

Coven: Samping in the pre-dawn light at Eayle River Finte. Jamary 2004. Sampling bias in evidert in this image as the samplers follow the darkest segment of the plume from the detonation point toward the edge of the plame. The seconis bag at each sampling location is the subsurlace sample. (Photo by C.A. Rameey)

An Examination of Protocols for the Collection of Munitions-Derived Explosives Residues on Snow-Covered Ice

Michael R. Walsh, Marianne E. Walsh, Charles A. Ramsey, and Thomas F. Jenkins

Engineer Research and Development Center
Cold Regions Research and Engineering Laboratory
72 Lyme Road
Hanover, New Hampshire 03755

Approved for puolic refease; cistribution is untimited.

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

Abstract

Range contamination and sustainability are major issues for the United States military. Training is a critical factor in force readiness, and the availability of ranges is crucial to this need. To determine the impact of training on ranges, data are required on the deposition of explosives residues from live-fire and blow-in-place detonation of munitions. A method of sampling on snow-covered ranges, the discrete sampling method, was developed by the Army's Cold Regions Research and Engineering Laboratory to determine residues from the detonation of munitions. Although very effective, it requires the collection of many large samples, resulting in labor-intensive field operations and much processing and analysis work in the laboratory. By examining sampled locations within detonation plumes, it appears that collection bias may be affecting the results. There was also no methodology for quality assurance in the collection of the samples. We have examined the process currently in use and carried out a series of experiments to determine whether bias and sample quality issues are present in the sampling technique. Alternative methods of sample collection that afford a greater opportunity for quality control were examined and compared to the discrete sampling method. The recommended alternative sampling protocol is to collect multi-increment samples, and experimental results using this method are presented.

[^0]
CONTENTS

Preface v
1 Introduction 1
2 Physical Setting 3
3 Methods 5
Comparative Tests 7
Application and Confimation Tests 9
Quality Assurance 9
4 Results and Discussion. 12
I. Protocol Tests-The Discrete Sampling Method 12
I. Protocol Tests-Altemative Sampling Methods 22
III. Implementation Terts 30
3 Conclusions 36
References 37
Appendix A. Munitions Data 38
Appendix B. Quality Assurance Procedures for Protocol Tests 41
Appendix C. Dati for the Discrete Sampling Metbod Tesss 48
Appendix D. Data for Protocol Tests, 53
Appendix E. Data for Implementation Tests 56
ILLUSTRATIONS
Figure 1. Eagle River Flats, location of the tests 3
Figure 2. Test setup for detonation of 81 mm mortar rounds and $105-\mathrm{mm}$ howitzer rounds 6
Figure 3. Detonation setup for 155 mum implementation tests. 10
Figure 4. Sampling diagrans tor outside-the-plume sampling 11
Figure ${ }^{5}$. Repicate discrete sampling on Plume $81-3$ 18
Thure G Collecting adjacent MIS sampies and vubsurface samples from 155-mm plume 33

TABLES

Table 1 . Testing contucted for sampling protocol study 5
Tatle 2. Test execution for sampling protocol tests 7
Table 3. Test execution for protocol application tests 9
Table 4. Quality assurance procedures 10
T'able 5. Detonation plume data for DSM tests 12
Table 6. Underreporting of total mass residues due to sampling depth error 14
Table 7. Results of sampling outade the visible plume. 15
Table 8. Detonation proximity bias in DSM sample location 16
Table 9. Detonation proximity bias (mweighted vs. weighted) in DSM residues estímates. 17
Table 10. Soot density bias in DSM residues estimates, Plume 105-4 17
Table 11. Comparison of DSM samples for Plume 81-3 19
Table 12. Data for onter component (RDX) 21
Table 13. Comparison of DSM and adjacent samping 23
Table 14. Relative percent ifferences in caloulated residue values between averaged MIS and composited DSM sampling. 25
Table 15. Replicate comparisons for MES samples 27
Table 16. Relative percent differences in calculated residue values between averaged LSS and composited DSM sampling 28
Table 17. Results of concentric zone sampling of thres plumes 29
Table if. Comparison of grayzone results, Plume 105-4 29
Table 19. Analysis of plume samples- $155-\mathrm{mm}$ Comp-E rounds 31
Table 20. Data for crater samples- 155 mm Comp-B rounds 32
Table 21. Analysis of plume samples- 155 -nm TNT rounds 34
Table 22. Sampling QA nonplume analysis for TNT-itled 155 mm implementation tests 35

PREFACE

This report was prepared by Michael R. Walsh, Mechanical Engineer, Engineering Resources Branch, Engineer Rescarch and Development Center, Cold Regons Research and Engineering Laboratory (ERDC-CRREL), Hanover, New Hampshire; Marianne E. Watsh, Chemical Engineer, Environmental Sciences Branch (ESD), ERDC-CRREL; Charles A. Ramsey, EnviroStat, Fort Collins, Colorado; and Dr. Thomas F. Jeakins, Researd Chemist, ESB, ERDCCRREL.

Major funding for this project came from three sources: Strategic Environmental Research and Development Program through Complanoe Project 1155, Distribution and Fate of Energetics on DoD Test and Training Ranges, through Dr. Judith Pennington of EL and Dr. Tom Jenkins of CRREL; the Minimization of Explosive Residoes in Biow-in-Place Procedures Distributed Sources wotk unit sponsored by the Corps of Engineers Environmental Quality and Iustallations Progrant, Focus Afea for Characterization/Assessment of Distributed Source Orcmancerelated Compounds on Ranges; and funding received from the USA Engineer and Support Center. Huntsville, under the CEHNC OE Intiative Tech Program though Ms. Deborah Dixon Walker.

The work apon which this report is based involved many people across several entities. At Fort Richardson, Mr. L.D. Fleshman and the staff at Range Control provided range access during a very busy period of trainints. The soldiers of the $4 / 1$ th provided engineering demolitions support for the detonation of the rounds. Jeff Lipscomb of the Amy Cold Regions Test Center at Fort Greely coordinated the acquisition and delivery of the rounds used during testing. Ken Wright and James Ratoliffof Clearwater Envirommental provided assistance with the demolitions and UXO support.

For the tests, the authors had field assistance in lanuary from Atan Hewitt, Dr. Jon Zafelt, Clarie Collins, and Kevin Bjella of CRREL, along with Captain Adrian Maccallum of the Australian Army, In March, the authors were joined by Dr. Tom Douglas of CRELL, Tommie Eery of EL, and Drs. Sonia Thiboutot and Guy Ampleman of Defense Research and Development-Canada (Valcaftier, Quebec). For both deployments, Nancy Perroa, Demis Lambert, and Charlie Schelewa set up and operated the sita lab. Major Doug Anderson of CRREL oversaw demolitions operations. JoAns Walls of the Corps of Engineers, Alaska Distritt, provided critical contracting support. Extensive project support was provided by the U.S. Ammy Alaska.

Technical review of this report was provided by Dr. Susan Taylor of CRREL and Dr. Clarence L. Grant.

This report was prepared under the genemi supervision of Thomas J. Tantilo, Chief, Engineering Resources Branch, and Dr. Jedn-Claude Tatinclaux, Chief, Environmental Scienoes Branch, CRREL; Dr. Lance D. Hansen, Deputy Director, CRREL; and James L. Wuebben, Acting Director, CRREL.

The Commander and Executive Director of the Engineer Research and Development Center is Colonel James R. Rowan, EN. The Director is Dr. James R. Houston.

An Examination of Protocols for the Collection of Munitions-Derived Explosives Residues on Snow-Covered Ice

MICHAEL R. WALSH, MARIANNE E WALSH, CHARLES A. FAMSEY, ANO THOMAS F. JENKNS

1 INTRODUCTION

Range contamination and sustainability are majop issues for the United States military. Tainump is a critical factor in force radiness, and the avallability of ranges is crucial to this need. To determine the impact of training with munitions on millitary ranges, data are required on the efficiency of both live-fire and blowing in place of muntions. Curentat lawsuits aganest the Army chaim that residues mesulting from the use of thase ranges ane contaminating local groundwater sources, Reliable data are necessary to assess the merit of thess claims.

A method of residues sampling on snow-covered ranges was developed by the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) (Jenkins et al. 2000, 2002). Although very cffective, it requires the collection of many large snow samples, resulting in slow, faborintensive field operations and much processing and analysis work in the laborem tory. From an examination of sample locations, it appeas that there may be a bis toward sampling in areas where the residue plume is darkest, which may skew the results. There was tiso little done in the past for qualty assurance as the sampling process was 30 laborious.

Soil sampling on firing points at the Domelly Training Area in central Alaska between 2001 and 200 (M.E. Walsh et al. 2005) indicates that multipleincrement sampling for residues is an effective method for characterizing a site for explosives. This work was conducted during the summer, but we hypotherized that the methods used could be effectively applied to winter sampling of residues on snow. Residue sampling on snow following a winter live-fire exercise at the U.S. Amy's Fort Richardson, Alaska, Eagle River Flats impaet range (Hewitt et al. 2003) indicated that this area would be ideal for testing our bypothesis. In 2004, two sets of tests were designed and carried out.

The first sel was designed to compare the then-current method of sampling residues from the surface of snow with sampling methods similar to hose used at Donnelly. The second set of tests was used to confirm the validity of our choice for the most effective sampling method.

Snow-covared ice is the deal medium on which to conduct residues tests. The ice cover isolates past residues deposition from current resicues in areas where no recent detonations have occurred. The snow cover provides a highly contrasting surface from which to sample. The general detonation pilume area delineation is thus facilitated. The snow and ise also isolate the residues from mosi vegetation and soils, making sample processing easier.

2 PHYSICAL SETTING

Eagle River Flats (ERF) is an estuarine salt marsh located at the mouth of the Eagle River, along the upper Cook Inlet near Anchorage, Alaska (Fig. D). The Flats bave been used as an atillery and mortar impact range for Fon Richardson since the late 1940 s . This small, 865 -ha range is pertodically Llooded by the second-highest tides on Earth. In the winter, the area freezes over and is covered with snow. Temperatures are moderated by the open waters of the inlet through* out the winter months and genetaly remain betow freezing from late Novernber through mid-March.

Figure 1. Eagle River Flats, location of the tests.

Ice thickness and snow cover on the fats vary according to several parameters. Temperature is an obvious factor, but snow cover is critical to limiting ice depth and the freezing of the ground beneath the ice sheet. The frequency and severity of the flooding tides thickem the ice sheet. Wind will influence the snow depth and beat transfer. Nomally, an ice sheet suffieiently thick to prevent penetration of live-fired rownds up to 105 -mm is attained by midDecmber (Collins and Calkins 1995).

The ice sheet is grounded in most areas and is of sufficient thickness to allow traverse by heavy wehisles. Vehicular access throughout the eastern halk of the Flats in winter allows efficient testing and operations over a large area. Access to pose from ERF is via a well-maintained road, and laboratory facilities are located within 10 km of the test area.

3 METHODS

Sampling grotocol tests were carried out in wo phases in condunction with research into the quantification of explosives residues resulting from the detonation of military munitions. Tests in Jamary 2004 on 81 -mm mortar rounds and $105-\mathrm{mm}$ artillery rounds focused on the comparison of alternative sampling methods with the discrete sampling method (DSM) currently in wse. The tests in March 2004 using 155 mm artillery rounds looked at the application of the proposed new sampling method. All fests were conducted on fuzed statie rounds. employing the standard blow-in-plate method used by the Amy to dispose of dud rounds found on ranges and batlefields. Table I outlines these tests. Appendix A contains more detailed information on the mbimitions.

Table 1. Testing conducted for sampling protocol study.			
Testidate	Munition	Filler	Objectives
Comparative tests (Jantary 2004)	81 mm mortar tounds with point-detonating fuze and 105 -rm artillery rounds wh point detonating fize	Composilion 8 60\% RDX 39% TNT 1\% wax	1) Devebp quality assurance methods for winter residues samping. 2) Verify valicity of then-carrent sampling method (DSM). 3) Develop protocxis for allernative sampling mathods. 4) Compare sampling method results. 5) Determine best sampling method.
Application and contifmation tests (March 2004)	$158-\mathrm{mm}$ howitzer rountis with point-detonating fuze	Composition B and TNT	1) Revine QA technigues. 2) Test sampling method implementation.

All tests ised 0.57 mkg blocks of $\mathrm{C} 4(91 \% \mathrm{RD}, 5 \%$ plasticizes) initiated with non-electric blating caps as the donor charge. The C 4 was stat alongside the body of the round for the 81 -mm detonations and near the fize on the $105-\mathrm{mm}$ and 155 mm rounds (Fig. 2) Up to seven roundy were detonated and sampled eact lay.

a. S1-mm fuzed round with C 4 donor charge.

b. $105-\mathrm{mm}$ fuzed round with C 4 donor charge.

Figure 2. Test setup for detonation of $81 \times \mathrm{mm}$ mortar rounds and 105 mm howitzer rounds.

Comparative Tests

Comparative tan were conducted from 14 to 17 January. Snow deptit was more than normal, 33 cm . Temperatures hovered around $-35^{\circ} \mathrm{C}$ in the mornings with light winds of micer $1.3 \mathrm{~m} / \mathrm{s}$. Trace amounts of light snow fell sporadically during the first day, but not enough to interfere with the sampling. A weak sun behind a partially overcast sky had no influence on the plumes. Table 2 outlines the test schedule as executed.

Table 2. Test execution for sampling protocol tests.			
Date	Munltion	Quantity	Tasks
14 Jamary	8 -fmomotar	2	Detonation and sampling
15 january	81-mmmortar	3	Detonation and sampling
隹 January (morning)	\$1-mmernor 105 mim howticer	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Detonation and samquing Detonation and samplifg
16. Jantary fatemocn)	105 -mm howitzer	5	Weionation and delineation of plumes
177 January	705-mm howizer	(5) ${ }^{*}$	Sampling of piumes

Prior to detonation, locations for the rounds were maked and sampled for backeground contamination. The rounds were set up by the troops under the supervision of the UXO technician to ensure uniformity of configutation. Fohowing detonation, a GPS technician walked the eufline of the plumes, demarcating the estimated residue area based on the observabie soot. Sampling of the piumes then commenced using the methods briefly described below.

The Discrete Sampling Method (DSM) entails using a 0.45 -m-wide Tefionlined snow shovel to collect several approximately $1-m^{2}$-sized samples from the surface of the snow to a deptif of about 2 cm , plus whatever visible residues may remain in the sampled area. Each sanple is placed in its own polyethylene bag for later analysis. The goal js to sample as much of the phme area as is practical, excluding the crater at the detonation point. This will vary between less than 1% of the area for large munitions to 80% for smaller ordnance, resulting in any where from five to 25 samples per phune. Plume size is heavily influenced by wind speed, which makes the area sampled difficult to generalize for a particular round. Sampling location is to be mandom and not influenced by plume coloration. A more thorough treatment of this subject can be foumd in Jenkins et al. (2002).

In addition to the collection of the DSM samples, then aternative sampling nethods were tested. Adjacent sampling (Adincents) entails taking a $0.04 \mathrm{~m}^{2}$
sample adjacent to tach DSM sample wing a $20-\times 20-\mathrm{cm}$ hand scoop and combining samples in a single bag for processing and analysis. The objective of this test was to investigate whether smaller samples composed of increments corre" sponding to DSM iocations give results similar to those of DSM samples. This tests both the repeatabinty of the sampling methods and the validity of multipleincrement sampling.

For the medium-increment sampling method (MIS), increments are taken while walking eventy spaced ($1-$ to $2-\mathrm{m}$) lanes within the plume. The goal is to collect about 40 systematic-wandom inerements with a $20-\times 20-\mathrm{cm}$ hand sooop; these are then combined in a single bag. Systematic-random sampling is the collection of incraments in a random location within a rough grid. The objective of MIS sampling is to quantify the plome residues by obtaining a single representative sample composed of increments collected in a systematic-rawdom fashom while covering the entire plume wifhout being influenced by soot deposition darkness or proximity to the detonation point and crater.

Large-increment sampling (LIS) provides more complete coverage of the phome through the collection of a large number of small increments. The goat is to collect approximately 100 random inerements while covering the complete plume, including the crater. A $0.01 \mathrm{~m}^{2}(10-\times 10-\mathrm{cm})$ hand scoop is used to collect the samples. A sample bag will hold one LIS. The objective oflargeincrement sampling is the same as MS samplings with the aim of better plume tepresentation through a more diotributed sampling pattern that inchodes the detonation craters.

All samples and increments are taken to a depth of about 2 cm . Visible residue remaining in the sampled area is removed with a mall hand scoop and placed in the sample bag. The bags, $38-\times 76$ - cm particle-free polyethylene bags are sealed with a cable tie that also holds a label describing the sample. DSM samples are left at their sampling locations for later postion measurement; the other samptes are left near the plame for later transportation to the processing area.

The process of estimating explosives residues from surface snow samples is based on work outlined in Walsh and Ranney (1998), Jenkins et al. (2002), and Hewitt et al. (2003). Essentially, the snow samples are thawed, the filtrate separated from the soot frection and concentrated using solid-phase extraction, explosives concentrations are determined for each fraction using chromatographic instrumentation, and the concentrations combined and extrapolated over the whole plume to determine residue masses. For the DSM studies, we looked at residwe of RDX and HMX, a mandfacturing contaminant of RDX. Table C-2 gives the mass estimates for earh plume based on the sample type.

Application and Confirmation Tests

Tests implementing the protocol chosen as a result of comparative tests were conducted $16-17$ March at Eagle River Flats, north of the focation of the 学nuary tests. The weather was much milder, with early-moming temperatures manging from -13° to $-6^{\circ} \mathrm{C}$. Winds were variable, coming out of the south on the 16 th with no wind recorded during detonation on the 17 Th. This worked out well as the detonation line on the 16 th was the nonthernmost line. A frace amount of snow fell prior to detonation of the roumeds on the 16 th, with no precipitation during the tests on the 17 th. Seattered clouds minimized the effect of the much stronger surs, with some effect on the plumes after noon. However, most sampling was complete by that time. Table 3 outlines the test sehedule asexecuted.

Table 3. Test execution for protocol application tests.			
Date	Munition	Quantity	Tasks
16 March	155 mm howizer	7	Detonation and sampling
17 March	155 -mm howizer	7	Detonation and sarping

The sampling protocol chosen for further testing was the LIS. As described above, this method samples the complete plume, including the crater, using a $10-$ $\times 16$-cm scoop and collecting around 100 increments. For every plume, at heast two LISs were collected and other qually assurance (QA) procedures were implemented. The firs set of rounds was flled with Comp-B, the same filler used for the protocol tests described above. The second set of roands ased TNT as the explosive filler. Both sets of rounds were tetonated with a single demolition block charge of C4 (DODIC M023) as the donor charge. An M739 pointdetonating fuze (DODIC N340) was installed in each round. All rounds contained a supplementary TNT charge in the fuze well below the M739 fize (see Appendix A). Figure 3 shows the setup common for all the rounds. All seven rounds for each test were detonated within a three-second window. No DSM samples were collected on either date.

Quality Assurance

Qualiy assurance (QA) was an important part of both series of tests. Field QA procedures were developed and implemented to verify that the data obtained using this sampling method are valid. Some of these procedures were cartied over to the protocol application tests, with additional QA procedures conducted to further validate the new protocol. Table 4 outines the QA tests conducted over the course of the study.

Figure 3. Detonation setup for $155-\mathrm{mm}$ implementation tests.

Table 4. Quality assurance procedures.		
Procedure	Description	Objective
Subsurface samping	Samples ate collected beneath areas previpusfy sampied.	To determint whether the sampler is collecting all residue from a location.
Duplicate and wiphicate sampling	Sampling method is repeated within a speciotopume.	To determine the repexatability of a sampling method.
Paired MIS sampling	Two MiS samples in the same plume consisting of adjacent increments.	To estimate the repentability of multiincrement sampling through ctosepoximity replicate samping. Examine residura heterogeneity.
Radial sampling within the pume	The plume is divided into zones radiating out from the detonation point. Liss collected in each zone.	To determine the influence of sampling in proximity to the detanation point to the overall estirrated residue cteposition.
Gradient (gray-scale) sampling within the plume	The plume is divided into three zones by lite perceived density of the restutus soot. Liss are collected in exch zone.	To delemine the infivence of sampling bias loward darker ajeas.
Radial sampling outside the plume	Sampling outside the demarcated plume and within concenifite rings centered on the detonation point.	To delemine whether the soot plume coneaty mocel the distrobution of explosives residues following a detonation.
Anndar sampling outside the plume	Samping outside the dernarcated plume within a concentic rimg surrounding the piume or the efoge of anoher antutar samping area.	To determine whether the demaroation of the residues plime is correct.

Subsurface sampling was conducted on DSM samples in January and on one of each paired MIS samples in March. In January, the subsurface sample size matched that of the surface sample, and botin samples were collected in the same manner. In Mareh, the stbsurfee samples were smaller than the surface sample to avoid the possibility of contamination along the edge of the subsample. Duplicate axd wiplicate sampling was conducted on all other types of samples during tests both months. Paired MIS samples in March were collected with a $0.023-\mathrm{m}^{2}(15-\times 15 \mathrm{~cm})$ hand scoop adjacent to each other and deposited in separate bags. Radial sampling within the plume entailed dividing the plume into three zones, each concentric from the detonation point ($0-$ to $10-\mathrm{m}$ radus, 10 - to $20-\mathrm{m}$ radius, and geteter-than-20-m radius). A LIS was then taken within each zone. The gradient sampling within plume entailed dividing the plume into three zones based on the perceived density of the deposited soot. The denser the soot, the darkar the area of the plume. A LIs was taken from each zone. Sampling outide the plume was done using two procedures. In one, samples were taken within a band or anmulus outide the plume. Up to two concentric bands $(0-3 \mathrm{~m}$ and $3-6 \mathrm{~m}$) were sampled using the LiS method (rig. 4). The other procedura entailed sampling ontside the plume withitn a fixed band radiating from the detonation point $(0-10 \mathrm{~m}$ and $10-29 \mathrm{~m})$. Appendix B lists the QA tests conducted for each detonation.

a. (Left) Annular zones,
b. (Right) Radial zones.

Figure 4. Sampling diagrams for outside-the-plume (OTP) sampling.

4 RESULTS AND DISCUSSION

This section will be divided into three parts: All examination of the DSM protocol, comparison whith the other protocols tested in January, and the results of the implementation testing of the new protocol in March. QA methods will be discussed throughout as applicable.

1. Protocal Tests-The Discrete Sampling Wethod

Protocol testing on the DSM was conducted on 14 rounds. Seven $81-m m$ plumes and seven 105 mm plumes were sampled. A total of 123 large discrete and five multi-increment samples was taken of the 81 -mm detonations, and 128 large discrete and three multi-increment samples were collected from the 105 mon detonations. Detonation crater gamples are considered suparately, In general, the portion of the total plume area sampled was small, less than 4% ranging down to less than 1\%. All surface and subsurface discrete samples were $1 \mathrm{~m}^{2}$ in size. The OTP sumpling was tone with $10-\mathrm{cm}$ or 20 -cm hand soops and was conposed of 40 to 120 inerements. Appendix C, Table C-I, gives the $D S M$ sumpling statistios for the plumes and OTP bands. Table 5 summarizes these tata.

Table 5. Detonation plume data for DSW tests.	
Parameter	Statistics
81 mtm plumes	$n=7$
Number of samples: Discretes (totalaverage) Subsurface (Total* of plomes) Outside the plume*	$\begin{gathered} 101 / 13 \\ 2222 \\ 4 \\ \hline \end{gathered}$
Ramge of plume areas	$637 \mathrm{~m}^{2}-1606 \mathrm{~m}^{2}$
Averuge piume area	$820 \mathrm{~m}^{2}$
Range of OTP areas	$310 \mathrm{~m}^{2}-490 \mathrm{~m}^{2}$
Average of OTP areas	$410 \mathrm{~m}^{2}$
Range of sampled areas: Plumes (Anear \% of plume) OTP (Areat \% of OTP area)	$\begin{gathered} 11 m^{2}-34 m^{2} 0.73 \%-2.2 \% \\ 0.60 m^{2}-1.6 m^{2} / 021 \%-0.46 \% \end{gathered}$
Average of sampled areas: Plumes (Area** of plume) OTPs (Areat of OTP area)	$\begin{gathered} 14 m^{2}+1.8 \% \\ 1.3 m^{2} / 0.32 \% \end{gathered}$
OTP area to plume area	50\%

Table ${ }^{\text {c }}$ (cont ${ }^{\text {d }}$).	
Parametor	Statistics
105-mm plumes	$\mathrm{n}=7$
Number of samples: Discretes (Totallaverage)	17316
Subsurface (Totalit of phimes)	15/1
Outade the plume	3
Range of fome areas	$440 \mathrm{~m}^{2}-1300 \mathrm{~m}^{2}$
Average plume atea	$860 \mathrm{~m}^{2}$
Range of OTP areas	$400 \mathrm{~m}^{3}-490 \mathrm{~m}^{2}$
Average of OTP areas	$450 \mathrm{~m}^{2}$
Fange of sompled areas: Plumes (areaf of plume)	$15 \mathrm{~m}^{2}-18 \mathrm{~m}^{2} / 1.2 \%-3.4 / \mathrm{s}$
OTPs (Afeam of OTP Area)	0.66m $\mathrm{m}^{2}-0.82 \mathrm{~m}$ m.14\%-0.20\%
Average of sampled areas: Plumes (area; of plame) OTFs Areal of of OTP area)	$\begin{gathered} 16 \mathrm{~m}^{2} / 1.0 \% \\ 0.71 \mathrm{~m}^{2} \mathrm{~m} .18 \% \end{gathered}$
OTP area to plune area	5\%\%
* Data for the one 0 - to tom radie OTP test are not induded there were no detectable resitues in this test.	

One of the obicctives of the DSM protacol is to collect enough samples to derive a valid representation of the plume. However, the average area of the plumes is quite large ($840 \mathrm{~m}^{2}$), To sample a significant portion of the plume, around $10 \%, 50$ to 150 discrete samples woutd have to have been collected. Even half that number is impractical. The 10% target was not derived in a scientific maner but was set as a goal when the DSM protocol was being developed. However, ongoing work by seweral researchers at CRREL indicates that to adequately represent a substace heterogeneously deposited over a given area. at least 30 samples (or merements) need to be obtained. The total number is a function of the increment tize and sampling area. Tading 10 to 20 DSM samples,
 makes it mote difficult to oblain representative samples, which will be demon* strated in the section on the distribution of samples that follows.

Prior to sampling, two of the $81-\mathrm{mm}$ plumes were checked from an E-m-high tower after delineation by the GPS technician to qualitatively determine whether the complete plume was being demarcated. Both plumes looked fully enveloped. and OTPS were done on both to verify this observation.

Using estimates of the residues masses, we locked for sourees of sampling ertor for the DSM tests. The two most ovvious places are beneath the areas samplei and outside the demarcated plumes. Residucs in tbese areas will result in an underestimation of the uncacted mass of explosives. Other sources of eror
are the possible bissing of the sampling toward the detonation point and oversampling the darker areas of the plume (sample location). These will likely have the opposte effect, resulting in an overestimation of the residue mass. Finally, the contribution and sampling procedure for the craters will be examined.

Subsurface residues

Subsurface samples were taken from thee plumes. All three subsurface samples were DSM-type samples ($1 \mathrm{~m}^{2} \times 2 \mathrm{~cm}$ deep) and contained residues. The resulte are given in Tables 6 and $\mathrm{C}-2$. The subsurface residues were higher than we anticipated and constitute what appars to be a significeant source of error (10%), Collection conditions may have been the cause of some af the error. The diffoulty of working in the extemely low temperatures during the 81 -mm tests $\left(\approx-35^{\circ} \mathrm{C}\right)$) ukely contributed to some samping error while collecting the dis. cretes. The subsample for the 105 -rmm round was taken on the final day of samplings when temperatures were more moderate ($-10^{\circ} \mathrm{C}$) and mone time was avallable for sampling. However, more work needs to be done to get a better indication of the magnitude of he error. Some of this was done as part of the preexisting sampling plan for the protocol tests and some was bult into the ap* plication tests to take place in Mareh. From this test it is obvious that care must be taken to ensure that proper sampling depth is achieved and that any residues beneath the sampled area are collected during the sampling process.

Tahle 6. Underreporting of total mass residues due to sampling depth error.

	Residues recovered (ma)	\% of tatal mass*		
Plume	HMX	RDX	HBX	$R D X$
$81-1$	1.4	3.7	11%	10%
81.5	1.0	1.4	12%	11%
1056	0.68	1.6	5.8%	60%
Average	-	-	9.6%	11%
Subsurface/tsubsurface + DSMs				

Residues outside the demaratod plime

The results for the outside-the-plume samples indicate that plume demarcation is adequate. Two typer of tests were performed, sampling a 3-rimwide concentric zone outside the plume and sampling within a fixed distance from the deronation point outside the plume. The matority of tests were of the concentric OTP configuration, with one radial test to determine whether our strategy of
sampling the visible plume (wind dispersion) rather than in concentric circles from the detonation point (radial dilspersion) is valid. The results are given in Table 7. Residues averaged less than 1% of DSM values for HMX and less than 2% of DSM values for RDX. The one test done using the madial OTP strategy came up blank. These tests indicate that we are delineating the plume correctly and that the strategy of sampling within the visible plume for residues is likely sufficient. More data on the radial sampling outside the phume are needed to reinforce the second conclusion, and additional concentric data are needed to contirm the delineation strategy. It is important to note that the OTP samples were multi-inorement and not discrete samples.

Table 7. Results of sampling outside the visible plume.					
		Residues recovered (magl		\% of total mass*	
Plume	Area sampled	HMX	RDX	HDX	RDX
81-1	a. to 3-m amnulus	0.18	ND	1.6\%	0%
81-2	$0-103$ mannulis	NO	NO	0\%	\%\%
01.3	0-60 3 -mannulus	ND	HO	0%	0%
81.5	0 to 3 mm amulus	ND	0.36	0\%	1.1\%
	0-to 10 mmadius	ND	NO	0%	0\%
105-3	t -10 3-m annulus	0.55	2.2	2.1\%	6.2\%
105 -5	Q. to 3 -mannulus	0.25	2.4	2.2%	2.8\%
105 m 7	0.50 .3 mm annutus	NO	0.43	0\%	25\%
Average				0.70\%	1.8\%
ND $=$ Not detected * OTP/IOTP + DSMK!					

Sample distribution

As noted above, we looked at the DSM data in retation to the detonation point and the perceived darkness of areas within the plume to try to determine whether these factors influence the samplers' decistons as to where to sample. After completion of the DSM sampling, concentric rings were walked around the detonation points (10 m and 20 mm radius) for Phmes $81-5,105-3$, and $105-7$. Dark- and mediumdensity gray zones were also demarcated on Plume 105-4. These boundaries ware entered in the GPS database, as were all the DSM locations for these and the other plumes. The 10 and 20 m radial zone boundaries were also determined for the remaining plumes and added to the GPS data to provide a wider statistical base for bias evaluation. The distribution of samples
points and the residues in these areas were then examined. Data for the distribution of DSM samples are given in Table $\mathrm{C}-3$. Summary results ate in Table 8 ,

Table 8 . Detonation proximity bias in DSM sample location.

Round	Zone	Area ($\left.\mathrm{m}^{2}\right)^{*}$	\# of samples	\% samples	\% area	Samplestarea ${ }^{\text {e }}$
$\begin{gathered} 81-\mathrm{mm} \\ (\mathrm{n}=8) \end{gathered}$	0-10m	178	5.6	44%	24\%	20
	10-30m	261	50	4\%	33\%	13
	>20m	381	20	15\%	44\%	0.3
$\begin{gathered} 105-\mathrm{mm} \\ (19=3) \end{gathered}$	$0-10 \mathrm{~m}$	297	7	42\%	30\%	1.4
	10 m 2 m	387	6.3	39\%	44\%	0.9
	>20m	244	3.3	19%	26\%	0.7

[^1]Sample distribution for these tests is very interesting. The area clogest to the craters was sampled on average twice as fraquently for the 105 -mm tests as conpared to the area beyond 20 m from the detonation point, and for the 81 -mm tests, the factor is over six times. Samplirg in the middle zone, 10 to 20 m out, is more representative, but is still skewed for the 81 -mm tests. The distribution improved greatly between the 81 mm tess and the $105-\mathrm{mm}$ tests, but the density of samples near the detonation point was still high. Even though an increasing effor: was made to sample in a more distributed manner, a bias still renaibed.

There are a comple of confounding factors that may be infuencing this bias. The plume tends to be darkest in close proximity to the detonation point, and a bias toward sampling the darkest areas may be reflected in a proximity bias. Smplers aso tend to stan sampling near the cater, as that is where the access path leads. Finally, is is difficult when sampling to keep the size and shape of the plumes in perspective. This leads to a concentration on sampling with respect to the last sample point and not with respect to the plume as a whole.

Another way of looking the proximity sampling bias is to compare the results for a plume assuming no sampling bias with the results corrected for the sampling pattems found from these tests. To do this, the DSM samples within specific zones of the plumes were mathematically composited and the residue masses estimated for those zones. These were then combined, correcting (weighting) for differences in zonal areas, and compared to the masses terived for the no-bias assumption. Data for these comparisons are given in Tabie $C-4$ and the results sammarized in Table 9. The values given for HMX and RDX are the percent differences between the unweighted (no-bias assumption: M_{2}) values for the

DSMs and the values taking the oyersampling in proximity to the craters into $\operatorname{account}\left(\mathrm{M}_{\mathrm{w}}\right)$.

$$
\begin{equation*}
\text { Bias }=\left(M_{u}-M_{w}\right) M_{p p} \tag{1}
\end{equation*}
$$

A positive percentage indicates the possible overestimation of residues by the standard DSM method.

Table 9. Detonation proximity bias (unweighted vs. weighted) in DSM residues estimates.		
Plume	HMX	RDX
$\begin{aligned} & 81 \mathrm{~nm} \\ & (n \mathrm{~m}) \end{aligned}$	488\%	31%
$\begin{gathered} 105 \mathrm{~mm} \\ (\mathrm{n}=3) \end{gathered}$	27\%	24\%
Owaratil bias $(\mathrm{n}=11)$	38\%	28\%

The results of this analysis indicate a proximity bias. The calculated plume residual masses using composited DSM samples are more than 25% groater than when sample location is taken into acconn and the samples are weighted with respect to area. Agan, the resuts for the 105 -mm sampling indicate a better distribution of samples, reflecting the greater effort to obtain more representative samples later in the process. The results show that plume residues masses will be overestimated based on sample bocation bias with respect to the detonation point.

Data for the gray scale test are more divergent than for the concentric data. Although we have only one test examining the effect of soot density in the plume on sampling bias, it is worth noting. Table 10 contains the data and analysis for this condition. Bias is masured as the ratio represented in Equation 1.

Table 10. Soot density bias in DSM residues estimates, Plume 105-4.

Condition	HMX (mg)	RDX (mg)
Weighted	4.5	10
Standard DSM	6.6	15
Bias	47%	$60^{\circ} \%$

The soot density biases of 47% and 50% for HMX and RDX are quite different from the concentricity data, espectally when compared to the later (105 mm) resuits. This applies to the results specinic to the plume as well, Flume 105 m 4. A comparison of the collection point zone oversampling (Table C-3) tends to reinforce this observation, ass the soot density bias is much larger than the proximity bias (a factor of 2.2 v .13 for the dark gray areavo the <10-m zone and a factor of 1.5 vs .0 .94 for the medium gray area vs. the $10-1020 \mathrm{~m}$ zone). Again, a conscious effort was made not to bias sampling. Futler data for the proximity and gray-scale bias hypotheses are needed if DSM sampling is to continue to be used.

Figure 5. Replicate discrete sampling on Plume 81-3.
We obtained duplicate DSM samples of only one plume during these tests, Plume $11-3$. The samples were taken by two diferent sampling teams, the second set being obtained atter the first set was done. Figure 5 showis the sample loca tions for both sets. It is immediately obvious that the sample distributions are quite diflerent. For the (a) set of samples, the most proximate area ($0-10$ min is oversamplest by abot 50%. For the (b) set of samples, this number nises to 120%. The central area of the plume ($10-20 \mathrm{~m}$) s_{3} fairly well represented (100% and 120% representation), wheras the difference again widens for the area beyond $20 \mathrm{~m}: 74 \%$ and 26%, sespectively. If the area beyond the 20 -m line is divided by a $30-\mathrm{m}$ line, the (b) samples have no representation beyond that fine.

The recond set of samples (b) is more concentrated near the detonation point (see also Table $\mathrm{C}-3$).

Reverting back to the thee-zone division of the plume, the overall residues were calculated for the plume (Table C-4). A comparison between the two samples for Plume $81-3$ is given in Table 11. In this table, U_{3} and U_{b} are unweighted values and W_{a} and W_{b} are weighted residue moss values of DSM samples. It is evident that there is a differente betwen the two samples, with the sample coliected closest to the detonation point (b) indivatimg more contaminathon than the more evenly distributed sample (a). The atribution of the greater residues for (b) to proximity to the detonation poin may be mislading, as the maiority of the difference between the samples cornes from the poorly sampled zone beyond the $20-\mathrm{m}$ radius. Thus, the difference between the samples may be attrioutable more to sampling sooty areas than sampling near the detonation point. Without knowing the outline of the soof gradients and having a better grasp of the ressude fod in the plume, a more precise determination of any samplimg bias cannot be made. Although the results are for only one set of data, the agrement between the two sample sets is surptivingly close, indicating a robustness for the DSM sampling protocol not hought to exist.

Table 11. Comparison of DSM samples for Plume 84-3.			
Comparisen	Relationship	HMX	RDX
Raw data: a	No weigfting for zones	1.1 mg	B. 1 mg
Raw data: b	No weighting lor zones	1.5 mg	10 mg
Unueighted bias: b to a	$\left.\mathrm{Uf}_{5}-\mathrm{U}_{5}\right)^{\text {a }}$	+36\%	+24\%
Weighted tias th to a		+21\%	+162\%
0- to 10-m zone: b to a	$\left.\left(U_{b}-U_{3}\right) /\right)_{u_{n}}$	+44\%	-34\%
10- to 20-mzone b to a	[U_{3}	-66\%	-57%
>20-min zone blo	$\left(U_{0}-\mathrm{U}_{\text {a }}\right) \mathrm{U}_{\mathrm{a}}$	+460霓	+1100\%

In summary, there is bias evident in the location of samples within a detonation plume. The source of this bias may be from one or all of the following factors: tendency to sample closest to the detonation point, tendency to start sampling near the detonation point, tendency to sample within the darkest areas of the plumes, and a failure to take the full plume into consideration when choosing sample locations. The pverall effect of these biases taken individually and as a group on the residues estimates will need to be determined by compavison with data that are more representative of the plume.

Gratars

Missing from the above analyses are the chaters. Hewitt et al. (2003) indicate that the caters (detonation points) typically do not significantly alter the overall residue quantities for detonated rounds. In live-fire wests conducted at Eagle River Flats in March 2002, fonteen 81 mm mortar rounds and thirteen 105 mm howitzer rounds were fired onto the snownovered ice and sampled using the discrete sampling method. The craters were sampled sepatately, The results from this test showed a measurable contribution of less than 2% in the RDX residue quantity for only one of the 27 detonation points examined. The remainder were below the detection limit. Although the detonation points can have a higher residue concentration than the rest of the plum, their area is very small ($<1 \%$) compared to the remainder of the plume. Thus, although residues concentrations may be comparatively high within the eraters, their contribution to the oveall residue estimate is not significant in most cases.

We evaluated dis incluzion of the craters as part of the protocol tests. Cutaters have always been sampled using incremental sampling. Generatiy, 5% to 10% of the crater is sampled for analysis. Part of our stady was to look at the repeatability of the sampling techniqua for craters and whether sampling the various parts of the crater separately results in different residue deposition values. Six of the seven $81-m m$ detonation craters were sumpled, as were six of the seven 105 mon craters. During sampling of the craters, the area was undergoing sub-ice interlaye infiltation by water, resulting in water seepage into the craters, espectally in the center pits below the reund locations. Not all componerts of each crater ware available for sampling.

The arater centers at quife small in relationship to the overall crater and, based on past data, generally contribute little to the residues load in the crater ($<10 \%$). We were able to obtain only one good center sample that amounted to 6% of the crater residues. The centen tend to be very difficult to sample (even without the presence of water) as they are full of debrts, in this case ftacured ice in the form of mall chips as well as frag or, in the case of live-fired rounds, mortar tail assemblies. We thus concentrated on two areas within the crater: the annulus, the area generally thear of snow between the edge of the detonation center and the berm; and the berm, the raised rim of snow sutrounding the detonation point and outlining the shater. Corresponding berm and anmalus samples were obtained for eight of the 14 craters. Table 12 contains the data for these crater components.

Table 12. Data for crater components (RDX).			
Detonation point	Annulus (mg)	Berm (mg)	Difarence (mg)
$84-1$	0.033	0.042	-0.005
$61-3$	0.069	0.14	-0.072
$81-7$	0.62	0.24	0.365
$105-1$	0.06	0.51	0.042
$105-2$	0.76	29	-2.1
$105-3$	0.14	10	-0.88
1054	0.75	0.67	0.077
$105-7$	2.0	1.2	0.76

Using the data from Table 12, a paired t-test can be used to test the deposition amounts of the RDX residues for the two crater components to determine whether they differ significantly, From Natella (1963), the statistics for this test are as follows:

Significance level: 0.05
Average difference: - 0.25
Statistical deviation of differences: 0.90
Sample size: 名
Degreses of freedom: 7
tala: 0.753
42975: 2.365
In our case, tcatc is muen less than thonsy. This indicates that there is no signifieant difference in residus between the crater berm and annulus. Thus, no extra care must be exercised when sampling the crater, and if the annulus is inaccessible, sampling the berm will sufficiently characterize the crater as a whole.

We took duplicate annulus and berm samples at three of the craters. For the RDX residues, the relative percent difference betwen each of the two measure ments was around 20%. Repeatability increased with the number of increments, being best with $50-100$ increments (0% and 7% difference), increasing to 44% and 56% for the sample with less 40 increments. The third set, taken with 40-60 increments, fell in betwen with differences of 14% and 16%. The average monereporting of the total residue mass in the plumes the to ignoring the crater is 6% over the 12 samples taken duting these tests.

In summary, sampling the crater is not critical in obtaining the overall residues quantities for a plume, although it will add to the accumacy of the results Taking nany increments incteased the repeatability of the sample measurements; thus a largemenement sample shonid give a more accurate representation of the cater if yequired. The distrbution of these increments within the crater is not critical to the repeatabilty of the resulte but distributed (representative) sampling is good practice and should be applied.

II. Protocol Tests-Altemative Sampling Methods

Examining the fasibitity of replacing DSM sampling with a more efficient samping method was the primary goals of these tests. Processing of the many large DSM samples is time-consuming and expensive. For large plumes, it is also not very phactical. Therefore, we sought to examine the feasibility of using multiple-increment sampling for characterizing the plume.

Multi-incremert smpling is already used as part of the DSM method. Caters are sampled using many small increments, and the large plume samples are mathematically averaged over the complete plume th derive the total ratidues. The ability to characterze a plume with a single sample would greatly increase effivency and allow replicate sampling and fied quality assurance procedures to be conducted.

Adjacont sampling

To determine whether multiple-increment sampling can be used in place of the DSM, we collected $20-\times 20-\times 2$ vem-teep inerements adjacent to each DSM sample location. These insrements were collected in a single bag in the field and proesssed in the lab a a single sample. A total of 19 multiple-increment adjacent samples was taken in the 14 plumes over the course of the protocol tests (Table D-1). The rasults of the adjacent samples were compared to the averaged DSMs to detemine the validity of characterizing the plume using smaller samples distributed as with the DSM samples. Table 13 compares these values with those of the averaged DSMs.

Looking first at the proximity of the total residue estinates for the two sampling methods, ageement beweer the two methods is generally very good. The values are within a factor of two for most of the cests. Averaging the data for all the tests gives a result of 17 mg HMX and 82 mg RDX. The results for the adjacem samples average higher than for the DSMs for both constituents. This indicates that more resulos were recovered during the adiacent sampting procedure than with the DSM procedute. This result was predicted because of the
ease of obthining a sample with the small hand scoop over the use of the large shovel with the DSM sample. This resuits in less spilage during sampling and better penetration into the snow with the sampling tool.

Table 13. Comparison of DSM and adjacent sampling.

Plume \#	Method	Mass estimates (mg)		Mass differences* (my)		Relative \% differences	
		HMX	RDX	Hux	RDX	HMX	RDX
81	Adjacent	15	23				
	Adjacent	6.3	14				
	DSM	11	20	-0.4	-1.5	0.9110	7.8%
812	Adjacent	9.4	4.9				
	DSM	5.6	7.2	3.8	-2.3	51%	38\%
$81-3$	Adacent	1.8	7.6				
	DSM	1.1	8.1	0.7	0.5	48\%	6,4\%
	Adacent	22	16				
	DSM	1.5	10	0.7	6.0	38\%	46\%
81-4	Adiacarit	20	640				
	Adjacent	97	720				
	DS	57	470	1,5	210	2.5\%	37\%
815	Acjacent	10	45				
	Dsm	7.3	31	2.7	14	31\%	37%
81.6	Adjacent	67	280				
	DSM	55	220	12	60	20\%	24\%
4.7	Adjacent	45	130				
	DSV1	31	92	14	38	37\%	34\%
105-1	Adjacent	6.1	11				
	DSM	28	13	33	-20	74\%	17\%
105-2	Acjacent	6.6	14				
	DSM	50	18	1.6	-4.0	26\%	25\%
105-3	Acjacent	9.5	17				
	DSM	6.9	33	2.7	-16	335\%	32\%
105-4	Adjacent	3.5	18				
	DSM	6.6	18	1.9	3.0	25\%	18\%
105-5	Adjacent	29	180			.	
	Adjacent	24	54				
	DSM	11	82	15.5	3 3	33\%	358
105-6	Aciacent	17	32				
	DSM	11	25	6.0	7.0	43\%	24%

Table 13 (contel). Comparison of DSM and adjacent sampling.							
Plume \#	Method	Mass estimates (mg)		Mass differences* (mg)		Relative \% differences	
		HMX	RDX	Hinx	RDX	HMX	ROX
1058	Atjacent	10	23				
	Adjacent	c.	12				
	DSA	5.3	17	40	0.5	55\%	3\%
Average	Adjacent	19^{*}	94*	5.6	22^{9}		
	DSA	15	71				
	EPD*	$24 \% *$	28\%*				
* Mass differences are Adjacents - DSM: Adiacont diplicates averaged for these values - 7.9 mg sifference without 81.4 ** Relative Percent Diference of the average values: RangeliAverage							

Ah aciacent increments were waten next to the DSM samples, but replicate samples were not taken adjacent to each other. Relative percent differences (RPDs) in values obtained from roplicate adiacept samples range from 12 to 130%, with an average RPD of 60%. The distance between the replicate increments likely scoount for some of the difference between the values, indicating that for small-increment samples $(0<30)$, each increment becomes more important and the sampling location can be critical. A test of this hypothesis was planned for the implementation tests (phired MIS samples with the same size scoop) in March.

The resuits of the adjacent sampling sest indicate that DSM sampling can be replicated by multi-increment sampling. This is a significant finding as the singie roulti-increment sample has replaced 18 or more DSM samples, making it easier to obtain and process duplieate or triplicate samples for quality assurance. The data indicate somewhat bigher residues values on average using the incemental sampling method, whoh may be due to the ability to obtalt better samples with the malier sampling tool. The other bias factors assoctated with DSM saropling remained with this exercise, including obtaining enough samples, of in this case inerements, to adequately represent the phume residues in a repeatable mamer. Craters were not sampled with efther test.

An interesting anomaly appears in the data for Table 13 that gives an indication of the difficulties that can be encountered during blow-in-place characterization tests. The data for RDX for two of the five phumes are high when compared to those in the remaining threa. Also, the ratio of RDX to HMX differs, especially for Plume $105-5$. This may be indicative of less efficient detonation of the uncontined block of C 4 , used as the donor charge. The C 4 block is 91% RDX. Separate test done in conjunction with the 155 -mm BIP
tests indicate that following the propet detonation of an undeformed block of C4， the ratio of RDX to HMX residues is betwen 2：1 and 3：1．The donor charge efficiency and its influmee on the residue plume is dificull to determine．

Mochum－morement samples

We next teated full－plume incremental sampling that will allow the charac－ terization of a plume with a single multimnerement sample．Previous work by M．E．Walsh et ah．（2005）indicated that rainimum of 40 smples is requited to accurately characterize a sith．The standard smople bag we use for the collection of snow samples will hoid 40 samples aken with a 20 mom－square 3 coop at a depth of 2 cm ，so this tool was used．

Table 14．Relative percent differences（RPD $)$ in calculated residue values between averaged NiS and composited DSM sampling．

	Differenice＊	
	HMX	RDX
81－mm		
1	177%	139\％
2	75\％	43\％
3	10%	8\％
4	2\％	2\％
6	77\％	24 愫
7	64\％	72\％
Avarage（ $n=5$ ）	48\％	48\％
$105-\mathrm{mm}$		
1	17\％	14\％
2	8\％	10\％
3	9\％	47%
4	\％\％	2\％
5	14%	67\％
6	25\％	3宪盛
7	25\％	13\％
Average $(n=7)$	17\％	37\％
Overall（ $n=4$ 4）	33\％	43\％
$\mathrm{RPD}=$ RRangel／		

The relative percent differences between the MS and DSM sampling methods for 13 plumes are shown in Table 14．The MIS samples generally
had lower concentrations of residues, However, the average values for the MIS samples are very close overall to those of the DSMs. The lower values were expected, as the MIS increments are more spatially representatve of the complete plune. This results in a greater percentage of the sample being collected in areas away from the detomation point and less of a tendency to sample where the plume is darkest. It is interesting to note that as the DSM sampling became more spatally representative of the plume area (105 mmm cata), the differences between the sampling methods became smaller and more consistent.

For five of the plumes, we took nultiple MIS samples (Table 15). Three Iriplicate and two duphicate MIS samples were collected over five plumes. Repeatability was good, even though many of these data are near the detection limits for the analytical method. The meximum difference from average for the sample groups is 41% for HMX and 53% for RDX. Data for these teste are in Table D-2.

Overall agreement of MIS data with the DSM data is zurprisingly slase, with the expected lower MIS residue estimates reaning fom the mone repesentative sampling of the plume patially offset by the more efficient sample collection method. Repeatability between duplioate and triplicate samples is aiso good. In the past, onderô-magnitude repeatability was a ditficult goal to achieve. For the MIS samples, agreement was generally in the 30% range.

Large-increment sampies

Large-increment sainples (LiS) comprise a latge number of incrments, generally 100 , taken with a small sampling tool. For the tests, 100 increments from a $10-\mathrm{cm}$ hand scoop fit into the standard sample bag. In these tests, sampling included the crater area, thus fully characterizing the plume. Table D-3 contains the data for these tests. In general, the residues calcuated for the plumes from the LIS data were approximately equal to (within 20%) or lower that those for the DSMS 23 or 28 comparisons). For HMX, the LIS method resulted in lower estimates for five plumes and approximately equal estimates for six. For RDX, sight wee lower and four approximately equal. Table 16 contains comparative data for the averaged LISs and the DSMS. These data indicate that the diferenas in the results of the two sampling protocols are not very significant, generaliy less than a factor of two. An order of magnitnde difference was previously thought to be good repeatability for explosives residue sanpling.

Table 15. Replicate comparisons for Mis samples.							
Plume	Replicate	Total residues		RSM*		Maximum difference from mean	
		HMX (mg)	RDX (my)	HMXX	nox	HMX	RDX
$81-2$	1	2.2	32				
	2	2.9	6.0				
	Average	2.5	4.6	20\%	45\%\%	135	30\%
81.6	1	75	300				
	2	55	290				
	3	65	220				
	Average	6	280	15\%	25\%	15\%	29%
B1-mm average						14\%	30\%
105-4	1	5.1	10				
	2	8.9	23				
	3	4.9	11				
	Average	6.3	15	36%	48\%	41%	53\%
105-5	1	9.9	100				
	2	9.2	74				
	Average	0.6	87	5\%	213	4\%	15\%\%
105-7	1	7.7	14				
	2	7.6	19				
	3	5.1	12				
	Average	6.8	15	22%	24\%	25%	27\%
$105-\mathrm{mm}$ average	6.8	15				23\%	32\%
Qyerall average						19\%	315
* RSD $=$ Relative Standard Deviation							

Replicate sampling was conducted on six of the 14 plunes, concentric zone sampling on three, and glay-zone sampling on one fse Methods section of this report for test descriptions). The objectives of these tests were to examine the repeatability of the LiS methou and determine whether the residue levels are influenced by distance fron the plume or the soot density of the plume. The later terest have a direct impact on the bias analysis of the DSM protocol.

Replicate sampling consisted of tbree duplicate samples and three mplicate samples. The range of values about the mean for each plume is more consistent and slightly lower overall than for the MIS samples, ayerging around 30% for both residue conshtuents. Triphcate samples and plumes with higher residue
levels tended to have smaller manges (17% vs. 47% on wemge for HMX and $19 \% \mathrm{vs} .55 \%$ on average for RDX). This likely hatects the difficaly in measuring residues at concentrations that are at or below the detection limits. The average of the plume LISs was compared with the DSM results.

Table 16. Relative percent differences in calculated residue values bewaen averaged LIS and composited DSM sampling.

	Difference with DSM	
81 -mm	HMX	RDX
1	54\%	53\%
2	65\%	71%
3 *	22\%	75%
4	\%	2\%
5	77%	32%
6	2\%	20\%
7	70\%	80\%
Average ($\mathrm{n}=7$)	42\%	48\%
$105-\mathrm{mm}$	H14x	RDX
1	44\%	38\%
2	57\%	26\%
\%*	18\%	27\%
4	80\%	65\%
5	52\%	75
6	14\%	4\%
7*	21\%	12\%
Average (nmm)	45\%	35\%
Overall ($n=14$)	42\%	41\%

* Weghtes average of 3-zone radial sampling
t Weghted average of 3 zone gray-scale samping

The calculated residues totals for each zone in the concentric zone tests were added to obtain the total residues for each of the threa plumes (Table 17). These totals were used for comparison purposes with the DSM resulta in Table 16 (see values for $\$ 1-3$ and $105-3$, and -7). The results of the concentric-zone tests are shown in Table 17. For all thee plumes, the difference in resixues between adjacent zones approaches an order of magnitude. This is not surprisixg if the assumption is that the residue concentration is highest near the detonation point and falls off non-linearly to the edge of the plime. These results indicate that by oversamping the plume near the detonation point, the resulss will be skewed
toward higher levels of residues, all other factors being equal. Note that even in this test, theme was a tendency to collect twice as many increments in the area closest to the detonation point as in the two aras farther out from the crater.

Plumetzone	Inerements	zone area (m)	incrementsim ${ }^{2}$	HMX (mg)	$\mathrm{RDX}(\mathrm{mg})$
Pame 81-5					
$<10 \mathrm{~m}$	135	187	0.72	2.6	16
10. to 20-m	70	220	0.31	0.7	5.4
320 m	58	377	0.15	00	12
Tolal	283	790	0.33	3.2	22
Plume 105-3					
$<10-7 \mathrm{~m}$	39	282	0.14	6.5	21
10.10 $20-m$	59	303	0.15	1.2	3.4
$\times 20 \mathrm{~m}$	43	283	0.16	0.53	0.27
Total	141	935	0.15	8.3	23
Plume 105.7					
<10-m	129	232	0.56	5.3	14.3
10. 50.20 mm	80	387	0.22	1.1	37
>20-m	100	347	027	0.12	1.7
Tota	309	946	0.33	6.5	19.1
Average ($\mathrm{n}=3$ 3)					
$<10 \mathrm{~m}$	100	230	0.44	4.8	17
$10-1020 \mathrm{~m}$	70	330	0.21	10	4.2
200 m	70	320	022	022	0.50
Total	240	980	0.24	0.0	22

The fnal factor that will be examined is the effect of plume density or "grayness" on sampling, Only one plume was sampled by gray zoner using the LIS method, Plume 1054 . The results are given in Table 18 .

Table 18. Comparison of gray-zone wsults, plume 1054.

Method	HMX (mg)	ROX (mg)
3 Zone LIS	2.8	7.8
Weighted DSN	4.5	10
SardardDSM	6.6	15

These data reinfore the conclusion reached in the discrete sampling method section that there is a tendency toward sampling when the plume is darkest, or "where the good stuff is." If we assume that the weignting of the Dom sampling is corsect and increases the aecuracy of the method, it follows that the LIS results, which sampled the three zones separately and combinge them for an overall residues value, are even mone accurate in that any bias is minimized by separating out the gray zones within the plume and then sampling those zones in a aystematic randon manner. There remains a possibility of some bias as the sampler still has some choice as to where the sample ts to be collected when a collection point is reached, but the options are timited due to the pattern that must be walked to collect the requisite number of samples.

In summary, the use of multiple-inerement sampling for characterizing the residues within a detonation plume appears to be a feasible alternative so the discrete sampling method. The two protocols tested, 40-fincrement MIS sampling and 100 -merement LIS sampling, proved repeatable and comparable to both the DSM samples and each other. Both methods are quick, allow for replicate sampling, and resut in pewer samples for analysis. By reducing sampling time, more fiedd QA can be done as well. The MIS sampling protocol has the advantage in speed (fewer inefments), whereas the LIS has the advantage in forcing the collector to sample in a broder, note complete fashion, thus lowering the ability to bias the sampling.

IIL Implementation Tests

Before making multiple-increment samping the method of choice for sarmpling explosives residues on now, additional work aeeded to be sonducted to ensure the proposed method is adequate and repeatable. The method chosen for testing was the large-increment samping protocol. The planned detonation of $155-\mathrm{mm}$ HE rounds scheduled for March 2004 was used to test the implementation of this methof for resicue characterzation. Two sets of seven round each were detonated, each set on adfferent day, and the plumes sampled for analysis.

155-mm Comp-E

Samples were collected for the 155 mm Conp-B tests using beth the LIS and MIS methods. Suburfacs samples, crater samples, and samples outside the plume were collected for QA (Table B-3). Table E-1 in Appendix E contains the data for these sests. Table 19 presents the averages and onnges for the plume fata,

Table 19. Analysis of piume samples- 165 mm Comp- E rounds.

Sample group	n'	Mean (mat		Range (mg)		Maximum differance	
		HMX	RDX	HWX	RDX	HMX	RDX
LIEs							
Plume 1	2	2.5	15	1.5	11	29\%	72 \%
Plume 2	3	N	4.4	\cdots	3.7	-	52\%
Plume 3	2	1.8	3.6	-	2.5	-	30%
Pume 4	3	17	28	-	46	-	92\%
Plume 5	2	0.35	33	-	2.0	\cdots	3\%
Plume 6	3	NL	1.9	-	4.0	-	97\%
Pume?	3	0.6	24	-	䖝	-	76%
Mean-LISs	7	± 0	16	-	14	\cdots	59\%
M15s							
Plume 3	2	ND	8.0	-	1.5	-	9\%
Plume 5	2	ND	10	-	0.10	-	1\%
MeanMISs	2	-	9.0	-	0.80	-	5%
All							
Waximum	9	25	33	1.5	$4 \hat{3}$	29%	92\%
Minimum	9	ND	1.9	-	0.10	\cdots	1\%
Meat	9	-	14	-	11	-	47\%
Median	9	0.35	10	-	3.7	-	52\%

 method. No TNT was detecter in any of these samples. Where both soti and filtate valtes are below tetecion linits, an ND is attetared. (Does not apely to All.)

The two MIS duplicate sumples agree very ciosely ($48 \% \%$). This is to be expected as they were taken as adjacent paits. The LISs are not nearly as chose. Samples were taken independently, sometimes by different personnel within the same plume. Twa RDX values, one each in Plume 4 and Plume 7 , ascount for the majority of the disparity in ranges. The replicates are all within an order of magritude where explosives were detected. This is good repeatability for residues recovery, given the number of results at or below detection firmits (12) and within 50% of the analytical detection limits (10), which makes comparative analyses difficalt.

The data for the crater samples demonstrate that their contribution is importan but not critica! (Table 20). For detonations with significant pestidues (Plumes 1, 4, and 7), the vontribution of the crater is relatively small ($\$ 9 \%$ on average). When the detonation is higher order (099.99% of explosives load consumed), the crater can contribute significantly to the overall residues, up to 20%.

When the residues are higher and the data are more critical in terms of range sustainability, the importance of data from the crater decreases as it becomes a less significant contributor to the residue mass within the plume. As it is impossible to determine the efficiency of a detonation in the field, it is prudent to always include the detotation point in the sample. This was done throughout the teste with the LISs.

Table 20. Data for crater samples-155-mm Comp-E rounds.								
	Crater $\operatorname{arga}\left(\mathrm{m}^{2}\right)$	Crater masses (mg)			\% of plume values*			
		HMX	RDX	TNT	Area	HMEX	RDX	TNT
Pume 1	13.8	0.13	0.21	-	1.1考	5.1\%	1.3%	-
Flime 2	13.8	0.16	0.56	-	0.80\%	-	12\%	-
Pume 4	15.8	0.32	1.7	0.03	0.94\%	18\%	6.1\%	-
Piumes	13.3	0.12	0.38	-	0.80\%	-	20\%	-
Plume?	12.4	0.02	0.22	-	0.60\%	3.3\%	0.82\%	\cdots
Average	13.8	0.15	0.61	0.007	0.56%	5.3\%	2.1\%	-
* Crater massiplume mass								

Data for six of the seven plumes indicate that no residues were detected within a distance of up to 6 m outside the plume. The one detonation with residues cutside the plume, Plume 1, was the result of high foot traffic in a small area adjacent to the plume where sampling took place. It was dificuit for the samplers to determine the outline of the plume in that atea and the sampling was thus ligely arroneous. Wind dift of some residues may also have contributed to the efror. In the case of Plume 1, the astimare for HMX ouside the plume is almost equal to that inside (00%), and the RDX outside the plume is equal to about 13% of that found inside the plume. Recovered residues dropped by an order of magnitude between the $0-103$ and the 3 - 106 -m ranges in this case, indicating that the plume demarcaion may bave aningally been satisfactory.

Subsurface samples taken bencath one MIS increments (Fig. 6) were ciean, indicating that all the residues were recovened durng sampling. Aithough the sample size is small (z^{-2}), the results are indicative of the improvement to be gained from using the smaller sampling tool for the multiple-increment sampling protecol (see Table 6).

Figure 6. Collecting adjacent Mis samples and subsurface samples from 155 -mm plume.

155 -n7m TNT

The sampling strategy for the TNT-filled rounds was the same as for the Comp-B filled reunds. Wind conditons were near ideal, with speeds below 1 m / s, and there was no drifting snow. All rounds were detonated within a threesecond window. Replicate MS and LIS samples were used to characterize the plume. Table 21 contains the ayerages and ranges for the samples. The complete data set may be found in Table E-2.

Some differaces between the avarages and ranges of the Comp- 3 tests (Table 19) and the TNT tests are apparent. The range between the MIS samples for a given plume is somewhat greater for the TNT rounds, but the agreement between the MIS and LIS samples for Pumes 3 and 5 is good. Ranges for the LESs are consistent with the exception of two values out of the 21 (Pime 2 TVT and Plume 7 RDX). Some of the variability with the averages and ranges is due to the detection limits of the analysis equipment, which cuts of the lower values of the residues, thus skewing the averages lower and the ranges higher. This was also seen with the Comp- B tests and is a factor that will have to be taken into consideration when detonations are high or neaf-high-order. In all, the samplitg method looks consistent and repeatable for the TNT rounds.

Table a 1 , Analysis of plume samples $-155 . \mathrm{mm}$ TNT rounds.							
Sample group	$\mathrm{n}=$	Mean (mg)		Range (mg)		Maximum tifference	
		RDX	TNT	RDX	TNT	RDX	TNT
4 L							
Plume 1	3	0.0	8.8	7.6	15	126\%	104\%
Plume 2	3	6.9	11	1.8	14	9\%	60\%
Plume 3	2	5.9	4.5	2.1	0.6	13%	7\%
Pume 4	3	ND	4.4	-	5.0	-	70\%
Prume 5	2	ND	6.4	-	3.3	-	268
Plieme 6	3	4.3	2.3	4.1	1.7	53\%	39\%
Plume ${ }^{\text {a }}$	2	12	4.4	19	12	50\%	14\%
Mean-LIS	7	$\epsilon .6^{*}$	6.1	8.9	5.8	52\%	47\%
MIS							
Plume 3	2	5.9	13	5	8.0	42\%	33\%
Fxime 5	2	ND	5.5	-	0.50	-	4\%
	2	-	9.5	\cdots	4.3	-	19\%
All							
Maximum	9	12	13	19	15	126\%	104\%
Minimum	9	No	23	-	0.50	-	4\%
Mean	9	$6.5{ }^{*}$	6.7	$6.6{ }^{*}$	5.5	50\%	41\%
Median	9	5.9	5.5	4.5	3.3	47 等	30%
Note: Values in italics contain one or mone cata points) at or below detection fimits for the instrumentaIifn. Where both soct and filtrate values are bslow detechion limits, an NL is entered. Af HMX values wers at pr balow detection limils. * Means of the values above detection limits.							

Analysis of the OTP and subsurface data are not as consistent. The data (Table 22) indicate tha TNT detonation kineties may differ significandy from Comp-B detonation kinetics (Taylor et al. 2004). Nomalty, TNT is net fout in the soot frattion of the residues. In these tests, TNT was detected in every test in significant quantities compared to the plume surface samples. The andication is that during detonation, particles of unexploded TNT are distributed by the explow sion. These particles are pale and would be difficult to see on the surface of the snow, making plume delineation problematic. These particles may also penefrate deeper into the snow than the soof. Only one OTP had any residue other than TNT in It, and neither subsurace sample had anything other than TNT in it This indicates that the C4 donor charge fully intonated with litle meneacted explosives remaining, and that the residues recovered are primatily from the protectile filler.

Table 22. Sampling OA nonwplume analysis for TNT-filed 155 mm implementation tests.

	Estimated residues			Persent of demarcated pilime		
Sample group	HMX (mg)	RDX (mg)	TNT (mg)	HMX	RDX	TNT
Subsurface samples						
Plume 3	ND	ND	210	0%	0\%	4700\%
Plame 5	ND	ND	5.4	0%	0%	70\%
OTP samples						
Pume $1(10-20 \mathrm{mR})$	ND	ND	1.1	0\%	0\%	12\%
Plume $2(0-3 \mathrm{~mA})$	1.5	NO	7.3	-*	0\%	66\%
Plume $30-3 \mathrm{~mA})$	ND	ND	4.5	0%	0\%	100\%
	ND	ND	3.0	0%	0%	66\%
Plume $40-3 \mathrm{~mA})$	ND	ND	11	0%	0%	250\%
Plume 5 (0-3 m A	NO	N0	0.82	0\%\%	O\%	13\%
Pume $5(3-6 \mathrm{ma}$)	N0	NO	0.52	0\%	6\%	8.1\%
Plume 6 (0-3 mA)	ND	NO	1.2	0\%	0\%	52\%
Plame 7 (10-20 mi R)	NO	N0	1.9	0\%	6\%	43\%
Average OTP	0.21	0.0	4.5	0%	0\%	07\%

In summary, the multhencrement samplnif technique proved very successfil in fepresenting the detonation plumes for 155 mm Comp-B-filled fuzed antilery projectiles. Problems were encountered with plume delineation and samping depth for the 155 mm TNT-filled fuzed projectiles. These problems would also have been encountered with the DSM protocol and point to the need for modir ytug the samplitg protocol to take the kineties of the TNT projectile into account. More work needs to be done to refine the protocol for TNT-filled propectiles.

5 CONCLUSIONS

Sampling residues on snow is a simple and effective method for chatacterizing detonation residues. Pumes can be demarated visually with detonations involving Comp-B filer, although more care is necessary with TNT-filfed ronnds. The standard protocol for sampling, the discrete sampline method, is prone to bias but compares well with several other sampling protocols tested. Several multiple-increment sampling protocols were designed and tested, and all were demonstrated to be comparable and repeatable wition less that an oder of magnitude. Ether the medium-increment or the laree-increment sampling protocol will work effectively in place of the DSM protocol. The large-increment sampling protocol was tested on $155-\mathrm{mm}$ high-explosive projectiles with very good results. The seven tests involving Comp-B-filled rounds were better at capturing residues than those involving the seven TNT-flled rounds, pointing to the need to modify the samping protocol for those types of rounds. Repeatability of samples within a phume was also cood, subjent to influence by the detection limits of the analysis equipment. Several quality assurance tests were designed and applied to check the various sampling procedures thoughout these tests and should be applied in the future to sampling of all detonation plumes.

REFERENCES

Collins, C.M., and D.J. Calkins (1095) Winter tests of artilery fring into Eagle River Flats, Fort Richardson, Alaska. U.S. Army Cald Regions Research and Engineering Laboratory, Hanover, Now Hampshire, Spocial Report $95-2$.

Hewitt, A.D. T.F. Jenkins, T.A. Ranney, J.A. Stark, M.E. Walsh, S, Taylor, M.R. Walsh, D.I. Lambert, N.M. Perron, N. H. Collins, and K. Kern (2003) Estimates for explosives residues from the detomation of amy muritions. U.S. Army Figineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, ERDC/CRREL Technical Report TR-0 ${ }^{3}$. 6.

Jenkins, T.F., T.A. Ranney, M.E. Walsh, P.H. Miyares, A.D. Mewitt, and N.H. Collins (2000) Evaluating the use of snow-covered fanges to estimate whe explosives residuts that result from demation of army munitions, U.S. Amy Engineer Research and Development Center, Cold Regions Research and Engimeering Laboratory, Hanver, New Hampshire, ERDCACRREL Technical Repore TR-00-15.

Jenkins, 'T.F., M.E. Walsh, P.H. Myares, A.D. Hewitt, N.H. Collins, and T.A. Ranney (2002) Use of snowwevered ranges to estimate explosives residues from high-order detonations of anny munitions, Thermochimion Acta, 384: 173185.

Natrella, M.G. (1963) Experimental statistics. U.S. Department of Commerce, Washington, D, C. National Bureau of Standards Handbook 91 .

Taylor, Sn A. Hewitt, J. Lever, C. Hayes, L. Perovich, P. Thorne, and C. Daghlian (2004) TNT paticle size distributions fron detonated 155 mm howitzer rounds. Chentashere, 55: 359.367.

Walsh, M.E and T.A. Ranney (1998) Detemination of nitroaromatic, nitramine, and nitrate ester explosives in water using solid-phase exitaction and GCECD. U.S. Amy Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, Special Report 98-2.

Walsh, M.E., C.A. Ramsey, C.M. Collins, A.D. Hewitt, M.R. Walsh, K. Bjella, D.J. Lambert, and N.M. Perron (2005) Collection methods and laboratory processing of samples from Donnelly Training Area firing points: Alaska, 2003. U.S. Amy Engineer Research and Development Center, Colk Reghons Researh and Engineering Laboratory, Hanover, New Hampshire, ERDC/CRREL Technical Repor TR-05-6.

APPENDIX A. MUNITIONS DATA

Tables A. 1 and A-2 contain muntions data for alt the tests conducted for this report. Table A. 3 lists munitions explosives constittents and loading for these muntions. Only constutuents with significant quantities ($>1 \mathrm{~g}$) are listed except for HMX. Note that HMX is an ummeasured constituent of RDX, the result of the manufacturing process, and may constitute up to 9% of the total RDX load. The number of blasting caps and amount of detonation cord used in each sest varied according to the training meeds of the troops and the discretion of the UXO technicians assisting with the operation. The majority of the explosives, however, were contributed by the test projectiles or rounds and the donor charge.

Table A-1. Munitions and explosives data-Jamuary tests.				
NSN	DOU10	Nomenclature	List number	Ouantity drawn
1315005637067	C256	Cartridge, al mm: HE M374 w/PD luze	MA-84E150-02	7
1315000284857	6445	Cartrige, 10¢ mm: M1 HE wo hze	LS-800125-007	7
1375014151232	MLAL 4	Cap, blasting, nonelectric, 30 -ft shock bute	EBWE7K060-005	8
1375094151231	MNOS	Cap. blasting, M13	ENECOMOO2-10\%	8
1375014161233	Windo	Cap, blastrg. Nor-electric, M13	SHK980001-001	15
1975001809356	M456	Cord dstonaling, pentaerthyie tetranitrate	EBGO3AD02-015	610 m
1375014151235	MNOB	Ignter ime blasting fuse with shock.斩	LNO98E001.003	15
1376007247040	M023	Charge, demoinion bleck, Comp CA , M112	MA 97A003-007A	16
1300010809447	N340	Fuze point detomating, M739	解A-848007.013	7
Noies: Drawn from Fort Richardson Ammo Supply Fint. Data fom DA Form 581- TRequest for lasue and Tum-in of Ammuntion, Supplemental charge usec in all 105 mm rounds. Some munfilons quanities used in subsequent tests rot covered in this report				

Table A-2. Munitions and explosives data-March tests.				
NSN	DODIC	Nomenclature	Lot namber	Quantity drawit
1320012534222	DS44	Prcjectile, $155 \mathrm{~mm}, \mathrm{MOT}, \mathrm{HE}$, wo fuze	IOPOBE100-011	14
1320014006087	D544	Projectile: $155 \mathrm{~mm}, \mathrm{MO}, \mathrm{HE}$, wio fuze	10P002K025-005	7
1300010808447	N340	Fuze point detonating, M/3s	M4-848007-013	21
1375014151232	ML47	Cap, blasthy nonefectre, 30 Foo. W1 1	EBW07K060.008	24
1375014181234	M 103	Gap, blasing, Hometecric, M13	EN600\% 002 -007	36
1975014151233	MNO6	Cap, blasling, nonelectric detay M14	SHK900001-001	24
1275001809366	M456	Cow detorating pentaerthyie temanitate	EBGO3A002.015	305 m
			ENEOBH001027	1830 m
1375014151235	Manos	Iontion, time blasking tiso wh shock ME1	LNO98E001-003	25
1375007247040	W023	Charge, demoltion blotk, Come C4, W112	P14A-97A003-607A	30
Notes: Drawn from Fori Richardson Arma Suppy Point. Data from DA Form 581.-Request for Issue and Tumbin of Ammuniton. Supplemental charge used ir all rouncts, Some muritions quantities used in subsequent tests not covered in this report.				

Table A-3 Explosives loading for munitions used in protocol tests.						
DODIC	Nomenctature	Load (g)	Consituent loads (g)			
			TNT	ROX	HMX	No*
0250	Cartidge, 01 mm, HE , M974, whaze PD F	063	371	572		46
C445	Cartidge, $105 \mathrm{~mm}, \mathrm{M} 1$, HE , wo fuze	2086	312	1253		
	Suplementary charge for fuze wett Howitzer ness)	136	135			
D544	Projectite, 155 mm M M07, HE, wio fize	6985	2724	4820		
D544	Projectie, 15 mm, M107. HE, wo fuze	66.2	6622			
N340	Fuze point detonating, M739 used wic445 \& D544)			21		
N 340	Fuze, poini detonating, M567 (supplied w/C250)		4	27		
MLAF	Cap, blasting, M11, notmelecirc, 30-f shock qube	1.175		く1	<1	
NW03	Cap, blasting, M13	5.06				
MNO6	Cap, biasting, non electric delay, Mt4	11.73				
M456	Gord, cetonating, pentaerthrie tetranitrate (1000 H)	2900				
MNCE	Igntier, MB1, time blating fuse, shock tube capable	0.05				
M023	Charge, demctition, block, COMP C-4, 1.25 it	570		525		
*We is tound in the tail assembly of the mortur round and is nomally reacted during frity						

APPENDIX B. QUALITY ASSURANCE PROCEDURES FOR PROTOCOL TESTS

The following tables contan a hist of the QA procedures and their descripions for each round or projectile detonated for the protocel and confrmation tests. The variability of the procedures for the tests reflects the development of the QA procedures durting the course of the tests. In all, 139 QA tests consisting of over 9850 increments were performed on the 28 rounds uned in these tesis. A write-up of the recommended QA procedures for use with detonations on snowncovered iee will be presented in a future rewort.

Table B-1. QA Procedures conductad at each detonation- 81 mm tests.

Detonatien	Procedure	Description
81-1	Subsurface sampling Duplicate ampling Antular OTP sampling	One at each DSM surface sample Adacent samples 0-to 3 -mannutus
81.2	Duplcate sampling Annutar OTP samping	MIS and LIS 0. to 3 m annulus
81.3	Duplivate samping Annular OTP wampling	DSME adjocents, and LIS 0- $\frac{0}{}$ 3-mannulus
81-4	Duplicate sampling Triplitate samplirg	Adjacents LIS
$81-5$	Subsurface sampling Radial sampling Anmuar OTP sampling Radial OTP samping	One at each DSB surface sample 0. fo 3 -mannulus 0. 10 10 mR OTP from detonation point
81-5	Tripticate samping	MIS
81-7	Triplicate sampling	LS

Table B-2. QA Procedures conducted at each detonation- 105 mm tests.		
Detonation	Procedure	Description
105-1	None	
105-2	None	
1053	Radial samplag Annular OTP sampling	LS to to 10H10- to 20-3-20-m R zones) a- 10 - m amulus
1054	Tropleate samping Gradient sampting	Laps Lis (gray-scale)
105-5	Duplicate sampling Triplcate sampling Ancuiar OTP sampling	Adjacents MS and LIS 0 - to 3 -m annulus
105-6	Subsurface sampling Duplicate sampling	One at each DSM surface sample L.S
105-7	Duplicate sampling Triplicate sarroling Radial sampling Annuar OTP sampling	$\begin{gathered} \text { Adjacents } \\ \text { MIS } \\ \text { L.15 (0- to 10-100 to } 20-1>20-\mathrm{m} \text { R zones }) \\ 0-\text { to } 3-\mathrm{m} \text { annulius } \end{gathered}$

Table B-3. QA Procedures conducted at each detonation-155mm Comp-B tests.

Detonation	Procedure	Description
155-18	Dupicate samplina Redial OTP sampling	LIS 0 - to 10- and $10-$ to $20-\mathrm{m}$ tadil from det point
$155-28$	Triplicate sampling Anmetar orp sampling	Lis 0 - to aran andus
155 -36	Adiacent sampling Sunsurface sampuing Duplicate samping Annular OTP sernping	MIS Below tach of one of the MIS samples LS 0 - to 3 m and 3 - to 6 m m antuli
155-48	Tripicate samping Amular OTP samping	Ls 0- to 3 mamulus
165-55	Adjacent sampling Subsuface samping Dupicate samplag Amolar OTP sampling	ME Below each of one of the Mis sarmples Lis 0-10 $3-\mathrm{m}$ and 3 - to 6 -manmuli
155-68	Tripicata sampling Annuar OTP sampling	$\begin{gathered} \mathrm{L} \text { 愘 } \\ 0 \text { O-to } 3-\mathrm{m} \text { analus } \end{gathered}$
156-7B	Tripleate sampling Radial OTP sampling	LIS 0. to 10-and 10 - to $20-\mathrm{m}$ radie from get point

Detonation	Procedure	Description
155-1	Triplicate sampling Gradient sampling Radial OTP samping	413 LIS $10-$ to 20 m radius fron detonation point
155-2	Triplicale samping Annular OTP samping	148 0. to 3 mannulue
1553	Adjacent samping Subsurface sampling Duplicale samelire Anrular OTP sampling	Mis Betw each of one of the MS samples LUS 0- to 3 mand 3 - to $6-m$ annull
158-4	Thelicate sampling Arrular OTP sampling	LS 0- to 3 mannues
155-5	Adjacent samping Subsurface sampling Dupicote sampling Arnular OTP sampling	MS Below each of one of the Mis ampies LS 0 to $3-\mathrm{m}$ and 3 - to $6-\mathrm{m}$ amul:
155-6	Triphicate sampling Annular OTP samping	LIS 0-to 3-m annubus
155-7	Triplicate sampling Gradient samping Racial OTP samping	LS LIS 10- to $20-\mathrm{m}$ redius from detonation point

Test type	Round tested	\# of reps.	Increments*
Replicate DSMs	81-3	1	1 @ 17 points
Subsurface-DSMs	81-1	1	1 @ 11 points
	81-5	1	1 @ 11 points
	105-6	1	1 @ 15 points
Adjacents-DSMs	81-1	2	11
	81-2	1	12
	81-3	1	17
	81-4	2	11
	81-5	1	11
	81-6	1	11
	81-7	1	11
	105-1	1	15
	105-2	1	15
	105-3	1	17
	105-4	1	15
	105-5	2	18
	105-6	1	15
	105-7	1	18
Replicates-DSM adjacents	81-1	1	$1 @ 11$ points
	81-4	1	1 @ 11 points
	105-5	1	1 @ 18 points
MIS	81-1	1	38
	81-2	2	36
	81-3	1	40
	81-4	1	34
	81-6	3	40
	81-7	1	40
	105-1	11	40
	105-2	1	40
	105-3	1	40
	105-4	3	41
	105-5	3	41
	105-6	1	32
	105-7	3	35
	155-3 Comp-B	1	40
	155-5 Comp-B	1	40

Table B-5 (contd). List of all QA procedures conducted over the course of testing.

Test type	Round testea	\# of repes.	increments*
MS	$155-3$ TNT	1	40
	155-5 TAT	1	40
Adjacents- Mis	1553 Comp-E	1	40
	1655 Comp-E	1	40
	$155-3$ TNT	1	40
	1555 TNT	1	40
LIS	81.1	1	100
	81-2	2	110
	$81-3$	2	103
	81.4	3	103
	81.6	1	73
	81.7	3	100
	105-1	1	100
	105-2	1	100
	105-5	3	120
	105-6	2	97
	155.100me	1	100
	155.2 Come E	2	100
	155-3 Comp-B	\%	100
	155-4 Comp-B	2	105
	155-5 Comp-B	$?$	105
	155-6Comp-	2	111
	155-7 Comer- ${ }^{\text {P }}$	2	115
	155-1 7VT	2	105
	155-2 TNT	2	102
	1553 TNT	1	100
	1554 TNT	2	101
	1855 TNT	1	100
	$155-6$ TNT	2	143
	155-7 TNT	1	96
LS-Gray-scale zones	105-4	1	137
	1581 TNT	1	209
	155-7TNT	1	160
Lis-Radial zones	514	1	263
	105-3	1	141
	105.7	1	309

Table $8-5$ (cont'd).			
Testiype	Round tested	\# 4 of reps.	Increments*
OTP- 0 - to 3-manulus	81-1	1	40
	$81-2$	1	41
	81.3	1	8 C
	81.3	1	120
	$105-3$	1	08
	105-5	1	82
	1057	1	68
	155-2 Camp B	1	100
	155-3 Comp-B	1	100
	155-4 Comp-B	1	100
	155-5 Comp-B	*	100
	155-6 Comp-B	1	73
	$155-2$ TNT	1	100
	$155-3 \mathrm{TNT}$	${ }^{1}$	100
	$155-4$ TNT	1	100
	155-5 TNT	1	100
	155-6 TNT	1	100
OTP-3- to 6-m annulus	155-1 Comp 8	1	100
	155-7 Comp-8	1	100
	155-1 TNT	1	100
	155-7 TNT	1	100
OTP-0- to 10-m radius	84-5	1	35
	155-1 Comp-	1	35
	155-7 Comp-B	1	50
OTP-10- to $20-\mathrm{m}$ radius	155-1 Comp-B	1	73
	155-7 Come-n	1	8 \%
	155-1 TNT	1	98
	155-7 TNT	1	78
Noles: For $81-\mathrm{mm}$ and 105-rm testa, the DSM protoco was the standard samping protocol. For the $155-\mathrm{mm}$ tests the LIS protocol was the standard protocol QA was performed to verify these protocols. * The number of increments is the average per rep.			

APPENDIX C. DATA FOR THE DISCRETE SAMPLING METHOD (DSM) TESTS

The following tables contain data generated from residues sampling durixg the DSM baseline test phase of this project. Threy tests were eonducted concurrently with the DSM tests: discrete sampling, subsurate sampling beneath the discrete sampling area, and sampling outside the demarcated phome using a langeincrement composita sampling protocol. Each table is selfexplanatory with the notes given at the bottom of the tables in the body of the report. Residue masses ara given in milligrams.

Table C-1. Plume sampling statistics for DSM test (excludes crater samples).

Plume ${ }^{\text {F }}$	$\begin{aligned} & \text { Plume }(O T P) \\ & \text { area }\left(\mathrm{m}^{2}\right) \end{aligned}$	Sample type	\# Samples	Increments	Sampled area (m^{2})	喽 of area sampled
81-1	1506	Discretes (m^{2})	11	1×11	11	0.73%
		Subsurface (m)	11	1×11	11	--
	(4)	0 - to 3-m OTP	1	40×1	1.6	0.33%
$81-2$	687	Discretes (m^{2})	12	1×12	12	1.9\%
	(354)	0- to 3-m, OTP	4	41×1	1.6	6.48\%
81-3	790	Discretes (m7)	2×17	2×17	34	2.2\%
	(378)	$0-603 \mathrm{motP}$	1	80	0.80	0.21\%
81.4	685	Discretes (m^{2})	11	1×11	11	1.6\%
81.5		Discretes (m^{2})	11	1×11	11	1.6\%
		Subsurface (m^{2})	11	1×11	11	-
	(312)	0 - to 3-m OTP	1	120×1	1.2	0.38\%
	(129)	0- to 10-mROTP	1	35×1	1.4	1.1\%
81.6	741	Discretes (m)	11	1×11	11	1.5\%
$81-7$	07%	Discreles ($\left(\mathrm{m}^{2}\right)$	11	1×11	11	1.6\%
Tctal			128	439		
Average*	720	Discretes (min)	13	13	13	1.8\%
		Subsurtace (m^{2})	11	11	11	1.2\%
	(380)	0 -to 3-m OTP	1	70	1.5	0.42\%
105-1	731	Discretes (m)	15	1×15	35	2. $\%$
1052	443	Discretes (m^{2})	15	1×15	15	3.49
105.3	938	Discretes (mi)	17	1×15	17	1.8\%
	(402)	0 -10 3-motp	1	66×1	0.66	0.16%
$105-4$	808	Discretes ($\left(\mathrm{m}^{2}\right)$	15	1×16	15	1.9\%
105-5	872	Discretes (m)	18	1×18	19	2.1\%
	(457)	0 - 03 BmOTF	1	82×1	0.82	0.18\%

Table C-1 (cont'd).						
Plume ${ }^{\text {a }}$	$\begin{gathered} \text { Plume }(O T P) \\ \text { area }\left(\mathrm{m}^{2}\right) \\ \hline \end{gathered}$	Sample type	\# Samples	Increments	Sampled arat $\left(\mathrm{m}^{2}\right)$	$\%$ of area sampled
105-6	1310	Discretes (m^{3})	15	1×15	15	1.2\%
		Subsuriace (m^{2})	15	1×15	15	-
106-7	946	Discretes $\left(\mathrm{m}^{2}\right)$	18	1×15	18	1.9\%
	(486)	0 - to 3-m OTP	1	60×1	0.65	0.14%
Tetal			131	342		
Average*	$8 \mathrm{EC4}$	Discretes (m^{2})	16	16	16	1.9\%
		Subsutace mb^{2}	15	15	45	1.2\%
	(450)	0 - 103 mTR	4	71	0.71	0.16\%
Note: Average for plumes where tests were conducted.						

Table C-2. Estmated residues masses for DSid protocol tests.			
Plume $\%$	Sample type	HMX (mg)	RDX (mg)
$81-1$	Discretes ($\mathrm{m}^{\overline{2}}$)	11	20
	Sussurface (m) m^{2})	1.4	3.7
	OTP O-3m	0.14	-
$81-2$	Discretes (m^{2})	5.6	72
	OTP 0-3m	-	\cdots
81-3	Discretes $\left(\mathrm{m}^{2}\right)$-a	1.1	8.1
	Discretes $\left(\mathrm{m}^{2}\right)$-b	1.5	10
	OTP 0-3m	-	-
81.4	Discretes (m^{2})	57	470
81.5	Discretes (m^{2})	7.3	31
	Subsurface $\left(\mathrm{m}^{2}\right)$	10	40
	OTP 0-3m	\sim	0.36
	OTP0-to $10-\mathrm{m}$ tadus	-	-
81.4	Discretes (m^{2})	85	220
81.7	Discretes $\left(\mathrm{m}^{2}\right)$	31	92
105-1	Discreles (m^{3})	2.3	13
105-2	Discretes $\left(\mathrm{m}^{2}\right)$	5.0	18
105-3	Discretes (m^{2})	6.9	33
	OTP 0-3m	0.15	2.2
105-4	Discretes (mi^{2})	6.6	15
1055	Discretes (mi)	11	82
	OTP 0-3 ${ }^{\text {a }}$	0.25	$\pm .4$
105-8	Discretes mm^{2})	11	25
	Subsuraca (mi)	0.68	116
105-7	Discrates (m^{\prime})	5.3	17
	GTP 0-3m	-	0.43

Himma	Teat	Eane	Aream（m）	萝 Samples	峰 Samples		Samples
81－1	Corcentric	（a－1010 m	154	4	306\％	12\％	50
		10－620 m	331	4	瑏然	\％2\％	1.8
		－20 m	991＊	3	27\％	66\％	0.41
$81-2$	Conombtre	0.1010 m	169	7	58\％	27\％	2.1
		10－10 20 m	231	4	33\％	36\％	0.92
		＞20m	237	1	36\％	3789	0.2
8：－3ta）	Concentict	9－ 9 10m	$1{ }^{\text {学 }}$	6	3类安	24\％	1.5
		10．6． 29 m	223	5	3者等	29\％	10
		320 7	377	6	35	47\％	0.74
91．3（b）	Concentric	0 to 10 m	187	9	630\％	24\％	2.2
		10 －to 20 m	226	6	35\％	29\％	1.2
		＞20m	$377{ }^{7}$	2	12\％	47\％	0.26
8\}-4	Conamette	（2） 1010 m	$44^{4} 4$	4	30\％	210，	1.7
		10－1020 m		5	$44^{4} 5$	28\％	1䤨
		320 n	507＊	2		518	6.36
81.5	Concentro	\％． fa 10 m	185	5	$4{ }^{4} 5$	27\％	17
		10． 5029 m	2\％2	8	4\％\％	39\％	1.2
		720 m	235	1	0\％	34%	0.26
$81-3$	Concentris	0 －to 10 m	194	A	36\％	26\％	1.4
		10－to 20 m	313	6	55%	42%	1.3
		20 \％	2 2 4	！	9\％	32\％	0.28
A $1-\frac{7}{2}$	Goncentrie	0－5019m	182	6	\％ 298	27\％	2.0
		10． 20.20 m	能主	5	45\％	38\％	1.2
		＞20 m	236	0	7\％	35\％	0.06
105－3	Concentric	$0-1010 \mathrm{~m}$	282	7		30%	1.4
		10－to 20 m	393	7	41\％	42\％	1.0
		＞20m	253	3	18\％	28\％	0.64
105－4	Gay	Datk	97	4	274%	12\％	2.2
		Hadium	61	2	13\％	8%	1.6
		Letit	6to	9	60\％	80\％	0.75
	Concentic	0－10 10 \％	258	7	$4{ }^{4 \%}$	36%	＋ 3
		他 10.20 m	401	7	477者	50\％	6．94
		20 m	121	7	6．7\％	15\％	0.45
105－7	Concentric	0 －to 10 m	232	7	39\％	20\％	1.6
		10－6020	367	\＃	20\％	36\％	0.72
		220 m	347	\％	33\％	3208	0.92

Table 0 - 4 . Detonation proximity bias in DSM residues estimates.				
Plume	Test	Condition	HMX (mg)	RDX (mg)
$81-1$	Concentre	Weighted	5.5	10
		Stancara DSM	11	20
		Difternce	100\%	100\%
11-2	Concertic	Weikhted	4.1	71
		Stancard DSM	5.6	72
		Difference	37\%	1.4\%
81-3a	Concentric	Weiphted	0.31	6.5
		Standard DSM	1.1	8.1
		Difienence	21\%	25\%
	Concositic	Weighter	1.1	17
		Stancand DSt	1.5	10
		Diterence	36\%	-42\%
84.4	Concentic	Weighter	46	446
		Stanctata LSM	57	473
		Diflathe	24\%	类1480
31-5	Qoncentic	Wheighted	4.7	19
		Standara DSm	7.3	31
		Difference	55\%	63\%
31.8	Cancentric	Weighted	43	170
		Standard DSM	55	220
		Difference	28\%	29\%\%
31-7	Corcentria	Weighted	19	55
		Standma DSM	31	92
		Difereata	63 y	64%
Average difference: 81 mm			46\%	31\%
105-3	Concentric	Weighted	5.8	27
		Stantare OSM	6.9	33
		atrererse	23%	22\%
10t-4	Concentric	Wegghed	5.1	11
		Standard DSM	6.6	15
		Difference	29\%	36\%
1080	Concentric	Weighted	4.1	15
		Starsara DSM	5.3	17
		Differenco	29\%	13 x
Average difference: 108 -nm			27\%	24\%
Avorage overall diftrente			38\%	28\%

APPENDIX D. DATA FOR PROTOCOL TESTS

The following tables contain data ganerated from residues sampling during the protocol test phase of this project, Three tests were conducted concurrently with the DSM tests: Sampling adjacent to the DSM sample, plume chatacterization using a medium-increment composite sampling protocol, and plume characterization using a large-increment cornposite sampling protocol. Each table confains the number of samples taken, the increments per sample, the total area for each sample, and the percent of the demarcated plume sampled. Residues masses are given in milligrams.

Table D-1. Data for adjacent samples.						
Plume	\# Samples	Increments	Sampled area $\left(\mathrm{m}^{2}\right)$	窑 of plame sampled	HMX mass (mg)	ROX mass (mg)
81-1	2	11 eact	0.44 each	0.03\%	15	23
					6.8	14
81-2	1	12	0.48	0.08%	9.4	4.9
81-3	2	17 each	0.65	0.00%	1.8	7.6
					22	10
81-4	2	11 eats	0.44 each	0.06\%	20	540
					97	720
81.5	1	11	0.44	0.06\%	10	45
81.6	1	11	0.44	0.06%	67	280
814	1	11	0.44	0.06\%	45	130
10\%-1	1	15	0.60	0.03\%	8.1	11
10s-2	1	15	0.60	0.14\%	6.6	14
105-3	1	17	0.68	0.07\%	9.6	17
105-4	1	15	0.60	0.07\%	8.4	18
105.5	2	18	0.72 each	0.08\%	29	150
					24	54
1058	1	16	0.50	0.05\%	17	32
105-7	2	18	0.72 each	0.08\%	10	23
					8.5	12

Table D-2. Data for medium-merement (0xis) samples.						
Plume	\# Samples	merements	$\begin{gathered} \text { Sampled araa } \\ \left(\mathrm{m}^{2} \mathrm{j}\right) \\ \hline \end{gathered}$	名 of plume tampled	HMXX mass (mg)	$\begin{gathered} \text { RDX mass } \\ (\mathrm{mg}) \end{gathered}$
81-1	1	38	1.5	0.10\%	29	3.6
$31-2$	2	35	1.4	0.22\%	2.2	3.2
		37	1.5	0.24\%	2.9	6.0
81.3	1	4	1.6	0.20\%	1.1	8.4
81-4	1	34	1.5	0.22 \%	58	480
81.6	3	40	1.6	0.22\%	75	335
		40	1.6	0.22\%	55	290
		40	1.6	0.22\%	65	220
84.7	1	40	1.5	0.24\%	16	43
105-1	1	40	1.6	0.22\%	2.3	11
105-2	1	40	16	6.30\%	4.6	16
105-3	1	40	16	0.17%	6.3	20
106-4	3	40	1.6	0.20\%	5.1	10
		40	1.5	0.20\%	8.9	23
		42	1.7	0.21 \%	4.9	11
105-5	3	42	1.7	0.19\%	9.9	104
		40	1.6	0.18\%	9.2	74
		40	1.6	1.18\%	968	540
105.6	1	32	1.3	0.10\%	8.8	17
105-7	3	31	1.2	0.13\%	7.7	14
		30	1.4	0.15%	7.6	19
		39	1.6	0.17\%	5.1	12.

Table D.3. Data for largewincrement (LIS) samples.						
Plume \#	\# Samples	increments	Sampled area $\left(\mathrm{m}^{2}\right)$	$\%$ of plume sampled	HMX mass (mg)	$\begin{gathered} \text { RDX mass } \\ (\mathrm{mg}) \end{gathered}$
\$1.1	1	109	1.1	0.07\%	6.3	12
812	2	106	1.1	0.17%	2.7	29
		113	1.1	0.17%	7.2	72
81.3	2	104	1.0	0.13%	0.32	4
		102	1.0	0.13\%	2.3	29
81-4	3	100	1.0	0.14%	68	520
		100	1.0	0.14\%	65	540
		110	1.1	0.16\%	40	370
81.5	1	263	2.6	0.38\%	32	22
81.6	1	73	0.73	0.10%	50	270
817	3	100	1.0	0.15\%	17	42
		100	1.0	0.15	15	44
		100	1.0	0, 15\%	12	绽
105-1	1	100	1.0	0.14\%	4.4	6.9
1052	1	100	10	0.23\%	2.8	14
$105-3$	1	141	1.4	0.15\%	8.3	25
105-4	1	137	1.4	0.17\%	2.8	7.6
1056	3	105	4.1	0.13%	22	150
		111	1.1	0.13%	28	200
		144	1.4	0.17\%	28	150
1056	2	97	0.92	0.07\%	15	30
		97	0.97	0.07%	10	18
1057	1	309	3.1	0.33 然	6.5	19

APPENDIX E. DATA FOR IMPLEMENTATION TESTS

The following two tables contain data derived from the implementation tests. In these tables, M_{a} is the mass of the residues collected in the sample both filk trate and soot factions), C_{5} is the surface concentration calculated for the area sampled, and Mr the total mass calculata for wither the crater, the plume, or the area gutside the plume sampled. Hilies indicates extrach concentrations of the analytes below or near (50%) the detection limit $(30 \mu \mathrm{y}$ L) of the anatytical method. Residues are given in micrograms.

Table E-1. Estimated total residues masses for detonation tests -155 mm Comp- B roundis.

Sample qupe	$\begin{gathered} \text { Aress } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	HMX			ROX			TNT		
	Plume? sample	$\begin{gathered} H_{R} \\ (\mu \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{5} \\ \left(\mu \mathrm{~g} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1} \\ (\mathrm{mg}) \\ \hline \end{gathered}$	$\begin{gathered} M_{6} \\ (H 9) \end{gathered}$	$\begin{gathered} \mathrm{c}_{\mathrm{S}} \\ \left(\mu \mathrm{~m} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} H_{1} \\ (m g) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{R}} \\ (\mu \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{5} \\ \left(\mu \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} M_{Y} \\ (\mathrm{mg}) \end{gathered}$
Plume 1	1275									
Ctater	0.00	8.4	9.4	2. 13	13	15	0.21	ND	-	-
Lis	0.94	1.3	1.4	1.8	7.3	7.7	9.8	ND	-	-
15	100	2.6	2.6	3.3	17	17	21	ND	\cdots	-
OTP-102	0.35	0.67	1.9	24	23	65	3.7	NO	-	-
OTP-20R	0.73	ND	-	-	0.71	0.97	0.37	ND	-	-
Plume 2	1731									
Cater	0.30	3.6	12	. 16	12	41	0.56	ND	-	-
LIS	1.00	NO	-	.	3.1	3.1	5.4	ND	-	-
45	1.00	NO	\cdots	-	1,2	1.2	2.1	No	-	-
Lis	1.00	NO	-	-	33	3.3	5.8	ND	-	-
OTP.3A	2.25	NO	-	-	NO	-	-	NO.	-	\cdots
Plume 3	1335									
MS	000	ND	-	-	1.9	4.8	28	N0	\cdots	-
M15	0.00	ND	-	\cdots	3.6	4.0	7.3	NO	-	-
Subsurface	0.40	ND	-	-	ND	-	-	NO	-	-
LS	1.00	ND	-	-	1.3	1.3	23	ND	-	-
1.18	100	2.0	20	3.7	26	2.5	4.0	NL	-	\cdots
OTP.3A	1.00	ND	-	\cdots	ND	-	-	NO	\cdots	-
OTP.EA	4.00	ND	\cdots	-	ND	-	-	ND	-	-

Table E-1 (cont'd).										
$\begin{gathered} \text { Sample } \\ \text { ypa } \end{gathered}$	$\begin{aligned} & \text { Areas } \\ & \text { (min } \end{aligned}$	H0\%			RDX			TNT		
	Phinel sample	$\begin{aligned} & M_{R} \\ & (H g) \end{aligned}$	$\begin{gathered} \mathrm{C}_{8} \\ \left(\mu \mathrm{~m} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{7} \\ (\mathrm{mg}) \end{gathered}$	$\begin{gathered} M_{8} \\ (H) \end{gathered}$	$\begin{gathered} c_{S} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{T}} \\ (\mathrm{mg}) \end{gathered}$	$\begin{gathered} M_{\mathrm{R}} \\ (\mathrm{Ha⿻}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{5} \\ \left(\mathrm{mgm}^{2}\right) \end{gathered}$	$\begin{gathered} M_{7} \\ \text { (mgl } \end{gathered}$
Plume 4	1854									
Crater	0.64	14	20	0.32	73	110	1.7	1.4	2.1	0.03
LIS	1.04	33	3.7	5.2	33	32	53	ND	-	--
LS	1.06	N0	-	-	15	14	23	ND	-	-
LiS	1.65	NO	\cdots	-	4.3	4.1	6.7	NO	-	-
OTP-3A	2.25	ND	-	-	ND	-	\cdots	ND	-	\cdots
Plumes	1638									
MS	0.90	ND	-	-	5.4	6.0	0.9	ND	-	-
M M	0.90	ND	-	-	5.5	6.1	10	ND	\cdots	-
Subsurface	0.40	ND	\sim	-	ND	-	-	ND	\cdots	\cdots
LIS	1.00	ND	-	-	21	21	34	ND	-	-
LIS	1.10	0.48	0.44	0.77	22	20	32	ND	-	-
OTP-3A	1.00	ND	一	-	ND	-	-	ND	\cdots	-
OTP-8A	1.00	ND	-	-	ND	-	\cdots	ND	-	\cdots
Plume 6	1656									
Crater	0.30	2.7	8.8	0.12	8.7	29	0.38	ND	-	-
115	1.10	ND	-	-	0.39	0.35	0.59	ND	-	-
LIS	1.05	ND	-	-	2.9	2.8	4.6	ND	-	-
LIS	1.28	ND	-	-	0.44	0.34	0.57	ND	--	\cdots
OTP-3A	0.73	ND	-	-	ND	-	\cdots	ND	-	\cdots
Plume 7	1556									
Crater	0.50	0.75	1.5	0.02	8.9	18	0.22	ND	-	$\underline{-}$
LIS	1.09	ND	-	-	3.5	3.2	50	ND	-	-
LIS	1.30	1.5	4.2	1.9	31	24	37	ND	\cdots	-
Lis	1.00	ND	-	-	19	19	20	ND	\cdots	\cdots
OTP-10R	0.87	ND	\cdots	-	ND	--	--	NO	\cdots	-
OTP-Z0R	0.50	ND	-	-	ND	\cdots	-	3 NL	\cdots	-

Table E-2. Estimated total residues masses for detonation tests- $\mathbf{1 5 5} \mathbf{5 m m}$ TNT rounds.

sample yps	Areas	HMMX			RDX			TNT		
	Plumel sample	$\begin{gathered} \mathrm{M} \mathrm{M}_{1} \\ (\mathrm{Ha}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{S}} \\ \left(\mu \mathrm{~g} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} W_{\gamma} \\ (\mathrm{mg}) \end{gathered}$	$\begin{gathered} M_{\mathrm{F}} \\ (\mu \mathrm{~g}) \end{gathered}$	$\begin{gathered} c_{\mathrm{s}} \\ \left(\mu \mathrm{~g} \mathrm{~m}^{2}\right) \end{gathered}$	$\underset{(\mathrm{mg})}{\mathrm{M}_{\mathrm{F}}}$	$\begin{gathered} \mathrm{M}_{\mathrm{R}} \\ (\mathrm{Hg}) \end{gathered}$	$\underset{\left(\mu \mathrm{C}_{\mathrm{s}} \mathrm{~m}^{2}\right)}{ }$	$\begin{gathered} M_{7} \\ (\mathrm{mg}) \end{gathered}$
Flume 1	1234									
LIS-1	1.1	1.8	16	2.0	9.5	8.7	11	2.9	2.6	3.3
LIS-2	0.91	ND	-	-	2.8	2.8	3.4	4.2	4.2	5.2
LS-3	0.52	2.4	2.4	2.9	3.0	30	3.7	15	15	16
LStit	1.26	ND	0	0	ND	--	-	162	33	11
LIS-mad	0.91	82	6.8	22	12	13	4.2	3.6	4.3	1.3
LIS OK	0.52	ND	-	-	ND	-	-	2.3	4.3	0.30
OTP-20R	0.88	ND	-	-	ND	-	\cdots	2.92	3.0	1.1
Plume 2	1600									
Crater	0.20	1.4	7	1.5	4.5	2	027	\%	30	0.38
L15-1	1.0	1.3	1.8	29	4.7	4.7	7.5	0. 5	6.5	10
LS-2	1.0	1.5	1.4	2.3	3.7	3.6	5.7	3	3.0	4.7
Lis-3	1.0	2.1	24	3.3	4.7	4.7	7.8	12	12	19
OTP-3A	10	2.0	20	1.5	ND	-	-	10	10	7.3
Plume 3	1211									
MIS	0.30	1.7	1.9	2.5	5.8	6.4	8.4	58	6.5	85
Mis	0.90	ND	-	-	2.4	2.6	3.4	12	13	17
sub surfice	0.40	ND	\cdots	-	MD	-	\cdots	63	160	210
Lis-1	1.0	ND	-	-	5.4	5.43	7.1	3.2	32	4.2
LiS-2	10	1.5	1.5	1.2	7.0	70	9.2	3.7	3.7	4.8
OTP-3A	1.0	ND	-	\cdots	ND	-	\cdots	7.8	78	4.5
OTPAA	1.0	NO	-	-	ND	-	\cdots	4.8	4.8	3.0
Plume 4	7201									
LIS-1	10	No	-	-	ND	-	\cdots	15	10	1.3
L15-2	10	NO	\cdots	-	ND	-	-	4.7	4.7	5.3
LIS-3	1.4	ND	-	\cdots	ND	-	-	5.3	5,2	6.3
OTP-3A	1.0	ND	-	-	ND	-	-	23	23	11
Plume 5	1108									
M15	0.9	ND	-	-	ND	-	\cdots	6	5.5	
W1S	0.90	ND	-	-	ND	-	-	4.5	5.1	5.6
Subsutace	0.40	ND	一	-	ND	-	-	2	49	5.4
LISm	1.0	ND	-	\cdots	ND	-	-	7.4	7.2	8.0
LS 2	1.0	NO	-	-	NO	-	-	4.3	4.3	4.7

Table E-2 (cont'd).										
	$\begin{gathered} \text { Areas } \\ \left(\mathrm{m}^{2}\right) \end{gathered}$	HMX			RDX			TNT		
Sample type	Plumel sample	$\begin{gathered} M_{\mathrm{R}} \\ (\mu \mathrm{~g}) \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{s}} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{2}\right) \end{gathered}$	$\underset{(\mathrm{mg})}{\mathrm{M}_{\mathrm{T}}}$	$\begin{gathered} M_{\mathrm{R}} \\ (\mu \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{c}_{\mathrm{s}} \\ \left(\mu \mathrm{~g} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} M_{\top} \\ (\mathrm{mg}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{k}} \\ (\mu \mathrm{~g}) \end{gathered}$	$\begin{gathered} c_{S_{3}} \\ \left(\mu \mathrm{~g} / \mathrm{m}^{2}\right) \end{gathered}$	$\begin{gathered} M_{T} \\ (\mathrm{mg}) \end{gathered}$
OTP-3A	1.0	ND	-	-	ND	-	-	1.6	1.6	0.82
OTP-6A	1.1	ND	-	-	ND	-	\cdots	1	0.94	0.52
Plume 6	1375									
Crater	0.20	ND	-	-	ND	-	-	12	61	0.89
LIS-1	1.3	ND	-	-	4.0	3.4	4.7	1.3	1.1	1.5
His-2	1.2	ND	-	-	1.9	1.5	20	2	1.6	2.2
Lis-3	1.6	5.1	3.2	4.4	7.1	4.5	8.1	38	23	3.2
OTP-3A	1.0	ND	-	-	2.2	2.2		2.3	23	12
Plume?	1180									
LIS-1	1.1	ND	-	-	4.0	4.2	4.9	4.1	4.2	50
LS.2	1.0	2.6	2.5	3.0	17	12	19	3.4	3.2	3.2
158 tat	0.83	ND	-	-	ND	-	-	4.2	共1	3.9
Lis-med	0.52	2.3	4.4	1.4	2.8	5.4	1.7	5.1	9.8	3.1
LS-DK	C. 45	32	7.1	0.6	94	94	9.1	6.7	15	1.4
OTP-208	0.78	ND	-	-	ND	-	-	4.1	5.2	1.9

Approver for puble releass; fietnbution is mitmited.
Avalable from NTIS, Springleld, Virginia 22.61.

13. SUPPL LMETAKY NOTES

4. AESTRACT

Range contanination and sustainabily are major isues for the Unted Sxates military. Taining is a critical factor ia force readiness, and the

 methor, what developed by the Atmy's Coll Rewions Research and Engineering Laboratocy to determine mesidues from the detonation of muntions, Alitough very effective, it requires the collection of thany large samples, restering in fabor-intensive field operations and much proeessiag and analysis work in the laboratory. By examining samplec locations within detemation plumes, it appears that collection bias may be affecting the restlis. There was also no methodology for guality assurance in the coliection of the samples. We have examined the process currently in use and carried out a series of experiments to delemine whether bias aud sample quality issues are present in the sampling techique. Altemative methods of sample collection that afford a greater opportunity for quality control were examined and compared to the discrete sampling method. The reconmended alternative sampling protocol is to collect multi-increment samples, and experimental resulis using this method are presented.

TS. BUBJECY TERMS	Bias Blow-in-place Explosives constituents		Quahty assurance Residues Sampling		Snow
Th SECURTY Classification of:			17. Litaltanton af DF gestracif	1a. NIUMER2 OF fatyes	59W NAME DF TESPCNSIELE PERPSON
a. REPORT	b. Abstract	C. This Page			
U	4	U	U	68	

posted on Fri_{2} Dec. $09,200{ }^{5}$

U.S. Army wants to dig up soil in arsenal burn zone

plan, backed by tha, to be subject of public hearing on Dec. 20

The L.S. Amm would like bo excavate and chean up a contaminated sie at the now-closed Raventa Amy Anmunion Pont.
 spocesman invenger.

The Amy is considering two options: digging up the contaminated sol or coing nothing with the site.
Digging up the sol, a play developed in consultation with the Ohio Environmental Protection Agency, is the Army's preferred choice, Venger said.

The 14 -page phan was developed for the Army th Tennessee-based Science Appications international Corp, a consulting firm.

A pubic hearng on the two options will be held Dec. 20 at the Newton Falls Community Center auditorium, 52 E. Quarry St., Newton Falls. There will be an open mouse at 5 p.m. and a public meeting at 6 p.m.

The report is available for review at the Reed Memorial Library, 167 E. Main St., Ravenna, and at the Newton Fatls Public Library, 204 5. Canal 5t., Newton Falls. It is also available at www, rvaap.org.

The public comment period ends Jan. 8. Comments may be sent to Irv Venger, Acting RAAP Faciity Manager, Building 1037, RVAAP, 8451 State Route 5 , Ravenna, OH 44266 .
" Our goal over the next month is to listen to what the public has to say about the altematives that are presentec in this proposed plan," Venger said, "Public indut is important for the final remedy selection and ful consideration will be given to all puitic comments."

The Winkepeck Buming Ground is where the Army bumed bulk explosives along with trash from the arsenal where munitions were produced for Werld war Il and the Korean and Vietham wars.

The site - about 200 yards wice and on mile long near the center of the facilly - - would be excavated up to 4 feet deep for explosives, heavy metals and wobtile organk compoundsy venger suid.

The Army intends to remove the contaminated sell and to characterize the samples. Then the soll depending on contamination levels, would be user on-site as backfill or ba shiphed of-site mor disposal at an aproved facility.

The buning ground is one of 53 contaminated stes at the 21,419 acfe faclity in eastern portage and westem Trumbull counties.

The Amy intends to spend an estmated fot mhon to clan wh the faclity, whin hos largely been tumed over to the Ono Natmal Guard for trainim.

Bob Downing can be reached at 330-595-3745 or batwingothetaconfoumat mom

[^0]: DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.

[^1]: * Avarage values lor plumes.
 * Ratio of the \% samples to \% area,

