800-255-3924.
phone number: 813-248-0585 (outside of the United States).
Manufacturer: Alconox, Inc.
30 Glenn St.
Suite 309
White Plains, NY 10603.
Supplier MSDS date: 2005/03/09
D.O.T. Classification: Not regulated.

\section*{Section 2 : HAZARDOUS I NGREDI ENTS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline C.A.S. & CONCENTRATION \% & Ingredient Name & T.L.V. & LD/50 & LC/50 \\
\hline \[
\begin{aligned}
& 25155- \\
& 30-0
\end{aligned}
\] & 10-30 & \[
\begin{aligned}
& \text { SODIUM } \\
& \text { DODECYLBENZENESULFONATE }
\end{aligned}
\] & \begin{tabular}{l}
NOT \\
AVAILABLE
\end{tabular} & \[
\begin{array}{|l|}
\hline 438 \\
\text { MG/KG } \\
\text { RAT ORAL } \\
\text { 1330 } \\
\text { MG/KG } \\
\text { MOUSE } \\
\text { ORAL }
\end{array}
\] & NOT AVAILABLE \\
\hline \[
\begin{aligned}
& 497-19- \\
& 8
\end{aligned}
\] & 7-13 & SODIUM CARBONATE & NOT AVAILABLE & \begin{tabular}{l}
4090 \\
MG/KG \\
RAT ORAL 6600 \\
MG/KG \\
MOUSE \\
ORAL
\end{tabular} & \[
\begin{aligned}
& \text { 2300 } \\
& \text { MG/M3/2H } \\
& \text { RAT } \\
& \text { INHALATION } \\
& \text { 1200 } \\
& \text { MG/M3/2H } \\
& \text { MOUSE } \\
& \text { INHALATION }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 7722- \\
& 88-5
\end{aligned}
\] & 10-30 & TETRASODIUM PYROPHOSPHATE & 5 MG/M3 & \[
\begin{array}{|l|}
\hline \text { 4000 } \\
\text { MG/KG } \\
\text { RAT ORAL } \\
\text { 2980 } \\
\text { MG/KG } \\
\text { MOUSE } \\
\text { ORAL } \\
\hline
\end{array}
\] & NOT AVAI LABLE \\
\hline \[
\begin{aligned}
& 7758-2 \\
& 9-4
\end{aligned}
\] & 10-30 & SODIUM PHOSPHATE & \begin{tabular}{l}
NOT \\
AVAILABLE
\end{tabular} & \begin{tabular}{l}
3120 \\
MG/KG \\
RAT ORAL \\
3100 \\
MG/KG \\
MOUSE \\
ORAL \\
>4640 \\
MG/KG \\
RABBIT \\
DERMAL
\end{tabular} & \begin{tabular}{l}
NOT \\
AVAILABLE
\end{tabular} \\
\hline
\end{tabular}
```

msds_alconox_english_osha

```

\section*{Section 2A: ADDITI ONAL I NGREDI ENT I NFORMATI ON}

Note: (supplier)
CAS\# 497-19-8: LD50 \(4020 \mathrm{mg} / \mathrm{kg}\) - rat oral.
CAS\# 7758-29-4: LD50 \(3100 \mathrm{mg} / \mathrm{kg}\) - rat oral.

\section*{Section 3: PHYSICAL / CHEMI CAL CHARACTERISTICS}

Physical state: Solid
Appearance \& odor: Almost odourless.
White granular powder.
Odor threshold (ppm): Not available.
Vapour pressure
Not applicable
(mmHg):
Vapour density (air=1): Not applicable.
By weight: Not available.
Evaporation rate
(butyl acetate =1):
Not applicable
Boiling point (\({ }^{\circ} \mathbf{C}\)): Not applicable.
Freezing point (\({ }^{\circ} \mathbf{C}\)): Not applicable. pH: (1\% aqueous solution).
9.5

Specific gravity @ \(20{ }^{\circ}\) C: (water \(=1\)).
0.85-1.10

Solubility in water (\%): 100-> 10\% w/w
Coefficient of water oil
dist.: Not available.
VOC: None

\section*{Section 4 : FIRE AND EXPLOSI ON HAZARD DATA}

Flammability: Not flammable.
Conditions of flammability:

Surrounding fire.
Extinguishing media: Carbon dioxide, dry chemical, foam.
Water
Water fog.
Special procedures: Self-contained breathing apparatus required.
Firefighters should wear the usual protective gear.

\section*{Auto-ignition temperature: Not available.}

Flash point (\({ }^{\circ} \mathrm{C}\)),
method: None
Lower flammability
limit (\% vol):
Not applicable
Upper flammability
limit (\% vol):
Not applicable
Not available.
Sensitivity to mechanical \(\begin{gathered}\text { impact: }\end{gathered}\)
Hazardous combustion Oxides of carbon (COx).
products: Hydrocarbons.
Rate of burning: Not available.
Explosive power: None
```

msds_alconox_english_osha

```

\section*{Section 5: REACTI VITY DATA}

Chemical stability: Stable under normal conditions.
Conditions of instability: None known.

Hazardous
polymerization:
Will not occur.
Incompatible Strong acids. substances: Strong oxidizers.

Hazardous

\section*{decomposition products:}

\section*{Section 6 : HEALTH HAZARD DATA}

Route of entry: Skin contact, eye contact, inhalation and ingestion.
Effects of Acute
Exposure
Eye contact: May cause irritation.
Skin contact: Prolonged contact may cause irritation.
Inhalation: Airborne particles may cause irritation.
Ingestion: May cause vomiting and diarrhea.
May cause abdominal pain.
May cause gastric distress.
Effects of chronic
exposure:
Contains an ingredient which may be corrosive.
```

LD50 of product, species
\& route: > 5000 mg/kg rat oral
LC50 of product, species Not available for mixture, see the ingredients section
Exposure limit of
material: Not available for mixture, see the ingredients section,

```
Sensitization to product: Not available.
 Carcinogenic effects: Not listed as a carcinogen.
 Reproductive effects: Not available.
 Teratogenicity: Not available.
 Mutagenicity: Not available.
 Synergistic materials: Not available.
 Medical conditions
aggravated by exposure:
Not available.
 First Aid
 Skin contact: Remove contaminated clothing.
 Wash thoroughly with soap and water.
 Seek medical attention if irritation persists.
 Eye contact: Check for and remove contact lenses.
 Flush eyes with clear, running water for 15 minutes while holding
 eyelids open: if irritation persists, consult a physician.

Inhalation: Remove victim to fresh air.
Seek medical attention if symptoms persist.
Ingestion: Dilute with two glasses of water.
Never give anything by mouth to an unconscious person.
Do not induce vomiting, seek immediate medical attention.

\section*{Section 7 : PRECAUTI ONS FOR SAFE HANDLI NG AND USE}

Leak/ Spill: Contain the spill.
Recover uncontaminated material for re-use.
Wear appropriate protective equipment.
Contaminated material should be swept or shoveled into appropriate waste container for disposal.
Waste disposal: In accordance with municipal, provincial and federal regulations.
Handling procedures and Protect against physical damage.
equipment: Avoid breathing dust.
Wash thoroughly after handling.
Keep out of reach of children.
Avoid contact with skin, eyes and clothing.
Launder contaminated clothing prior to reuse.
Storage requirements: Keep containers closed when not in use.
Store away from strong acids or oxidizers.
Store in a cool, dry and well ventilated area.

\section*{Section 8 : CONTROL MEASURES}

Precautionary Measures
Gloves/ Type:

Neoprene or rubber gloves.
Respiratory/ Type:

If exposure limit is exceeded, wear a NIOSH approved respirator.
Eye/ Type:

Safety glasses with side-shields.
Footwear/ Type: Safety shoes per local regulations.
Clothing/ Type: As required to prevent skin contact.
Other/ Type: Eye wash facility should be in close proximity.
Emergency shower should be in close proximity.
Ventilation
requirements: Local exhaust at points of emission.

\section*{Material Safety Data Sheet}

\section*{MATERIAL SAFETY DATA SHEET}

\section*{602698-00 MOBIL DTE 13M}

\section*{1. PRODUCT AND COMPANY IDENTIFICATION}

PRODUCT NAME: MOBIL DTE 13M
SUPPLIER: EXXONMOBIL OIL CORPORATION
3225 GALLOWS RD.
FAIRFAX, VA 22037
24 - Hour Health and Safety Emergency (call collect): 609-737-4411
24 - Hour Transportation Emergency:
CHEMTREC: 800-424-9300 202-483-7616
LUBES AND FUELS: 281-834-3296
Product and Technical Information:
Lubricants and Specialties: 800-662-4525 800-443-9966
Fuels Products: 800-947-9147
MSDS Fax on Demand: 613-228-1467
MSDS Internet Website: http://emmsds.ihssolutions.com/

\section*{2. COMPOSITION//NFORMATION ON INGREDIENTS}

CHEMICAL NAMES AND SYNONYMS: PET. HYDROCARBONS AND ADDITIVES
GLOBALLY REPORTABLE MSDS INGREDIENTS:
None.
OTHER INGREDIENTS:
Substance Name Approx. Wt\%
HYDROTREATED LIGHT NAPHTHENIC 25-35
DISTILLATE (PETROLEUM)
(64742-53-6)
See Section 8 for exposure limits (if applicable).
3. HAZARDS IDENTIFICATION

Under normal conditions of use, this product is not considered hazardous according to regulatory guidelines (See section 15).
EMERGENCY OVERVIEW: Amber Liquid. Note: Pressurized mists may form a flammable mixture. DOT ERG No. : NA
POTENTIAL HEALTH EFFECTS: Under normal conditions of intended use, this product does not pose a risk to health. Excessive exposure may result in eye, skin or respiratory irritation.
For further health effects/toxicological data, see Section 11.

\section*{4. FIRST AID MEASURES}

EYE CONTACT: Flush thoroughly with water. If irritation occurs, call a physician.
SKIN CONTACT: Wash contact areas with soap and water. Remove and clean oil soaked clothing daily and wash affected area. INJECTION INJURY WARNING: If product is injected into or under the skin, or into any part of the body, regardless of the appearance of the wound or its size, the individual should be evaluated immediately by a physician as a surgical emergency. Even though initial symptoms from high pressure injection may be minimal or absent, early surgical treatment within the first few hours may significantly reduce the ultimate extent of injury.
INHALATION: Not expected to be a problem. However, if respiratory irritation, dizziness, nausea, or unconsciousness occurs due to excessive vapor or mist exposure, seek immediate medical assistance. If breathing has stopped, assist ventilation with a mechanical device or mouth-to-mouth resuscitation.
INGESTION: Not expected to be a problem. Seek medical attention if discomfort occurs. Do not induce vomiting.

\section*{5. FIRE-FIGHTING MEASURES}

EXTINGUISHING MEDIA: Carbon dioxide, foam, dry chemical and water fog.
SPECIAL FIRE FIGHTING PROCEDURES: Water or foam may cause frothing. Use water to keep fire exposed containers cool. Water spray may be used to flush spills away from exposure. Prevent runoff from fire control or dilution from entering streams, sewers, or drinking water supply.
SPECIAL PROTECTIVE EQUIPMENT: For fires in enclosed areas, fire fighters must use self-contained breathing apparatus.
UNUSUAL FIRE AND EXPLOSION HAZARDS: Note: Pressurized mists may form a flammable mixture.
COMBUSTION PRODUCTS: Fumes, smoke, carbon monoxide, sulfur oxides, aldehydes and other decomposition products, in the case of incomplete combustion.
Flash Point C(F): 210(410) (ASTM D-92).
Flammable Limits (approx.\% vol.in air) - LEL: 0.9\%, UEL: 7.0\%
NFPA HAZARD ID: Health: 0, Flammability: 1, Reactivity: 0

\section*{6. ACCIDENTAL RELEASE MEASURES}

NOTIFICATION PROCEDURES: Report spills/releases as required to appropriate authorities. U.S. Coast Guard and EPA regulations require immediate reporting of spills/releases that could reach any waterway including intermittent dry creeks. Report spill/release to Coast Guard National Response Center toll free number (800)424-8802. In case of accident or road spill notify CHEMTREC (800) 424-9300.
PROCEDURES IF MATERIAL IS RELEASED OR SPILLED:
LAND SPILL: Shut off source taking normal safety precautions. Take measures to minimize the effects on ground water. Recover by pumping or contain spilled material with sand or other suitable absorbent and remove mechanically into containers. If necessary, dispose of adsorbed residues as directed in Section 13. WATER SPILL: Confine the spill immediately with booms. Warn other ships in the vicinity. Notify port and other relevant authorities. Remove from the surface by skimming or with suitable absorbents. If permitted by regulatory authorities the use of suitable dispersants should be considered where recommended in local oil spill procedures.

ENVIRONMENTAL PRECAUTIONS: Prevent material from entering sewers, water sources or low lying areas; advise the relevant authorities if it has, or if it contaminates soil/vegetation.

\section*{PERSONAL PRECAUTIONS: See Section 8}

\section*{7. HANDLING AND STORAGE}

HANDLING: High pressure injection under the skin may occur due to the rupture of pressurized lines. Always seek medical attention. No special precautions are necessary beyond normal good hygiene practices. See Section 8 for additional personal protection advice when handling this product.
STORAGE: Keep containers closed when not in use. Do not store in open or unlabelled containers. Store away from strong oxidizing agents and combustible materials. Do not store near heat, sparks, flame or strong oxidants.
SPECIAL PRECAUTIONS: Prevent small spills and leakages to avoid slip hazard.
EMPTY CONTAINER WARNING: Empty containers retain residue (liquid and/or vapor) and can be dangerous. DO NOT PRESSURIZE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION; THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Do not attempt to refill or clean container since residue is difficult to remove. Empty drums should be completely drained, properly bunged and promptly returned to a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations.

\section*{8. EXPOSURE CONTROLS/PERSONAL PROTECTION}

\section*{OCCUPATIONAL EXPOSURE LIMITS:}

When mists/aerosols can occur, the following are recommended: \(5 \mathrm{mg} / \mathrm{m} 3\) (as oil mist)- ACGIH Threshold Limit Value (TLV), \(10 \mathrm{mg} / \mathrm{m3}\) (as oil mist) - ACGIH Short Term Exposure Limit (STEL), \(5 \mathrm{mg} / \mathrm{m} 3\) (as oil mist) - OSHA Permissible Exposure Limit (PEL)
VENTILATION: If mists are generated, use adequate ventilation, local exhaust or enclosures to control below exposure limits.
RESPIRATORY PROTECTION: If mists are generated, and/or when ventilation is not adequate, wear approved respirator.
EYE PROTECTION: If eye contact is likely, safety glasses with side shields or chemical type goggles should be worn.
SKIN PROTECTION: Not normally required. When splashing or liquid contact can occur frequently, wear oil resistant gloves and/or other protective clothing.
Good personal hygiene practices should always be followed.

\section*{9. PHYSICAL AND CHEMICAL PROPERTIES}

Typical physical properties are given below. Consult Product Data Sheet for specific details.
APPEARANCE: Liquid
COLOR: Amber
ODOR: Mild
ODOR THRESHOLD-ppm: NE
pH: NA
BOILING POINT C(F): > 316(600)
MELTING POINT C(F): NA
FLASH POINT C(F): 210(410) (ASTM D-92)
FLAMMABILITY (solids): NE
AUTO FLAMMABILITY C(F): NA
EXPLOSIVE PROPERTIES: NA
OXIDIZING PROPERTIES: NA
VAPOR PRESSURE-mmHg 20 C : \(<0.1\)
VAPOR DENSITY: > 2.0
evaporation rate: ne
RELATIVE DENSITY, 15/4 C: 0.874
SOLUBILITY IN WATER: Negligible
PARTITION COEFFICIENT: > 3.5
VISCOSITY AT \(40 \mathrm{C}, \mathrm{cSt} 32.0\)
VISCOSITY AT 100 C , cSt: 6.1
POUR POINT C(F): -45(-49)
FREEZING POINT C(F): NE
VOLATILE ORGANIC COMPOUND: NE
DMSO EXTRACT, IP-346 (WT.\%): <3, for mineral oil only
NA=NOT APPLICABLE NE=NOT ESTABLISHED D=DECOMPOSES
FOR FURTHER TECHNICAL INFORMATION, CONTACT YOUR MARKETING REPRESENTATIVE

\section*{10. STABILITY AND REACTIVITY}

STABILITY (THERMAL, LIGHT, ETC.): Stable.
CONDITIONS TO AVOID: Extreme heat and high energy sources of ignition.
INCOMPATIBILITY (MATERIALS TO AVOID): Strong oxidizers.
HAZARDOUS DECOMPOSITION PRODUCTS: Product does not decompose at ambient temperatures.
HAZARDOUS POLYMERIZATION: Will not occur.

\section*{11. TOXICOLOGICAL DATA}
-ACUTE TOXICOLOGY-
ORAL TOXICITY (RATS): Practically non-toxic (LD50: greater than 2000
\(\mathrm{mg} / \mathrm{kg}\)). -Based on testing of similar products and/or the
components.
DERMAL TOXICITY (RABBITS): Practically non-toxic (LD50: greater than
\(2000 \mathrm{mg} / \mathrm{kg}\)). —Based on testing of similar products and/or the
components.
INHALATION TOXICITY (RATS): Practically non-toxic (LC50: greater
than \(5 \mathrm{mg} /\)). --Based on testing of similar products and/or the
components.

EYE IRRITATION (RABBITS): Practically non-irritating. (Draize score:
greater than 6 but 15 or less). --Based on testing of similar
products and/or the components.
SKIN IRRITATION (RABBITS): Practically non-irritating. (Primary
Irritation Index: greater than 0.5 but less than 3). --Based
on testing of similar products and/or the components.
OTHER ACUTE TOXICITY DATA: Although an acute inhalation study was not performed with this product, a variety of mineral and synthetic oils, such as those in this product, have been tested. These samples had virtually no effect other than a nonspecific inflammatory response in the lung to the aerosolized mineral oil. The presence of additives in other tested formulations (in approximately the same amounts as in the present formulation) did not alter the observed effects.
--SUBCHRONIC TOXICOLOGY (SUMMARY)--
No significant adverse effects were found in studies using repeated dermal applications of similar formulations to the skin of laboratory animals for 13 weeks at doses significantly higher than those expected during normal industrial exposure. The animals were evaluated extensively for effects of exposure (hematology, serum chemistry, urinalysis, organ weights, microscopic examination of tissues etc.).
--REPRODUCTIVE TOXICOLOGY (SUMMARY)--
No teratogenic effects would be expected from dermal exposure, based on laboratory developmental toxicity studies of major components in this formulation and/or materials of similar composition.
--CHRONIC TOXICOLOGY (SUMMARY)--
Repeated and/or prolonged exposure may cause irritation to the skin, eyes or respiratory tract. Overexposure to oil mist may result in oil droplet deposition and/or granuloma formation. For mineral base oils: Base oils in this product are severely solvent refined and/or severely hydrotreated. Chronic mouse skin painting studies of severely treated oils showed no evidence of carcinogenic effects. These results are confirmed on a continuing basis using various screening methods such as Modified
Ames Test, IP-346, and/or other analytical methods. For synthetic base oils: The base oils in this product have been tested in the Ames assay and other tests of mutagenicity with negative results. These base oils are not expected to be carcinogenic with chronic dermal exposures.
--SENSITIZATION (SUMMARY)--
Not expected to be sensitizing based on tests of this product, components, or similar products.

\section*{12. ECOLOGICAL INFORMATION}

ENVIRONMENTAL FATE AND EFFECTS:
In the absence of specific environmental data for this product, this assessment is based on information for representative products.
ECOTOXICITY: Available ectoxicity data (LL50 \(>1000 \mathrm{mg} / \mathrm{L}\)) indicates that adverse effects to aquatic organisms are not expected from this product.
MOBILITY: When released into the environment, adsorption to sediment and soil will be the predominant behavior.
PERSISTENCE AND DEGRADABILITY: This product is expected to be inherently biodegradable.
BIOACCUMULATIVE POTENTIAL: Bioaccumulation is unlikely due to the very low water solubility of this product, therefore bioavailability to aquatic organisms is minimal.

\section*{13. DISPOSAL CONSIDERATIONS}

WASTE DISPOSAL: Product is suitable for burning in an enclosed, controlled burner for fuel value. Such burning may be limited pursuant to the Resource Conservation and Recovery Act. In addition, the product is suitable for processing by an approved recycling facility or can be disposed of at an appropriate government waste disposal facility. Use of these methods is subject to user compliance with applicable laws and regulations and consideration of product characteristics at time of disposal.
RCRA INFORMATION: The unused product, in our opinion, is not specifically listed by the EPA as a hazardous waste (40 CFR, Part 261D), nor is it formulated to contain materials which are listed hazardous wastes. It does not exhibit the hazardous characteristics of ignitability, corrosivity, or reactivity. The unused product is not formulated with substances covered by the Toxicity Characteristic Leaching Procedure (TCLP). However, used product may be regulated.

\section*{14. TRANSPORT INFORMATION}

USA DOT: NOT REGULATED BY USA DOT.
RID/ADR: NOT REGULATED BY RID/ADR.
IMO: NOT REGULATED BY IMO.
IATA: NOT REGULATED BY IATA.
STATIC ACCUMULATOR (50 picosiemens or less):YES

\section*{15. REGULATORY INFORMATION}

US OSHA HAZARD COMMUNICATION STANDARD: When used for its intended purposes, this product is not classified as hazardous in accordance with OSHA 29 CFR 1910.1200.
EU Labeling: Product is not dangerous as defined by the European Union
Dangerous Substances/Preparations Directives. EU labeling not required.
Governmental Inventory Status: All components comply with TSCA,
EINECS/ELINCS, AICS, DSL, and KECI.
U.S. Superfund Amendments and Reauthorization Act (SARA) Title III:

This product contains no "EXTREMELY HAZARDOUS SUBSTANCES".
SARA (\(311 / 312\)) REPORTABLE HAZARD CATEGORIES: None.
This product contains no chemicals subject to the supplier notification
requirements of SARA (313) toxic release program.
THIS PRODUCT HAS BEEN AUTHORIZED BY USDA FOR USE UNDER THE FOLLOWING
CATEGORY: This product is acceptable as a lubricant where there
is no possibility of food contact (complies with earlier USDA
guidelines for H -2 lubricant use).
The following product ingredients are cited on the lists below:
CHEMICAL NAME CAS NUMBER LIST CITATIONS *
ZINC (ELEMENTAL ANALYSIS) (0.08\%) 7440-66-6 22
ZINC ALKYL DITHIOPHOSPHATE 68649-42-3 22
(0.67\%)
- REGULATORY LISTS SEARCHED --

1=ACGIH ALL 6=IARC 1 11=TSCA 4 16=CA P65 CARC 21=LA RTK
2=ACGIH A1 7=IARC 2A 12=TSCA 5a2 17=CA P65 REPRO 22=MI 293
3=ACGIH A2 8=IARC 2B 13=TSCA 5e 18=CA RTK 23=MN RTK
4=NTP CARC 9=OSHA CARC 14=TSCA 6 19=FL RTK 24=NJ RTK
5=NTP SUS 10=OSHA Z 15=TSCA 12b 20=IL RTK 25=PA RTK
26=RI RTK
* EPA recently added new chemical substances to its TSCA Section 4 test rules. Please contact the supplier to confirm whether the ingredients in this product currently appear on a TSCA 4 or TSCA 12b list.
Code key:CARC=Carcinogen; SUS=Suspected Carcinogen; REPRO=Reproductive

\section*{16. OTHER INFORMATION}

USE: HYDRAULIC OIL
NOTE: PRODUCTS OF EXXON MOBIL CORPORATION AND ITS AFFILIATED COMPANIES
ARE NOT FORMULATED TO CONTAIN PCBS.
Health studies have shown that many hydrocarbons pose potential human health risks which may vary from person to person. Information provided on this MSDS reflects intended use. This product should not be used for other applications. In any case, the following advice should be considered:
INDUSTRIAL LABEL
Under normal conditions of intended use, this product does not pose a risk to health. Excessive exposure may result in eye, skin or respiratory irritation. Always observe good hygiene measures. First Aid: Wash skin with soap and water. Flush eyes with water. If overcome by fumes or vapor, remove to fresh air. If ingested do not induce vomiting. If symptoms persist seek medical assistance. Read and understand the MSDS before using this product.

For Internal Use Only: MHC: \(1^{*} 1^{*} 1^{*} 1^{*} 1^{*}\), MPPEC: A, TRN: 602698-00, CMCS97: 970705, REQ: US - MARKETING, SAFE USE: L EHS Approval Date: 25APR2003

Information given herein is offered in good faith as accurate, but without guarantee. Conditions of use and suitability of the product for particular uses are beyond our control; all risks of use of the product are therefore assumed by the user and WE EXPRESSLY DISCLAIM ALL WARRANTIES OF EVERY KIND AND NATURE, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE IN RESPECT TO THE USE OR SUITABILITY OF THE PRODUCT. Nothing is intended as a recommendation for uses which infringe valid patents or as extending license under valid patents. Appropriate warnings and safe handling procedures should be provided to handlers and users. Alteration of this document is strictly prohibited. Except to the extent required by law, republication or retransmission of this document, in whole or in part, is not permitted. Exxon Mobil Corporation and its affiliated companies assume no responsibility for accuracy of information unless the document is the most current available from an official ExxonMobil distribution system. Exxon Mobil Corporation and its affiliated companies neither represent nor warrant that the format, content or product formulas contained in this document comply with the laws of any other country except the United States of America.
Prepared by: ExxonMobil Oil Corporation
Environmental Health and Safety Department, Clinton, USA
Copyright 2001 Exxon Mobil Corporation. All Rights Reserved.

\section*{Appendix D \\ Project Points of Contact}

\section*{Project Points of Contact}

Background Study and Geochemical Evaluation
Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{ Address } & Affiliation & Phone \\
\hline \begin{tabular}{l}
Michael Goodrich, PG \\
(Project Manager)
\end{tabular} & \begin{tabular}{l}
Shaw Environmental \\
2440 Louisiana Blvd. NE. \\
Suite 300 \\
Albuquerque NM 87110
\end{tabular} & Shaw & \begin{tabular}{l}
T: 505-262-8908 \\
F: 505-262-8855
\end{tabular} \\
\hline Steven Smith & \begin{tabular}{l}
Fort Worth District Planning, Environmental, and \\
Regulatory Division \\
819 Taylor Street, Room 3A12 \\
Fort Worth, Texas 76102
\end{tabular} & USACE & T: 817-886-1879 \\
\hline \begin{tabular}{l}
Mark Patterson \\
(Environmental Coordinator)
\end{tabular} & \begin{tabular}{l}
Ravenna Army Ammunition Plant \\
8451 State Route 5 \\
Building 1037 \\
Ravenna, OH 44266-9244
\end{tabular} & BRAC & \begin{tabular}{l}
T: 330-358-7312 \\
F: 330-358-7314
\end{tabular} \\
\hline Richard Cruz & \begin{tabular}{l}
Ft. Wingate Army Depot \\
7 Miles East of Gallup \\
Bldg 1 \\
Ft. Wingate, NM 87316
\end{tabular} & BRAC & T: 505-488-6109 \\
\hline \begin{tabular}{l}
Dr. Burton C. Suedel \\
(Research Biologist)
\end{tabular} & \begin{tabular}{l}
US Army Engineer Research and Development \\
Center Waterways Experiment Station, EP-R \\
3999 Hall/ Ferry Road \\
Vicksburg, MS 39180-6199 \\
email:burton.suedel@usace.army.mil
\end{tabular} & USACE & T: 601-634-4578 \\
F: 601-634-3120
\end{tabular}

\section*{Project Points of Contact (Continued)}

\section*{Background Study and Geochemical Evaluation}

Fort Wingate Depot Activity
Gallup, New Mexico
\begin{tabular}{l|l|l|c}
\hline \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{ Address } & Affiliation & \multicolumn{1}{c}{ Phone } \\
\hline Sharlene Begay-Platero & \begin{tabular}{l}
Navajo Nation Wingate Project Coordinator \\
Eastern Navajo Economic Development Office \\
211 E. Historic Hwy. 66 \\
Church Rock, NM 87311
\end{tabular} & \begin{tabular}{l}
Navajo \\
Nation
\end{tabular} & T: 505-863-6414 \\
\hline Edward Wemytewa & \begin{tabular}{l}
Attn: Governor's Office \\
P.O. Box 339 \\
1203B State Hwy 53 \\
Zuni, NM 87327
\end{tabular} & \begin{tabular}{l}
Pueblo of \\
Zuni
\end{tabular} & T: 505-782-7036 \\
\hline Ben Burshia & \begin{tabular}{l}
Chief of Real Estate Services Division \\
Central Office, Bureau of Indian Affairs \\
1620 L Street NW. Suite 1075 \\
Washington, DC 20036
\end{tabular} & BIA & T: 202-452-7778 \\
\hline Rose Duwyenie & \begin{tabular}{l}
BIA - NR - Environmental Protection \\
301 West Hill \\
Gallup, NM 87305
\end{tabular} & BIA & T: 505-863-8369 \\
\hline Ira May & \begin{tabular}{l}
U.S. Army Environmental Center \\
SFIM-AEC-ERA \\
5179 Hoadley Rd. \\
APG (EA), MD 21010-5401
\end{tabular} & USACE & T: 401-436-7099 \\
\hline
\end{tabular}

\section*{Appendix E \\ Resumes of Key Personnel}

\section*{Michael T. Goodrich, RG}

\section*{Professional Qualifications}

Mr. Goodrich is a senior hydrologist with over 22 years of diversified experience in hydrogeologic investigations. He is a Registered Geologist whose technical specialties include numerical modeling of groundwater flow and contaminant transport, field investigations into the hydraulics of groundwater flow, performance assessment of landfills and waste disposal sites, and validation of numerical models. Mr. Goodrich is experienced in the use of geostatistics and the treatment of hydrologic data and parameter uncertainty, has excellent written and verbal communication skills, and is skilled at performing multiple tasks.

\section*{Education}
M.S., Hydrology/Hydrogeology, University of Nevada, Reno, Nevada, 1986
B.S., Biology, University of New Mexico, Albuquerque, New Mexico, 1980

OSHA 8-hour Hazardous Waste Operations Update; 2008
OSHA 8-hour Supervisor Training; 1990
OSHA 40-hour Hazardous Waste Operations Training; 1989
Project Management; MWH University and other on-line classes
New Mexico Water -- Rights in Conflict; Water Law Institute
Risk Assessment for the Environmental Professional; National Groundwater Association
Decision Analysis and Groundwater Modeling; Freeze, Smith, Domenico, \& Schwartz
Stochastic and Geostatistical Analysis for Groundwater Modeling; International Groundwater Modeling Center
Contaminant Transport Modeling; Princeton University

\section*{Registrations/Certifications}

Registered Geologist, State of Arizona, Registration No. 40814

\section*{Professional Affiliations}

National Ground Water Association
Arizona Hydrological Society

\section*{Experience and Background}

Mr. Goodrich's skills focus on numerical modeling of groundwater flow, contaminant transport, and evaluation of water resources. He works extensively with commercial and industrial clients, as well as a variety of agencies within the DOD and DOE. He is familiar with a wide variety of deterministic and stochastic methods and is experienced with many current types of software. He is author or co-author on more than 20 technical reports and peer-reviewed publications. Representative projects include:
- Supported the DOE by modeling flow through a proposed Permeable Reactive Barrier at Los Alamos National Laboratory (LANL). Developed a model of saturated flow in the alluvial aquifer and evaluated the hydraulic effect of various PRB designs.
- Designed and implemented a multidimensional model for flow and contaminant transport at two different Superfund sites in Texas. Evaluated the rate and direction of flow, the affect of extraction wells on water levels, and the effects of groundwater discharge to a nearby stream. Met with Texas regulatory staff, presented results to the EPA, and authored a descriptive technical report.
- Supported LANL on preparation of the TA-16 Deep Groundwater Investigation Report. Provided conceptual model review, technical review on various report chapters, and interacted as requested with LANL senior staff/modelers.
- Supported the State of Alaska in the development of a model to simulate groundwater and surface water flow along Ship Creek, near Anchorage. Simulated the hydraulic impact from the removal of two dams along Ship Creek.
- Supported the DOE's Pantex facility by developing a variably saturated flow model using Modflow-Surfact. Simulated three-dimensional flow from a surface playa, through the vadose zone to a perched aquifer, and through a second vadose zone to the regional aquifer.
- Integral member of an SNL team that developed a high-level waste performance assessment methodology for the NRC. Also, directly supported SNL and the NRC in "HYDROCOIN" and "INTRAVAL," two international groundwater modeling studies aimed at improving performance assessment strategies. Evaluated flow and transport in porous and fractured media and under variably saturated conditions.
- Supported the DOE on a risk assessment at the Salmon Site, Tatum Dome, Mississippi. Responsible for using Modflow and MT3D to model the fate and transport of radionuclides and other contaminants resulting from two underground nuclear tests at this site. Interfaced with DOE officials at the Nevada Test Site and with the regulatory staff from the state of Mississippi.
- Supported the DOE in a variety of tasks related to a performance assessment of a proposed low-level waste disposal facility. Used VS2DT and HELP to evaluate the effectiveness of various engineered barrier designs and the long-term competency of different waste containers (e.g., glass, concrete, local soil) in the unsaturated zone. Also helped develop conceptual models of unsaturated flow and radionuclide transport that were integral to both disturbed and undisturbed performance scenarios.
- Supported the DOE by using the VS2DT and TDAST codes to develop arid environment risk assessment scenarios of hazardous waste transport through the vadose zone to the water table and through the saturated zone to a receptor well. Performed Monte Carlo runs to help address uncertainty in vadose zone hydraulic parameters. Modified VS2DT to compute zero, first, and second moments of inertia. Also performed benchmarking and verification of the VS2DT code against six other variably saturated flow and transport codes.

\section*{Jonathan Myers}

\section*{Professional Qualifications}

Dr. Myers holds a Ph.D. in Geochemistry and has twenty-six years of professional experience in the areas of geochemistry, environmental forensics, and environmental statistics. He has directed the characterization of statistical distributions of background concentrations of naturally occurring metals and radionuclides in soil and groundwater at Sandia National Laboratories, Kirtland AFB, and the former Walker AFB in New Mexico; radionuclides in groundwater and soil at Norton AFB; metals in soil and groundwater at Redstone Arsenal, Knolls Atomic Power Laboratory, Lee Field Naval Air Station, and San Juan Naval Air Station; metals in groundwater at Fort Chaffee and Langley AFB; and metals in groundwater and sediments at a chlorinated solvent plant in Louisiana. He then applied these background determinations to identify areas of contamination and evaluate the effectiveness of remediation efforts.

A novel approach employed by Dr. Myers has been the use of geochemical correlations to distinguish between contamination versus naturally high background concentrations of metals in groundwater, surface water, sediment, and soil. He has applied these geochemical evaluation techniques at numerous Army facilities, Navy bases, Air Force facilities, Department of Energy facilities, five commercial Superfund sites. He has also taught short courses on these geochemical evaluation and environmental forensic techniques at several international environmental remediation conferences.

Dr. Myers has taught several short courses on geochemistry of metals and environmental forensic techniques, and has published over thirty technical papers in his field of expertise. He has made several presentations to the National Academy of Sciences, the most recent being "Recommendations of the Engineered Alternatives Task Force on Improving the Long-Term Performance of the Waste Isolation Pilot Plant."

\section*{Education}

Ph.D., Geochemistry, University of Wyoming, Laramie, Wyoming; 1982
M.S., Geology, University of Wyoming, Laramie, Wyoming; 1978
B.S., Geology, City University of New York, New York City, New York; 1974

\section*{Experience and Background}

1995- Senior Staff Consultant, Geosciences Group, Shaw Environmental, Inc. Albuquerque, Present New Mexico. Dr. Myers serves as a senior technical resource in the areas of geochemistry, geochemical and statistical modeling, environmental forensics, and performance assessment. He is currently supporting site characterization, remedial investigations, feasibility and treatability studies, disposal system designs, risk assessments, and fate \& transport modeling at DOE, DoD, mining, and commercial Superfund Sites. Recent projects included:
- Technical director of two forensic investigations to determine the sources of polycyclic aromatic hydrocarbon (PAH) compounds detected in sediment at Redstone Arsenal (AL) and in soil at Volunteer Army Ammunition Plant (TN). Multicomponent graphical, spatial, and statistical "fingerprint" evaluations were used to identify the sources of PAH compounds at both sites as general "urban runoff" that are unrelated to military activities.
- Performed geochemical forensic investigations at a brass foundry site in Alabama, a zinc smelter site in Oklahoma, and a copper mine in Arizona to identify sources of heavy metals in soil samples from residential properties. Geochemical evaluation techniques were used to compare elemental ratios in residential samples with ratios present in samples from several known source areas to infer probable sources.
- Technical director and geochemical modeler on an investigation into the origin of an arsenic groundwater plume that is coincident with a high- pH plume at the site of a former caustic plant at Redstone Arsenal, Alabama. Dr. Myers theory that the high arsenic is caused by the desorption of naturally occurring arsenic adsorbed on iron oxide sediments along the flow path was subsequently verified by additional field sampling. Verification of the theory led to the recommendation of a monitored natural attenuation remedy which was approved by regulators.
- Dr. Myers determined the source of a puzzling arsenic plume that has persisted in a transmissive aquifer beneath a commercial phosphate chemical processing facility in the mid-western US, despite the fact that the surficial source (an unlined arsenic-sulfide-phosphate sludge pond) was removed 30 years ago. Geochemical modeling techniques were used to determine that phosphate contamination stimulated anaerobic microbial activity, which precipitated arsenic-sulfides in the aquifer. Following source removal, oxic water infiltrated the anaerobic zone, which oxidized the sulfides and released the arsenic. The conceptual model was verified by the identification of arsenic sulfide precipitates within the plume.
- Technical director of a geochemical investigation at Tinker Air Force Base, Oklahoma. The investigation is designed to determine the sources of elevated concentrations of nickel and chromium in groundwater by evaluating filtration effects and serial sampling during the purging of ten monitor wells. Possible sources include contamination from electroplating operations, naturally high background, or corrosion of stainless steel well construction materials. Responsibilities include development of technical approach, sampling and analysis plan, and interpretation of resulting data. Results conclusively identified corrosion of stainless steel well construction materials as the source of the elevated metal concentrations.
- Project manager and technical director for a project to establish the statistical distributions of background concentrations of naturally occurring metals and radionuclides in groundwater, air, and soil at Sandia National Laboratories and

Kirtland Air Force Base, which are co-located on 80 square miles of land adjacent to Albuquerque, New Mexico. The work involves establishing a database of approximately 100,000 analyses, screening the data for acceptable values, determining the proper spatial scale for establishing individual distributions, and developing and implementing a statistical methodology to describe the background distributions.
- Technical director for a project to establish the statistical distributions of background concentrations of naturally occurring radionuclides in groundwater and soil at Norton Air Force Base, California. The work involved development of sampling strategies and statistical methodologies, review of soil and groundwater analytical data, statistical analyses to determine site-specific background distributions, and comparisons with regional values.

1991- Manager, Hydrologic and Geochemical Assessment Group, IT Corporation, 1995 Albuquerque, New Mexico. Dr. Myers managed a group of eight scientists and engineers with specialties in geochemistry, hydrology, and contaminant flow and transport; and was responsible for technical oversight, cost and schedule, and technical staff supervision responsibilities. The group served as a technical resource for clients and the company by performing computer simulations in support of site characterization, remedial investigations, feasibility and treatability studies, disposal system designs, risk assessments, and long-term performance predictions. The group was experienced in performing groundwater flow and contaminant transport modeling, calculation of radionuclide and heavy metal source terms, and estimation of adsorption coefficients for contaminants. His specific responsibilities have included:

1985- Section Manager, Geochemical Analysis, IT Corporation, Albuquerque, New Mexico. 1991 Dr. Myers managed technical staff involved in projects for the Geochemical Analysis specialty in Albuquerque. His specific responsibilities have included:

1982- Senior Geochemist, Basalt Waste Isolation Project, Rockwell International, Richland, activities in the field of high-level nuclear waste management and disposal at the Hanford Reservation:

\section*{Professional Affiliations}

American Geophysical Union
Geochemical Society
International Association of Geochemistry and Cosmochemistry
American Institute of Physics

\section*{Short Courses Taught}

Geochemical Evaluations of Metals in Soil, Sediment, Groundwater, and Surface Water: How to Distinguish Naturally Elevated Concentrations from Site-Related Contamination:
- Sixth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May, 2008.
- 2008 Annual Groundwater Summit, National Groundwater Association, Memphis, Tennessee, April, 2008.
- \(18^{\text {th }}\) Annual Association for Environmental Health and Sciences (AEHS) West Coast Conference on Soils, Sediments and Water,San Diego, California, March 2008.
- Society for Risk Analysis, Annual Meeting, San Antonio, Texas, December, 2007.
- 23rd Annual International Conference on Soils, Sediments and Water, University of Massachusetts, Amherst, Massachusetts, October, 2007.
- Ninth International In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland, May, 2007.
- Fourth International Conference on Remediation of Contaminated Sediments, Savannah, Georgia, January, 2007.

Environmental Forensic Tools, Navy Remediation Innovative Technology Seminar, presented at four West Coast locations, Fall, 2005.

Natural Attenuation of Metals Workshop, Third International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 19, 2002.

\section*{Dale J. Flores, PG}

\section*{Professional Qualifications}

Mr. Flores is a Certified Professional Geoscientist with thirteen years of experience in conducting and managing surface and subsurface investigations. He has conducted groundwater monitoring activities for the U.S. Department of Energy (DOE), the U.S. Army Corps of Engineers (USACE), and commercial clients as well as investigations and monitoring well installations. He has managed field programs and written reports on groundwater and soil investigations. His background includes serving as a geologist for the Environmental Restoration (ER) Program at Los Alamos National Laboratory (LANL). Mr. Flores has extensive experience in conducting and managing environmental sampling programs for both government and commercial clients.

\section*{Education}
B.S., Geology, University of New Mexico, Albuquerque, New Mexico; 1988

Principles of Hazardous Waste Management, Short Course, Red Rocks Community College, Lakewood, Colorado; 1989
American Society for Testing and Materials short course on vadose zone and groundwater monitoring; 1991
Occupational Safety and Health Act Hazardous Waste Operations Training, 40 hours, IT Corporation; 1993
Health and Safety Coordinator training, IT Corporation; 1994
Groundwater Engineering course, University of New Mexico, Albuquerque, New Mexico; 1995
Geographical Information Systems in Water Resource Management, University of New Mexico, Albuquerque, New Mexico; 2000

\section*{Registrations/Certifications}

Active DOE "L" clearance
Certified Scientist (No. 288), New Mexico Environment Department (NMED)
Underground Storage Tank (UST) Bureau.
State of Texas, Board of Professional Geoscientists, Geology-License Number 2196
U.S. Army Corps of Engineers; Construction Quality Management For Contractors, March 2005

\section*{Experience and Background}

1994- Geologist, Shaw Environmental, Inc. Albuquerque, New Mexico. Responsible for Present conducting geologic investigations, including geologic logging, monitoring well installations, soil sampling, and interpretation of subsurface stratigraphy.
- Served as Task Manger for Contract Task Order No. 17 under the USACE Total Environmental Restoration Contract, Sacramento District. Task Order Manager for USACE Federally Used Defense Sites at the Isleta Pueblo Ordnance Impact Area. Responsible for estimating, working with client and stakeholders to develop technical objectives, scheduling work, coordinating field efforts, supervision of field staff, and assisting with the preparation of plans and reports. The project scope was to determine the nature and extent of Material Potentially Presenting an Explosive Hazard for the portion of a range fan overlapping on the Pueblo of Isleta.
- Currently serve as Project Manager for Contract Task Order No. 15 under the USACE Total Environmental Restoration Contract, Sacramento District. Project Manager for USACE Federally Used Defense Sites at the Former Walker Air Force Base and Atlas Missile Silos. Responsible for estimating, working with client and stakeholders to develop technical objectives, scheduling work, assisting with monthly cost and schedule reports, and ensuring that client deliverables meet project objectives for four work authorization directives.
- Task manager for cleanup at six permitted sites under the Air Force Center for Environmental Excellence Installation Restoration Program (IRP) at Kirtland Air Force Base (AFB). Responsible for technical report preparation and review, fieldwork oversight, supervision of subcontractor personnel, and client interaction. Project work performed within the framework of the IRP.
- Served as rig geologist for well installation program conducted for NMED. Responsible for drilling oversight, monitoring well installation, and interpretation of subsurface conditions for leaking UST Remediation Project.
- Conducted three UST on-site investigations at ER Sites 216, 218, 221 at Sandia National Laboratories/New Mexico (SNL/NM). Responsible for sample plan preparation and for supervising on-site fieldwork. Conducted site safety evaluations.
- Generated statistical plots for background geochemistry project at SNL/NM. Responsibilities included interpreting statistical analysis of analytical data.
- Conducted and interpreted slug test data at UST remediation site for NMED. Responsible for coordinating field activities and performing falling head tests.
- Responsible for performing operation and maintenance on soil vapor extraction system at USTcontaminated site.
- Supervised soil-gas investigation at former City of Albuquerque landfill. Responsibilities included health and safety, supervision, data interpretation, and gas plume characterization.
- As Task Leader for quarterly groundwater sampling at UST-contaminated site, coordinated sampling and sample collection activities and prepared groundwater assessment report.
- As Sample Task Leader for groundwater sampling at the Mixed Waste Landfill (SNL/NM), coordinated sampling and sample collection activities and prepared reports.
- Co-authored Resource Conservation and Recovery Act Facility Investigation (RFI) report at private facility in Albuquerque (confidential client). Responsible for determining site characterization approach based on hydrogeologic conditions beneath subject facility.
- As Task Manager for Cerro Colorado and South Broadway Landfills for City of Albuquerque, ensured that monitoring requirements at landfills were performed in compliance with applicable regulations, reported monitoring results annually, and provided regulatory advisement to City of Albuquerque.

1990- Assistant Geologist, Roy F. Weston, Albuquerque, New Mexico. Staff geologist 1994 (WESTON Project office), Los Alamos National Laboratory (LANL) ER Program, Los Alamos, New Mexico. Project entailed deep drilling of two boreholes in accordance with RFI work plan at Technical Area (TA) 21 for LANL.
- Performed lithologic description and interpretation of borehole geology for Los Alamos investigations in both DP Canyon and canyons downgradient of potential source area. Oversaw drill rig using dual-wall reverse air circulation drilling method and ODEX 190 casing system and geochemical/geotechnical soil sampling. Wrote TA-21 drilling investigations plan, co-wrote TA-21 quarterly technical reports.
- Served as geologist/drill rig leader for DOE Mound Facility Operable Unit 9 ER Program, Miamisburg, Ohio. Project entailed installing 70 monitoring wells and piezometers for sitewide groundwater characterization. Supervised drilling operations of Rotosonic drill rig. This included supervising support personnel, rock/soil boring and logging, geochemical/geotechnical soil sampling, rock-coring oversight using conventional air rotary methods, installing/developing and abandoning monitoring well, and tracking drilling costs.
- As geologist/sample coordinator for Water Quality Assurance Revolving Fund Project, Phoenix, Arizona, investigated groundwater in the metropolitan Phoenix area for Arizona Department of Environmental Quality. Coordinated and supervised sampling in East Washington Project Area, wrote quality water sampling reports, researched background well construction information for existing wells in project area, maintained well database, performed groundwater sampling for volatile organic compounds, installed monitoring well using dual-wall percussion hammer drilling methods, developed monitoring wells, assisted with pumping tests, and prepared welldrilling permits.
- As geologist for Uranium Mill Tailings Remedial Action Project (Albuquerque) performed groundwater sampling for DOE at 26 inactive uranium mill tailings sites in support of contamination migration studies. Performed monitoring-well and surface-water sampling, and lysimeter sampling, field water quality measurements, water level measurements, and equipment calibration; made necessary preparations for field trips; supervised field personnel; and performed samples control and handling.

1988- Engineering Technician, Fox Consultants, Colorado and New Mexico. Performed 1990 shallow auger drilling/sampling of subsurface soil for foundation design, street pavement design, and permeability testing. Also performed field and laboratory tests for concrete, asphalt, and soil to ensure quality placement of these materials for construction purposes.

\section*{Professional Affiliations}

Arizona Hydrologic Society
New Mexico Chapter, Water Resources Management Society

\section*{Craig Givens}

Mr. Givens is a geological engineer with 21 years of professional experience in the fields of hazardous, mixed, and nuclear waste transportation and disposal engineering and Quality Assurance (QA)/Quality Control (QC). His QA/QC duties include performing project QA audits, providing project QA/QC oversight, performing QA/QC and technical reviews of project deliverables, performing project specific QA training, providing QA direction to project staff, and preparing QA plans and procedures. He is knowledgeable of QA regulations related to nuclear waste repositories, transportation, and hazardous waste sites. His engineering and project management duties have included managing transuranic (TRU) waste transportation technical support contract to the Waste Isolation Pilot Plant (WIPP) contractor; performing TRU waste transportation evaluations and modeling; providing geotechnical and hydrological expertise to hazardous, mixed, and nuclear waste disposal projects; and feasibility studies through the performance of surface and subsurface hydrological calculations, soil and rock structural calculations, and backfill and earthen sealing materials design calculations.

\section*{Education}

Graduate studies, Geological Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico
B.S., Geological Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico; 1985
Computer Modeling Using FLAC, Itasca Consulting Group, Carlsbad, New Mexico; 1992
Engineering Operations Quality Assurance Officer Training Program, International Technology Corporation; 1991
Hazardous Waste Operations and Emergency Response (40 hour HAZWOPER), Field Sciences Institute; June 2000, and associated refreshers.

\section*{Registrations/Certifications/Clearance}

Certified Lead Auditor (2003 - current)
U.S. Army Corps of Engineers (USACE) Construction Quality Management for Contractors (March 2003, Renewed April, 2007)

\section*{Experience and Background}

2001- QA Manager, Shaw Environmental, Inc. (formerly IT Corporation), Albuquerque, New Present Mexico. As QA Manager for the Shaw Environmental, Inc. (Shaw) Albuquerque Office, responsible for implementing and overseeing the QA program for all projects performed by the Shaw Albuquerque office. Knowledgeable of applicable QA requirements and regulations for the USACE and U.S. Department of Energy (DOE) including 10 CFR 830.120, DOE Order 414.1A, NQA-1, and the DOE-Carlsbad Field Office (CBFO) QA Program Document (QAPD). Specific activities include:
- Preparing Contractor Quality Control Plans and providing daily QC oversight for USACE, Total Environmental Restoration Contract (TERC) projects including site investigations at former Atlas missile silo sites and the former Walker Air Force Base in southeast New Mexico.
- Preparing QA Project Plan (QAPjP) for Shaw software development in support of Westinghouse Waste Isolation Division (WID). This QAPjP was prepared to provide QA controls for the development of the Automated TRUPACT-II Authorized Methods for Payload Control (e-TRAMPAC) software package in support of the CH-TRU waste program.
- Providing QA oversight for TRU waste packaging (TRUPACT-II, 72-B Cask, and HalfPACT) SAR submittals including QA reviews of the submittals, QA support and training for the project staff, and preparation of project required QA procedures and plans.
- Preparing a QAPD compliant QAPjP for the Idaho National Engineering and Environmental Laboratory Acceptable Knowledge project for RH-TRU waste and verifying the implementation of the QA requirements.
- Performing periodic QA program and project assessments of the Shaw WIPP CH- and RH-TRU waste program activities, which include technical report preparation, SAR submittals, and e-TRAMPAC software development.
- Managing the TRU waste transportation technical support contracts (remote handled [RH] and contact handled [CH]) for the WIPP contractor (Washington TRU Solutions LLC). Contract provides technical support and assists in preparation of CH- and RHTRU waste transportation Safety Analysis Reports (SAR) submitted to and approved by the U.S. Nuclear Regulatory Commission (NRC) and responding to requests for additional information from the NRC.

1991- QA Engineer/Geological Engineer, IT Corporation, Albuquerque, New Mexico. As a QA Engineer, assists the QA Officer in implementing IT's Engineering Operations QA program for the Albuquerque office including the performance of internal and external QA audits and assessments. As a Geological Engineer, provides geotechnical and hydrological expertise to hazardous, mixed, and nuclear waste disposal projects. Specific activities include:
- Participating as a member of a seven-person assessment team in a large-scale QA assessment of the Battelle Columbus Laboratory (Columbus, OH) TRU waste packaging and shipping program in preparation for an operational readiness review by the DOE-CBFO.
- Preparing the QAPjP for the Lawrence Livermore National Laboratory TRU Waste Characterization Project, which provides requirements and guidance for assuring that TRU waste is characterized to meet the specific objectives of the WIPP TRU Waste Characterization Program.
- Performing complete QA project audits for groundwater monitoring and sampling project at Tinker Air Force Base, Oklahoma City, OK.
- Participating in QA project audit for uranium mill tailings reclamation project at Monticello, Utah.
- Preparing a draft of the QA Program Plan for the TRUPACT-II Gas Generation Test Program.
- Preparing the annual Geotechnical Analysis Report for the WIPP underground (1997 through 2000).
- Conducting QA audits and reviews for the WIPP Brine Sampling and Evaluation Project and the Geotechnical Field Data and Analysis Report to ensure that the proper QA program elements have been included.
- Acting as interim QA Program Manager for the Mather Air Force Base Remedial Investigation/Feasibility Study project in northern California supporting the Richland, WA; Martinez, CA; and Albuquerque, NM offices.
- Conducting QA audits and reviews of CERCLA feasibility studies generated for the Hanford Site in eastern Washington to ensure that the proper QA program elements have been included.
- Assisting in the preparation of a Title II design and specification for a corrective action management unit (CAMU) for Sandia National Laboratories/New Mexico's Environmental Remediation Department. Task included coordination and technical review of design drawings and final design report.
- Performing FLAC 3.3 geomechanical modeling and geotechnical design work in support of the Panel Closure System conceptual and final designs for the operational period closure of the WIPP waste disposal panels.
- Calculating mining retrieval rates and waste disposal room consolidation properties for the WIPP Engineered Alternative Benefit/Detriment Study.
- Preparing the Backfill Engineering Analysis Report for the WIPP. Report analyzed subsidence and excavation stability to determine if there was a geomechanical advantage to backfilling part or all of the WIPP underground.
- Assisting in preparing and checking the Non-radionuclide Inventory Database. This is a database of the chemical wastes to be shipped to the WIPP site and integrates the waste types, content codes, shipping requirements, and the chemical constituents and concentrations.
- Assisting in the designing and coding of a risk assessment model for the DOE Mixed Low-Level Waste program.
- Providing technical assistance to the Yucca Mountain Project (YMP) in the areas of Exploratory Shaft (ES) sealing design, sealing material requirements and recommendations, determining ES performance goals and design requirements, and soil laboratory test analyses.
- Preparing a Limited Field Investigation report of the 100-H Area for the Hanford Site. Report included the analysis of field and laboratory data on hazardous chemicals and radionuclides found in soil samples and made conclusions concerning source of contamination and recommendations on remediation of the contaminated areas.
- Developing, evaluating, costing, and scoring hazardous and mixed waste treatment alternatives associated with CERCLA feasibility studies for the Hanford Site and George Air Force Base in California.

Quality Assurance Officer, International Technology Corporation, Albuquerque, New 1991 Mexico. Implemented IT's Engineering Operations QA program for the Albuquerque, Los Alamos, and Carlsbad offices. Specific activities have included:
- Conducted QA audits and reviews for the WIPP including the RCRA Part B permit application, the Engineered Alternatives Task Force (EATF), the geological study of the Air Intake Shaft, the Brine Sampling and Evaluation Project, and the Geotechnical Field Data and Analysis Report to ensure that the proper QA program elements have been included.
- Prepared the QA Program Plan for preparation of the WIPP RCRA Part B permit application.
- Assisted in performing QA grading of items and activities associated with Sandia National Laboratories, New Mexico, and the YMP high-level nuclear waste repository. Analyzed items and activities for QA concerns and determined what QA controls were required for each.
- Conducted staff training in IT QA practices to ensure proper implementation of the program requirements with project activities.
- Conducted audits of other IT offices in the region to ensure proper implementation of the IT Engineering Operations QA program.

1987- Geological Engineer, International Technology Corporation, Albuquerque, New 1990 Mexico. Provided geotechnical and hydrological expertise to hazardous and nuclear waste repository projects including:
- Performed geomechanical creep modeling of the WIPP underground using FLAC and VISCOT programs.
- Provided technical assistance to the YMP in the areas of ES sealing design, sealing material requirements and recommendations, determining ES performance goals and design requirements, and soil laboratory test analyses. Specific tasks included surface hydrology analysis in the region surrounding the ES proposed location, assessing local, state and federal regulatory requirements applicable to the ES site, and estimation of filtration properties of shaft seal materials.
- Prepared and reviewed field test plans, field geomechanical monitoring of salt creep rates and waste disposal room closure rates, geophysical analyses of brine content and movement within the salt formation by resistivity and electrical induction methods for the WIPP. Assisted in the preparation of the Non-radionuclide CH-TRU Waste Inventory Data Base providing information on all CH-TRU waste to be shipped to the WIPP.
- Performed estimations of hydraulic conductivity and future performance goals of grout seals for the SKB Swedish high-level nuclear waste repository project.

1985- Geological Engineer, Westinghouse Hanford Company / Rockwell Hanford 1987 Operations, Basalt Waste Isolation Project (BWIP), Richland, Washington. Rock and soil mechanics laboratory engineer for high-level nuclear waste repository siting project. Performed laboratory soil and grout properties tests on nuclear waste repository seal, backfill, and waste canister packing materials using state-of-the-art laboratory test equipment at high temperatures and pressures. Prepared and revised technical, laboratory, and operating procedures, test data reports, and test plans. Administered contracts to outside testing organizations at the Hanford site.

\section*{Publications}
S. M. Djordjevic, C. A. Givens, and M. S. Whittaker, 2007, "A Methodology for Mixing Different Waste Types in an RH-TRU Waste Shipment," Proceedings of the Waste Management 2007 Symposium, University of Arizona, Tucson, Arizona.
E. D'Amico, J. O'Leary, S. Bell, S. Djordjevic, C. Givens, T. Shokes, S. Thompson, and S. Stahl, 2003,"Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site," Proceedings of the Waste Management 2003 Symposium, University of Arizona, Tucson, Arizona.
C. Schulz, C. Givens, R. Bhatt, and J. Whitworth, 2003, "RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory," Proceedings of the Waste Management 2003 Symposium, University of Arizona, Tucson, Arizona.

Givens, C.A., M.A. Valdivia, S. Saeb, C.T. Francke, and S.J. Patchet, 1995, "Estimation of Surface Subsidence at the Waste Isolation Pilot Plant," Proceedings of the Third Canadian Conference on Computer Applications in the Mineral Industry, Montreal, Quebec, October, 1995, pp. 370-379.

Fernandez, J.A., J.B. Case, C.A. Givens, and B.C. Carney, 1994, "A Strategy to Seal Exploratory Boreholes in Unsaturated Tuff," SAND 93-1184, Sandia National Laboratories/New Mexico, Albuquerque, New Mexico.

Alcorn, S.R., J. Myers, M.A. Gardiner, and C.A. Givens, 1989, "Chemical Modeling of Cementitious Grout Materials Alteration in HLW Repositories," Waste Management '89, Proceedings of the Symposium on Waste Management, University of Arizona, Tucson, Arizona.

Gardiner, M.A., S.R. Alcorn, J. Myers, and C.A. Givens, 1989, "Modeling Simple Cement-Water Systems Using the Speciation/Solubility/Reaction Path Computer Codes EQ3NR/EQ6, With Specific Application to Nuclear Waste Repositories," Proceedings of the Sixth International Water-Rock Interaction Conference, Grand Malvern, England, August 1989, pp. 235-238.```

