DATA VALIDATION SUMMARY REPORT

for Samples Collected During
Groundwater Monitoring
Fort Wingate Depot Activity
McKinley County, New Mexico

Data Validation by: Kortney Curry
Project Manager: Carrie Ross
Report Date: 2/14/25
Parsons – Austin

INTRODUCTION

The following data validation summary report covers nine (9) water samples, and associated field quality control (QC) samples collected on October 9, 2024, at Fort Wingate Depot Activity (FWDA), located in McKinley County, New Mexico. The samples were logged under Sample Delivery Group (SDG) 280-197835.

The samples in this SDG were analyzed for the following parameters: orthophosphate as P by EPA Method 365.1, anions by U.S. EPA Method 9056A, volatile organic compounds (VOCs) by U.S. EPA Method 8260D, semivolatile organic compounds (SVOCs) by U.S. EPA Method 8270E, total petroleum hydrocarbons-gasoline/diesel/oil range organics (TPH-GRO/DRO/ORO) by U.S. EPA Method 8015D, explosives by EPA Method 8330B, perchlorate by EPA Method 6850, metals (total and dissolved) by U.S. EPA Method 6020B and mercury (total and dissolved) by U.S. EPA Method 7470A.

All samples were collected by Eco & Associates, Inc. (ECO) and were submitted for analysis to Eurofins Environmental Testing America (EETA) Denver located in Arvada, Colorado. All containers were received by EETA at temperatures within the required temperature range of 0.1 to 6.0° Celsius. All containers were received at the laboratory in good condition.

All samples were prepared and analyzed following the procedures outlined in the project-specific Uniform Federal Policy - Quality Assurance Project Plan (UFP-QAPP) and the Department of Defense (DoD) Quality Systems Manual (QSM) Version 5.4. The following table details the samples included in this SDG discussed in this report and the analytical parameters performed.

SAMPLE IDS AND REQUESTED PARAMETERS

Client Sample ID	Laboratory Sample ID	Matrix	Parameter
TMW52102024	280-197835-1	Water	O, A
TMW06102024	280-197835-2	Water	O, A
MW37102024	280-197835-3	Water	O, A
MW18D102024	280-197835-4	Water	O, A
TMW15102024	280-197835-5	Water	O, A
TMW35102024	280-197835-6	Water	O, A
MW20102024	280-197835-7	Water	O, A
TMW47102024	280-197835-8	Water	O, A
TMW52102024	280-197835-9	Water	V, S, M, E, TPH, P
TMW06102024	280-197835-10	Water	V, S, M, E, TPH
MW37102024	280-197835-11	Water	V, S, M, E, TPH, P
MW18D102024	280-197835-12	Water	V, S, M, TPH
TMW15102024	280-197835-13	Water	V, M, P
TMW35102024	280-197835-14	Water	V, S, M, P, TPH
MW20102024	280-197835-15	Water	V, S, M, P, TPH
TMW47102024	280-197835-16	Water	V, S, M, P, E
QC09102024TB (Trip Blank)	280-197835-17	Water	V, TPH

Parameters:

A=Anions

O= Orthophosphate as P V=VOCs

S=SVOCs

TPH=GRO/DRO/ORO

E=Explosives

P=Perchlorate

M=Metals/Mercury

EXTRACTION, ANALYTICAL, AND REPORTING DETAILS

Parameter	Matrix	Prep Method	Analytical Method	Units
Anions	Water		SW846 9056A	μg/L
Orthophosphate as P	Water		EPA 365.1	μg/L
VOCs	Water		SW846 8260D	μg/L
SVOCs	Water	3510C	SW846 8270E	μg/L
TPH GRO	Water		SW846 8015D	μg/L
TPH DRO/ORO	Water	3510C	SW846 8015D	μg/L
Explosives	Water	3535	EPA 8330B	μg/L
Perchlorate	Water		EPA 6850	μg/L
Metals	Water	3005A/3020A	SW846 6020B	μg/L
Mercury	Water	7470A	SW846 7470A	μg/L

μg/L= micrograms per liter

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and validated at a Stage 2B Validation was performed following the guidelines outlined in the project-specific UFP QAPP, DoD General Data Validation Guidelines, Rev 1 (Nov 2019) and published data validation guideline modules. Information reviewed in the data packages included sample results; field and laboratory quality control results; instrument calibration; calibration verifications; case narratives; sample receipt forms, chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the associated analytical method, DoD QSM and QAPP were met.

A table detailing the data qualifiers applied for the samples in this SDG as a result of the data validation process is included as Attachment A to this report. Data validation checklists for each analytical method listed in the table above are also included in this report as Attachment B. An ADR.net summary report is included in this report as Attachment C.

ANIONS

General

The anions portion of this SDG consisted of eight (8) water samples. The samples were collected on October 9, 2024, and were analyzed for anions as specified in the project-specific UFP-QAPP.

The anions analyses were performed in accordance with U.S. EPA Method SW846 9056A. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD), Matrix Spike (MS) and

Matrix Spike Duplicate (MSD). Sample TMW15102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD spike recoveries were within acceptance criteria.

All MS/MSD spike recoveries were within acceptance criteria except for the following:

Paren	Parent Sample TMW15102024										
Analyte	MS %REC	MSD %REC	Criteria								
Chloride	105	113*	87-111%								
Nitrate	107	115*	88-111%								

*-outside acceptance criteria

Chloride and nitrate recovered high and outside criteria in the MSD. Chloride and nitrate were detected in TMW15102024, as such the results were qualified "J+" as estimated high bias.

Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the LCS/LCSD, MS/MSD and laboratory duplicate concentrations.

All LCS/LCSD, MS/MSD and laboratory duplicate RPDs were within acceptance criteria

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project OAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All initial calibration (ICAL) criteria were met.
- The initial calibration verification (ICV) samples were prepared from a second source standard. All ICV criteria were met.
- All initial and continuing calibration blanks (ICB/CCB) criteria were met.

- All continuing calibration verification (CCV) criteria were met except for the following:
 - The CCV associated with batch 670541 recovered above acceptance criteria for nitrate. The associated sample, TMW47102024 was non-detect and qualified "UJ" as estimated at the reporting limit.

Seven laboratory method blanks were associated with the anions analyses in this SDG. The laboratory method blanks were non-detect for all target anions.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for anions for the samples in this SDG were considered usable. Therefore, the completeness for the anions portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

ORTHOPHOSPHATE AS P

General

The orthophosphate portion of this SDG consisted of eight (8) water samples. The samples were collected on October 9, 2024 and were analyzed for orthophosphate as specified in the project-specific UFP-QAPP.

The orthophosphate analyses were performed in accordance with U.S. EPA Method 365.1. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, and MS/MSD. Sample TMW15102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All ICB/CCB criteria were met.
- All CCV criteria were met.

One laboratory method blank was associated with the orthophosphate analyses in this SDG. The laboratory method blank was non-detect for orthophosphate.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for orthophosphate for the samples in this SDG were considered usable. Therefore, the completeness for the orthophosphate portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

VOLATILE ORGANIC COMPOUNDS

General

The VOCs portion of this SDG consisted of nine (9) water samples. The samples were collected on October 9, 2024, and were analyzed for VOCs as specified in the project-specific UFP-QAPP.

The VOC analyses were performed in accordance with U.S. EPA Method 8260D. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method with the following exception. The method requirement for preservation was not met for sample MW18D102024. The sample was collected in a properly preserved vial however, the pH of 6, was outside the method criteria. The sample was analyzed outside the 7-day holding time for unpreserved samples, as such, all VOCs in the noted sample were qualified "UJ" as estimated at the reporting limit for non-detects, while detections were qualified "J-" as estimated low bias.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, MS/MSD and the surrogate spikes. Sample TMW15102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method with the exception previously noted. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met except for the following:
 - The CCV associated with batch 671503 recovered high for bromomethane.
 The associated samples were non-detect for bromomethane, as such, the results were qualified "UJ" as estimated at the reporting limit.
- All internal standard criteria were met.

Two laboratory method blanks were associated with the VOC analyses in this SDG. The laboratory method blanks were non-detect for all target VOCs.

One trip blank was associated with the VOC analyses in this SDG. The trip blank was non-detect for all target VOCs.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for VOCs for the samples in this SDG were considered usable. Therefore, the completeness for the VOCs portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

SEMI-VOLATILE ORGANIC COMPOUNDS

General

The SVOCs portion of this SDG consisted of seven (7) water samples. The samples were collected on October 9, 2024, and was analyzed for SVOCs as specified in the project-specific UFP-QAPP.

The SVOC analyses were performed in accordance with U.S. EPA Method 8270E. The samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. The samples were prepared and analyzed within the holding time required by the method.

The laboratory noted in the case narrative that one or more samples volumes deviated from the standard procedure due to the matrix consisting of a turbid or yellow liquid. As such, the reporting limits were adjusted and impact to the data was negligible.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and surrogate spikes.

All LCS spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria. It should be noted that surrogate 2,4,6-tribromophenol recovery in the CCV associated with batch 671354 was outside of control limits. The surrogate recovery in the associated samples was within control limits; therefore, corrective action was not necessary, and qualification of data was not warranted.

Precision

Precision is evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations. Since a LCSD and MS/MSD were not reported, precision could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. The samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All internal standard criteria were met. It should be noted that internal standard retention times for the CCV associated with batch 671354 was outside acceptance criteria for the mid-point of the initial calibration. All associated samples were within the acceptance criteria of the daily calibration verification; therefore, corrective action was not necessary, and qualification of data was not warranted.

One laboratory method blank was associated with the SVOC analysis in this SDG. The laboratory method blank was non-detect for all target SVOCs.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for SVOCs for the sample in this SDG were considered usable. Therefore, the completeness for the SVOCs portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

TOTAL PETROLEUM HYDROCARBONS GRO

General

The TPH GRO portion of this SDG consisted of seven (7) water samples. The samples were collected on October 9, 2024, and were analyzed for TPH GRO as specified in the project-specific UFP-QAPP.

The TPH GRO analyses were performed in accordance with U.S. EPA Method 8015D. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method with the following exception. The method requirement for preservation was not met for sample MW18D102024. The sample was collected in a properly preserved vial however, the pH of 7, was outside the method criteria. The sample was analyzed outside the 7-day holding time for unpreserved samples, as such, THP GRO in the noted sample was qualified "J-" as estimated low bias.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD and the surrogate spikes.

All LCS/LCSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the LCS/LCSD concentrations.

All LCS/LCSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method with the exception previously noted. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.

One laboratory method blank was associated with the TPH GRO analyses in this SDG. The laboratory method blank was non-detect for TPH GRO.

One trip blank was associated with the TPH GRO analyses in this SDG. The trip blank was non-detect for TPH-GRO.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for TPH GRO for the samples in this SDG were considered usable. Therefore, the completeness for the TPH GRO portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

TOTAL PETROLEUM HYDROCARBONS DRO/ORO

General

The TPH DRO/ORO portion of this SDG consisted of six (6) water samples. The samples were collected on October 9, 2024, and were analyzed for TPH DRO/ORO as specified in the project-specific UFP-QAPP.

The TPH DRO/ORO analysis was performed in accordance with U.S. EPA Method 8015D. The samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. The samples were prepared and analyzed within the holding time required by the method.

The laboratory noted in the case narrative that one or more samples volumes deviated from the standard procedure due to the matrix consisting of a turbid or yellow liquid. As such, the reporting limits were adjusted and impact to the data was negligible.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD and the surrogate spikes. Insufficient sample volume was available to perform an MS/MSD.

All LCS/LCSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD concentrations.

All LCS/LCSD RPDs were within acceptance criteria except for the following:

Analyte	%RPD	Criteria
DRO	34	RPD ≤ 30

The LCS/LCSD RPD for DRO exceeded acceptance criteria for batch 671597. The associated samples with detections of DRO were qualified "J" as estimated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.

One laboratory method blank was associated with the TPH DRO/ORO analysis in this SDG. ORO was detected in the laboratory method blank. The associated samples with ORO detections less than 5 times the method blank detection were qualified "U" as non-detect.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for TPH DRO/ORO for the sample in this SDG are considered usable. Therefore, the completeness for the TPH DRO/ORO portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of four (4) water samples. The samples were collected on October 9, 2024, and were analyzed for explosives as specified in the project-specific UFP-QAPP.

The explosives analyses were performed in accordance with U.S. EPA Method 8330B. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

The laboratory noted in the case narrative that samples TMW52102024 and MW37102024 required filtration to reduce matrix interference. Impact to the data was negligible and qualification was not warranted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and the surrogate spikes.

All LCS spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria except for the following:

Sample TMW06102024								
Surrogate	%REC	Criteria						
1,2-dinitrobenzene	70	83-119%						

Surrogate, 1,2-dinitrobenzene, recovered below acceptance criteria in sample TMW06102024. As such, all explosive analytes were qualified "UJ" as estimated at the reporting limit.

Precision

Precision is evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations. Since a LCSD and MS/MSD were not reported, precision could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared

and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- Dual column confirmation for the field samples could not be evaluated because the results were non-detect.

One laboratory method blank was associated with the explosives analyses in this SDG. The laboratory method blank was non-detect for all target explosives.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for explosives for the samples in this SDG were considered usable. Therefore, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

PERCHLORATE

General

The perchlorate portion of this SDG consisted of six (6) water samples. The samples were collected on October 9, 2024, and were analyzed for perchlorate as specified in the project-specific UFP-QAPP.

The perchlorate analyses were performed in accordance with U.S. EPA Method 6850. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, and MS/MSD.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All isotope ratio criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All interference check solutions (ICS) were within criteria.
- All CCV criteria were met.
- All initial calibration blank (ICB) criteria were met.
- All continuing calibration blank (CCB) criteria were met.
- All internal standard criteria were met.

One laboratory method blank was associated with the perchlorate analyses in this SDG. The laboratory method blank was non-detect for perchlorate.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for perchlorate for the samples in this SDG were considered usable. Therefore, the completeness for the perchlorate portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

METALS

General

The metals portion of this SDG consisted of eight (8) water samples. The samples were collected on October 9, 2024, and were analyzed for total and dissolved metals as specified in the project-specific UFP-QAPP.

The metals analyses were performed in accordance with U.S. EPA Method 6020B. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method. Samples MW18D102024 and MW20102024 were improperly preserved in the field, as such, the laboratory added nitric acid to reach the desired pH. Impact to the data was negligible and qualification was not warranted.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and MS/MSD. Sample TMW15102024 was designated for MS/MSD analysis by the laboratory.

All LCS spike recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria except for the following:

Parent Sample TMW15102024										
Analyte MS %REC MSD %REC Criteria										
Magnesium	121*	112	83-118%							

*-outside acceptance criteria

Magnesium recovered high and outside criteria in the MS. Magnesium was detected in TMW15102024, as such the result was qualified "J+" as estimated high bias. It should be noted that one or more MS/MSD RECs for calcium and sodium exceeded acceptance criteria, however; the sample concentrations are greater than 4 times the MS/MSD spike concentrations. As such, the MS/MSD RECs could not be evaluated, and qualification was not warranted.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

All MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

• Comparing the COC procedures to those described in the DoD QSM and project QAPP;

- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All initial calibration criteria were met.
- The ICV was prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All low-level ICV (LL ICV) criteria were met.
- All ICS were within criteria.
- All ICB criteria were met.
- All CCB criteria were met except for the following:
 - The CCB associated with batch 670743 had a detection of dissolved antimony. Associated samples with detections less than 5 times the CCB detection were qualified "U" as non-detect.
 - The CCBs associated with batch 670573 had detections of calcium, iron, silver, sodium, thallium, manganese, magnesium and zinc. Calcium, sodium, thallium and magnesium were either non-detect or greater than 5 times the CCB detections, as such, no qualification was warranted. One or more associated samples had silver, iron, manganese and zinc detections less than 5 times the CCB detections. As such, the results were qualified "U" as non-detect.
- All internal standard criteria associated with the target metals were met.
- A serial dilution test (DT) was performed on the same sample as the MS/MSD. The DT was only applicable for those metals that failed in the MS/MSD and were detected in the parent sample at a concentration of 50 times the LOQ or greater. All applicable metals met criteria in the DT.
- The post digestion spike (PDS) was performed on the same sample as the MS/MSD. The PDS was only applicable for those metals that failed in the MS/MSD. All PDS recoveries were within acceptance criteria.

Two laboratory method blanks were associated with the metals analyses in this SDG. Aluminum, calcium and magnesium were detected in one or more of the laboratory method blanks. The associated samples with detections less than 5 times the laboratory method blank detections were qualified "U" as non-detect.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for metals for the samples in this SDG were considered usable. Therefore, the completeness for the metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

MERCURY

General

The mercury portion of this SDG consisted of eight (8) water samples. The samples were collected on October 9, 2024, and were analyzed for total and dissolved mercury as specified in the project-specific UFP-QAPP.

The mercury analyses were performed in accordance with U.S. EPA Method 7470A. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD and MS/MSD. Sample TMW15102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All initial calibration criteria were met.
- The ICV was prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All ICB criteria were met.
- All CCB criteria were met.
- A serial DT was performed on the same sample as the MS/MSD. The DT was only applicable for mercury results that failed in the MS/MSD and were detected in the parent sample at a concentration of 50 times the LOQ or greater. All mercury results met criteria in the DT.
- The PDS was performed on the same sample as the MS/MSD. The PDS was only applicable for those mercury results that failed in the MS/MSD. All PDS recoveries were within acceptance criteria.

Two laboratory method blanks were associated with the mercury analyses in this SDG. The laboratory method blanks were non-detect for mercury.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for mercury for the samples in this SDG were considered usable. Therefore, the completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

COMPARABILITY

All data was generated using contract-specific standard methods and reported with known data quality, type of analysis, units, etc.

DATA USABILITY

The purpose of this data validation report is to ensure the integrity and reliability of analytical laboratory data. The data quality is evaluated based on precision, accuracy, representativeness, comparability, and completeness (PARCC) characteristics of the data. The validated data indicated that the laboratory correctly performed the analyses. Based on the data quality assessment, none of the data were qualified as rejected.

All data in this SDG are considered usable, as qualified, for the purposes of this project. All Method Quality Objectives have been met.

SENSITIVITY

The detection limit (DL), LOD and limit of quantitation (LOQ) values reported for the samples were compared to those listed in WS #15, Table 15.1 of the QAPP to ensure that sensitivity requirements were met. The DL, LOD, and LOQ values matched those listed in the QAPP before dilutions were taken into account. The following LOQs exceed the project quantitation limits (PQLs):

Methods	Parameters	Samples
8270E	2,4,6-Trichlorophenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3,3'-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, 4-Chloroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Bis(2-chloroethyl)ether, Bis(2-ethylhexyl) phthalate, Dibenz(a,h)anthracene, Dibenzofuran, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno[1,2,3-cd]pyrene, Nitrobenzene, N-Nitrosodi-n-propylamine, Pentachlorophenol and Phenol	MW18D102024
8270E	3,3'-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, 4-Chloroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Hexachlorocyclopentadiene and Pentachlorophenol	MW20102024
8270E	2,4,6-Trichlorophenol, 2,4-Dichlorophenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4,6-Dinitro-2-methylphenol, 4-Chloroaniline, 4-Nitroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Bis(2-chloroethyl)ether, Bis(2-ethylhexyl) phthalate, Dibenz(a,h)anthracene, Dibenzofuran, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno[1,2,3-cd]pyrene, Nitrobenzene, N-Nitrosodi-n-propylamine, Pentachlorophenol and Phenol	MW37102024
8270E	3,3'-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Hexachlorocyclopentadiene and Pentachlorophenol	TMW06102024
8270E	2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3,3'- Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, 4- Chloroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Bis(2-chloroethyl)ether, Bis(2- ethylhexyl) phthalate, Dibenz(a,h)anthracene, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno[1,2,3-cd]pyrene, Nitrobenzene, N-Nitrosodi-n-propylamine, Pentachlorophenol and Phenol	TMW47102024
8270E	2,4,6-Trichlorophenol 2,4-Dichlorophenol, 2,4-Dinitrophenol, 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 3,3'-	TMW52102024

Methods	Parameters	Samples
	Dichlorobenzidine, 3-Nitroaniline, 4,6-Dinitro-2-methylphenol, 4-Chloroaniline, 4-Nitroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Bis(2-chloroethyl)ether, Bis(2-ethylhexyl) phthalate, Dibenz(a,h)anthracene,	
	Dibenzofuran, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno[1,2,3-cd]pyrene, Nitrobenzene, N-Nitrosodi-n-propylamine, Pentachlorophenol and Phenol	
8015D	DRO	TMW06102024, MW37102024, MW18D102024, TMW35102024, MW20102024 and TMW52102024
8330B	nitroglycerin	MW37102024, TMW47102024 and TMW52102024

DATA QUALIFIER CHANGES

The sample results and final data qualifiers and reason codes that were added, removed, or changed as a result of the data validation process are included in a table as Attachment A to this report.

DATA QUALIFIER DEFINITIONS

The data qualifiers are defined in WS #36, Table 36.2 of the project QAPP as follows.

U = The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.

J = The reported result was an estimated value with an unknown bias.

J+= The reported result was an estimated quantity, but the result may be biased high.

J- = The reported result was an estimated quantity, but the result may be biased low.

UJ = The analyte was not detected and was reported as less than the LOD. However, the reported numerical value is approximate.

X= The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance (J-flag) or rejection (R-flag) of the data should be decided by the project team (which should include a project chemist) during the Data Usability Assessment process.

REASON CODE DEFINITIONS

These data validation reason codes were used to document the logic behind all data validation qualifiers:

Validation Qualifier Reason Codes	Validation Comments
BLL	Concentration in equipment blank at or above reporting limit.
BLM	Concentration in equipment blank less than reporting limit
BLN	Concentration in trip blank at or above reporting limit.
BLO	Concentration in trip blank less than reporting limit.
BLR	Concentration in field blank or decon blank at or above reporting limit.
BLS	Concentration in field blank or decon blank less than reporting limit.
BLT	Concentration in method blank less than reporting limit.
BLU	Concentration in method blank at or above reporting limit.
CO1	Column confirmation RPD exceeds acceptance limit.
CR1	Result exceeded calibration range.
DU1	Field duplicate RPD exceeds acceptance limit.
DU2	Laboratory duplicate RPD exceeds acceptance limit.
DU3	Field Duplicate RPD not calculated but results demonstrate a high degree of variability.
HS	VOA vial has headspace greater than 6 millimeters.
LC1	LCS and/or LCSD recovery above upper acceptance limit.
LC2	LCS and/or LCSD recovery below lower acceptance limit.
LC7	LCS/LCSD RPD exceeds acceptance limit.
MD1	MS and/or MSD recovery above upper acceptance limit.
MD2	MS and/or MSD recovery below lower acceptance limit.
MD5	MS/MSD RPD exceeds acceptance limit.
PJ	Professional judgment used. See specific details in Data Validation Report.
SC1	Analysis holding time exceeded.
SC3	Extraction holding time exceeded.
SC6	Temperature of sample outside acceptance range.
SU1	Surrogate recovery above upper acceptance limit.
SU2	Surrogate recovery below lower acceptance limit.
PR1	Samples not properly preserved.
TR	Result is detected between the reporting limit and detection limit.

ACRONYMS AND ABBREVIATIONS

The following is a list of acronyms and abbreviations that were used in this data validation report.

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CoC Chain of Custody
DL Detection Limit

DoD Department of Defense

DT Dilution Test

ETTA Eurofins Environment Testing America

FWDA Fort Wingate Depot Activity

ICAL Initial Calibration

ICB Initial Calibration BlankICS Interference Check Sample

ICV Initial Calibration Verification

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection
LOQ Limit of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate
PQL Project Quantitation Limit

PDS Post Digestion Spike

QC Quality Control

QSM Quality Systems Manual
RPD Relative Percent Difference

SDG Sample Delivery Group

UFP-QAPP Uniform Federal Policy – Quality Assurance Project Plan

Attachment A

Validated Data Summary

280-197835 A

SAMPLE ID:		PROJECT	MW18D10	2024	MW20102024	MW37102	024	TMW06102024	. 1	ΓMW1510202	4	TMW35102024	TI	MW47102	024	TMW52102	2024
DATE SAMPLED:		QUANTITATION	10/09/20	24	10/09/2024	10/09/202	24	10/09/2024		10/09/2024		10/09/2024		10/09/2024		10/09/20	24
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1] 280-197835-12 280-197835-4		-	280-197835-15 280-197835-7	280-19783 280-19783		280-197835-10 280-197835-2		280-197835-13 280-197835-5		280-197835-14 280-197835-6		280-197835-16 280-197835-8		280-197835-9 280-197835-1	
Volatile Organics - SW8260D	Unit																
1,1,1,2-Tetrachloroethane	μg/L	5.7	1.0	UJ	1.0 U		U	1.0 L			U	1.0 L	-	1.0	U	1.0	U
1,1,1-Trichloroethane	μg/L	200	1.0	UJ	1.0 U		U	1.0 L			U	1.0 L		1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	μg/L	10	1.0	UJ	1.0 U		U		J		U	1.0 L	-	1.0	U	1.0	U
1,1,2-Trichloroethane	μg/L	5	1.0	UJ	1.0 U		U		J		U	1.0 L	-	1.0	U	1.0	U
1,1-Dichloroethane	μg/L	25	1.0	UJ	1.0 U		U		J		U	1.0 L	J	1.0	U	1.0	U
1,1-Dichloroethene	μg/L	7	1.0	UJ	1.0 U		U		J		U	1.0 L	J	1.0	U	1.0	U
1,1-Dichloropropene	μg/L	4.7	1.0	UJ	1.0 U		U		J		U	1.0 L	J	1.0	U	1.0	U
1,2,3-Trichlorobenzene	μg/L	7	4.0	UJ	4.0 U		U		J		U	4.0 L	J	4.0	U	4.0	U
1,2,3-Trichloropropane	μg/L	2.5	2.5	UJ	2.5 U		U		J		U	2.5 L	J	2.5	U	2.5	U
1,2,4-Trichlorobenzene	μg/L	70	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,2,4-Trimethylbenzene	μg/L	56	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,2-Dibromo-3-chloropropane	μg/L	5	5.0	UJ	5.0 U	5.0	U	5.0 L	J	5.0	U	5.0 L	J	5.0	U	5.0	U
1,2-Dibromoethane (EDB)	μg/L	1	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,2-Dichlorobenzene	μg/L	600	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,2-Dichloroethane	μg/L	5	81	J-	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,2-Dichloropropane	μg/L	5	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,3,5-Trimethylbenzene	μg/L	60	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,3-Dichlorobenzene	μg/L	75	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,3-Dichloropropane	μg/L	370	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
1,4-Dichlorobenzene	μg/L	75	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
2,2-Dichloropropane	μg/L	5	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
2-Butanone (MEK)	μg/L	5,600	10	UJ	10 U		U		J		U	10 L	J	10	U	10	U
2-Chlorotoluene	μg/L	240	1.0	UJ	1.0 U		U		J		U	1.0 L	J	1.0	U	1.0	U
2-Hexanone	μg/L	38	5.0	UJ	5.0 U	5.0	U	5.0 L	J	5.0	U	5.0 L	J	5.0	U	5.0	U
4-Chlorotoluene	μg/L	250	1.0	UJ	1.0 U	1.0	U	1.0 L	J	1.0	U	1.0 L	J	1.0	U	1.0	U
4-Isopropyltoluene	μg/L	450	1.0	UJ	1.0 U		U	1.0 L	J	1.0	U	1.0 L	J	1.0	Ū	1.0	U
4-Methyl-2-pentanone (MIBK)	μg/L	6.300	5.0	UJ	5.0 U		Ü		J		Ü	5.0 L	J	5.0	Ū	5.0	U
Acetone	μg/L	18,000	15	UJ	15 U		Ü		ر		Ü	15 L	J	15	Ü	15	Ü
Benzene	μg/L	5	1.0	UJ	1.0 U		Ü		ر		Ü	1.0 L	J	1.0	Ü	1.0	Ü
Bromobenzene	μg/L	62	1.0	UJ	1.0 U		Ü		ر		Ü	1.0 L	-	1.0	Ü	1.0	Ü
Bromochloromethane	μg/L	83	1.0	UJ	1.0 U		Ü		ر		Ü	1.0 L	J	1.0	Ü	1.0	Ü
Bromodichloromethane	μg/L	80	1.0	UJ	1.0 U		U		ار		Ü	1.0 L	J	1.0	Ü	1.0	Ü
Bromoform	μg/L	80	2.0	UJ	2.0 U		U	2.0			Ü	2.0 L	1	2.0	U	2.0	U
Bromomethane	ua/L	7.5	5.0	UJ	5.0 U	2.0	UJ	5.0 U			JJ	5.0 L	1	5.0	H	5.0	UJ

SAMPLE ID:		PROJECT	MW18D102	2024	MW20102024	MW37102	2024	TMW06102024	4	TMW15102	024	TMW351020	24	TMW471020	24	TMW52102	024
DATE SAMPLED:		QUANTITATION	10/09/20	24	10/09/2024	10/09/20	024	10/09/2024		10/09/202	10/09/2024		4	10/09/202	4	10/09/202	24
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197835-12 280-197835-4		280-197835-15 280-197835-7	280-197835-11 280-197835-3		280-197835-10 280-197835-2		280-197835-13 280-197835-5		280-197835-14 280-197835-6		280-197835-16 280-197835-8		280-197835-9 280-197835-1	
Carbon disulfide	μg/L	810	2.0	UJ	2.0 U		U		U	2.0	U	2.0	U	1.5	J	2.0	U
Carbon tetrachloride	μg/L	5	1.0	UJ	1.0 U		U		U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	μg/L	100	1.0	UJ	1.0 U		U		U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	μg/L	8,300	2.0	UJ	2.0 U		U		U	2.0	U	2.0	U	2.0	U	2.0	U
Chloroform	μg/L	80	1.0	UJ	1.0 U		U		U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	μg/L	190	2.0	UJ	2.0 U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
cis-1,2-Dichloroethene	μg/L	70	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	μg/L	4.7	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	μg/L	80	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromomethane	μg/L	8.3	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	μg/L	200	2.0	UJ	2.0 U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Ethylbenzene	μg/L	700	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Hexachlorobutadiene	μg/L	2	2.0	UJ	2.0 U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
Isopropylbenzene	μg/L	450	1.0	UJ	1.0 U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Methyl acetate	μg/L	20,000	5.0	UJ	5.0 U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Methyl tert-butyl ether (MTBE)	μg/L	100	5.0	UJ	5.0 U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Methylene chloride	µg/L	5	2.0	UJ	2.0 U		U		U	2.0	Ū	2.0	U	2.0	U	2.0	U
m-Xylene & p-Xylene	μg/L	620	2.0	UJ	2.0 U		U		U	2.0	U	2.0	U	2.0	U	2.0	U
Naphthalene	μg/L	30	3.0	UJ	3.0 U		U		U	3.0	U	3.0	U	3.0	U	3.0	U
n-Butylbenzene	µg/L	1,000	1.0	UJ	1.0 U		Ū		Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü
n-Propylbenzene	µg/L	660	1.0	UJ	1.0 U		Ü		Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü
o-Xylene	µg/L	620	1.0	UJ	1.0 U		Ū		Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü
sec-Butvlbenzene	µg/L	2.000	1.0	UJ	1.0 U		Ü		Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü
Styrene	μg/L	100	1.0	UJ	1.0 U		Ü		U	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü
tert-Butylbenzene	μg/L	690	1.0	UJ	1.0 U		Ü		U	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü
Tetrachloroethene	μg/L	5	1.0	UJ	1.0 U		Ü		U	1.0	Ü	1.0	Ü	1.0	U	1.0	U
Toluene	μg/L	1,000	1.0	UJ	1.0 U		Ü		U	1.0	Ü	1.0	Ü	1.0	U	1.0	U
trans-1.2-Dichloroethene	μg/L	100	1.0	UJ	1.0 U		Ü		U	1.0	Ü	1.0	Ü	1.0	U	1.0	U
trans-1,3-Dichloropropene	μg/L	4.7	1.0	UJ	1.0 U		Ü		U	1.0	Ü	1.0	Ü	1.0	IJ	1.0	U
Trichloroethene	μg/L	5	1.0	UJ	1.0 U		U		U	1.0	Ü	1.0	U	1.0	IJ	1.0	U
Trichlorofluoromethane	μg/L	5.200	2.0	UJ	2.0 U		U		U	2.0	Ü	2.0	IJ	2.0	Ü	2.0	Į Į
Vinyl chloride	ug/L	2	1.0	UJ	1.0 U	2.0	U		U	1.0	U	1.0	11	1.0	П	1.0	11

SAMPLE ID:		PROJECT	MW18D102024	4	MW20102024	MW371020	24	TMW06102024	TMW15102024	TMW35102024	TMW4	7102024	TMW521	102024	
DATE SAMPLED:		QUANTITATION	10/09/2024		10/09/2024	10/09/2024		10/09/2024	10/09/2024	10/09/2024	10/0	10/09/2024		2024	
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	200 407025 40		280-197835-15 280-197835-7	280-197835-11 280-197835-3		280-197835-10 280-197835-2	280-197835-13 280-197835-5	280-197835-14 280-197835-6	280-197835-16 280-197835-8			280-197835-9 280-197835-1	
Semivolatile Organics - SW8270E															
2,2'-Oxybis (1-chloropropane)	μg/L	710	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,4,5-Trichlorophenol	μg/L	1,200	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,4,6-Trichlorophenol	μg/L	12	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,4-Dichlorophenol	μg/L	46	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,4-Dimethylphenol	μg/L	360	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,4-Dinitrophenol	μg/L	39	60	U	31 U	150	U	31 U		28 U	34	L	150	U	
2,4-Dinitrotoluene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2,6-Dinitrotoluene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2-Chloronaphthalene	μg/L	750	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	i l	20	U	
2-Chlorophenol	μg/L	91	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2-Methylnaphthalene	μg/L	30	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	i L	20	U	
2-Methylphenol	μg/L	930	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2-Nitroaniline	μg/L	190	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
2-Nitrophenol	μg/L	na	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
3 & 4 Methylphenol	μg/L	370	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
3,3'-Dichlorobenzidine	μg/L	50	100	U	52 U	250	U	51 U		47 U	56	L	250	U	
3-Nitroaniline	μg/L	38	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
4,6-Dinitro-2-methylphenol	μg/L	50	100	U	52 U	250	U	51 U		47 U	56	L	250	U	
4-Bromophenyl phenyl ether	μg/L	na	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
4-Chloro-3-methylphenol	μg/L	1,400	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
4-Chloroaniline	μg/L	20	40	U	21 U	100	U	20 U		19 U	22	L	100	U	
4-Chlorophenyl phenyl ether	μg/L	na	20	U	10 U	50	U	10 U		9.3 U	11		50	U	
4-Nitroaniline	μg/L	38	20	U	10 U	50	U	10 U		9.3 U	11	L	50	U	
4-Nitrophenol	μg/L	na	50	U	26 U	130	U	26 U		23 U	28	L	130	U	
Acenaphthene	μg/L	530	8.0	U	4.2 U		U	4.1 U		3.7 U	4.5	5 L	20	U	
Acenaphthylene	μg/L	120	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	; L	20	U	
Anthracene	μg/L	1,800		U	4.2 U		U	4.1 U		3.7 U	4.5		20	U	
Benzaldehyde	µg/L	190		U	5.2 U	25	U	5.1 U		4.7 U	5.6			U	
Benz(a)anthracene	µg/L	4		U	4.2 U	20	Ü	4.1 U		3.7 U	4.5		20	Ü	
Benzo(a)pyrene	µg/L	4		U	4.2 U		Ü	4.1 U		3.7 U	4.5		20	Ü	
Benzo(b)fluoranthene	μg/L	4		U	4.2 U	20	Ü	4.1 U		3.7 U	4.5		20	U	
Benzo(g,h,i)perylene	µg/L	120	8.0	U	4.2 U	20	Ü	4.1 U		3.7 U	4.5		20	U	

SAMPLE ID:		PROJECT MW18D102024		MW20102024	MW37102024	1	TMW06102024	TMW15102024	TMW35102024	TMW47102	024	TMW52102	2024	
DATE SAMPLED:		QUANTITATION			10/09/2024	10/09/2024 10/09		10/09/2024	10/09/2024 10/09/2024		10/09/2024		10/09/2024	
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197835-12 280-197835-4		280-197835-15 280-197835-7	280-197835-11 280-197835-3		280-197835-10 280-197835-2	280-197835-13 280-197835-5	280-197835-14 280-197835-6	280-197835-16 280-197835-8		280-197835-9 280-197835-1	
Benzo(k)fluoranthene	μg/L	25	8.0	О	4.2 U		U	4.1 U		3.7 U	4.5	U	20	U
bis(2-Chloroethoxy)methane	μg/L	59	20	U	10 U		U	10 U		9.3 U	11	U	50	U
bis(2-Chloroethyl)ether	μg/L	10	20	U	10 U		U	10 U		9.3 U	11	U	50	U
bis(2-Ethylhexyl)phthalate	μg/L	10	20	U	10 U		U	10 U		9.3 U	11	U	50	U
Butyl benzyl phthalate	μg/L	160	8.0	U	4.2 U	-	U	4.1 U		3.7 U	4.5	U	20	U
Caprolactam	μg/L	9,900	30	U	16 U		U	15 U		14 U	17	U	75	U
Carbazole	μg/L	290	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Chrysene	μg/L	250	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Dibenz(a,h)anthracene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	U	50	U
Dibenzofuran	μg/L	7.9	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Diethyl phthalate	μg/L	15,000	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Dimethyl phthalate	μg/L	na	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Di-n-butyl phthalate	μg/L	900	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Di-n-octyl phthalate	μg/L	200	20	U	10 U	50	U	10 U		9.3 U	11	U	50	U
Fluoranthene	μg/L	800	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Fluorene	μg/L	290	8.0	U	4.2 U	20	U	4.1 U		3.7 U	4.5	U	20	U
Hexachlorobenzene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	U	50	U
Hexachlorobutadiene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	U	50	U
Hexachlorocyclopentadiene	μg/L	50	100	U	52 U	250	U	51 U		47 U	56	U	250	U
Hexachloroethane	μg/L	10	20	U	10 U		U	10 U		9.3 U	11	U	50	U
Indeno(1,2,3-cd)pyrene	μg/L	10	20	U	10 U	50	U	10 U		9.3 U	11	U	50	U
Isophorone	μg/L	780	20	U	10 U		U	10 U		9.3 U	11	U	50	Ü
Naphthalene	μg/L	30	8.0	U	4.2 U		U	4.1 U		3.7 U	4.5	U	20	Ü
Nitrobenzene	μg/L	10	20	U	10 U		U	10 U		9.3 U	11	Ü	50	Ü
n-Nitrosodi-n-propylamine	μg/L	10	20	Ü	10 U		Ū	10 U		9.3 U	11	Ū	50	Ü
N-Nitrosodiphenylamine	μg/L	120	20	U	10 U		Ū	10 U		9.3 U	11	Ū	50	Ü
Pentachlorophenol	μg/L	50	100	U	52 U		U	51 U		47 U	56	Ü	250	U
Phenanthrene	μg/L	170	8.0	U	4.2 U		U	4.1 U		3.7 U	4.5	U	20	U
Phenol	μg/L	10	20	U	10 U		U	10 U		9.3 U	11	U	50	U
Pyrene	μg/L	120	20	U	10 U		U	10 U		9.3 U	11	U	50	Ü
Petroleum Hydrocarbons - SW8015D														
Gasoline Range Organics (GRO) C6-C10	μg/L	25	50	J-	25 U	25	U	25 U		25 U			25	U
Diesel Range Organics (DRO) C10-C28	μg/L	250	45	Ĵ	52 J	-	Ü	280 U		41 J			1,300	Ü
Oil Range Organics (ORO) C20-C38	μg/L	60,200	540	U	550 U		U	560 U		540 U			2,500	Ü

SAMPLE ID:		PROJECT	MW18D102024	MW20102024	MW37102024	TMW06102024	TMW15102024	TMW35102024	TMW47102024	TMW52102024
DATE SAMPLED:		QUANTITATION	10/09/2024	10/09/2024	10/09/2024	10/09/2024	10/09/2024	10/09/2024	10/09/2024	10/09/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197835-12 280-197835-4	280-197835-15 280-197835-7	280-197835-11 280-197835-3	280-197835-10 280-197835-2	280-197835-13 280-197835-5	280-197835-14 280-197835-6	280-197835-16 280-197835-8	280-197835-9 280-197835-1
Explosives - SW8330B										
1,3,5-Trinitrobenzene	μg/L	590			0.22 U	0.21 UJ			0.23 U	0.23 U
1,3-Dinitrobenzene	μg/L	2			0.12 U	0.11 UJ			0.12 U	0.12 U
2,4,6-Trinitrotoluene (TNT)	µg/L	9.8			0.12 U				0.12 U	0.12 U
2,4-Dinitrotoluene	µg/L	2.4			0.11 U				0.11 U	0.11 U
2,6-Dinitrotoluene	µg/L	0.49			0.11 U				0.11 U	0.11 U
2-Amino-4,6-dinitrotoluene	µg/L	1.9			0.12 U				0.12 U	0.12 U
4-Amino-2,6-dinitrotoluene	μg/L	1.9			0.16 U				0.12 U	0.12 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	μg/L	9.7			0.22 U				0.23 U	0.23 U
m-Nitrotoluene		1.7			0.42 U				0.44 U	0.43 U
Nitrobenzene	μg/L	1.4	-	_	0.42 U				0.44 U	0.43 U
	μg/L									
Nitroglycerin	μg/L	2.1	-		2.2 U					
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	μg/L	1,000			0.22 U				0.20	
o-Nitrotoluene	μg/L	3.1			0.22 U				0.23 U	0.23 U
Pentaerythritol Tetranitrate (PETN)	μg/L	170			1.2 U				1.2 U	1.2 U
p-Nitrotoluene	μg/L	43			0.43 U				0.45 U	0.44 U
Trinitrophenylmethylnitramine (Tetryl)	μg/L	39			0.12 U	0.11 UJ			0.12 U	0.12 U
Perchlorate - SW6850										
Perchlorate	µg/L	14		0.55	0.20 U		0.045 J	0.20 U	0.20 U	0.20 U
1 didinate	P9/ L			0.00	0.20		0.040	0.20	0.20	0.20
Metals, Total - SW6020B/SW7470A										
Aluminum	μg/L	200	76 .	200 U		200 U	200 U	200 U	200 U	5,800
Antimony	μg/L	6	2.0 l		2.0 U		2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	μg/L	10	0.76	0.78 J	1.7 J	1.4 J	5.0 U	5.0 U	0.70 J	6.5
Barium	μg/L	2,000	17	16	99	16	23	11	11	100
Beryllium	μg/L	4	1.0 l	J 1.0 U	0.42 J	1.0 U	1.0 U	1.0 U	1.0 U	0.83 J
Cadmium	μg/L	5	1.0 l	J 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	μg/L	na	75,000	250,000	33,000	35,000	18,000	74,000	6,800	24,000
Chromium	μg/L	50	3.0 l	J 1.0 J	4.8	3.0 U	1.1 J	3.0 U	3.0 U	8.2
Cobalt	μg/L	50	0.39	1.3	2.2	1.0 U	1.0 U	1.0 U	1.0 U	2.9
Copper	μg/L	1,000	1.3	2.4	3.1	8.3	2.0 U	1.2 J	2.0 U	7.2
Iron	μg/L	300	150 、	210	3,600	200 U	200 U	200 U	200 U	3,500
Lead	µg/L	15	1.0 l	J 1.0 U		1.0 U	1.0 U	1.0 U	1.0 U	2.5
Magnesium	µg/L	na	19,000	50,000	6.600	7,300	3,300 J+	13.000	740	2.100
Manganese	µg/L	50	690	1,600	580	43	3.0 U	26	34	340
Mercury	μg/L	2	0.20 U	,			0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	200	2.9		5.4	3.0 U	3.0 U	3.0 U	3.0 U	5.2
Potassium	μg/L	na	410		1,500	270 J	310 J	250 J	730 J	1,700
Selenium		50	5.0		5.0 U		12	1.7 J	5.0 U	3.7 J
Silver	μg/L	50 50	1.0 U		1.0 U		1.0 U	1.7 J	1.0 U	3.7 J 1.0 U
Sodium	μg/L			3,000,000		890,000	580,000	1,100,000	610,000	440,000
	μg/L	na	2,000,000		600,000 1.0 U				-	
Thallium	μg/L	2					1.0 U			
Vanadium	μg/L	86 5 000	2.4			3.9 J	1.8 J	1.7 J	0.0	26
Zinc	μg/L	5,000	8.3	110	12	10 U	10 U	10 U	10 U	14

SAMPLE ID:		PROJECT	MW18D102	024	MW20102024	MW3	7102024	TMV	V06102024		TMW15102	024	TMW35102	024	TMW4710	2024	TMW52102	2024
DATE SAMPLED:		QUANTITATION	10/09/202	4	10/09/2024	10/0	10/09/2024		10/09/2024		10/09/2024		10/09/2024		10/09/2024		10/09/2024	
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197835-12 280-197835-4		280-197835-15 280-197835-7		280-197835-11 280-197835-3		280-197835-10 280-197835-2		280-197835-13 280-197835-5		280-197835-14 280-197835-6		280-197835-16 280-197835-8		280-197835-9 280-197835-1	
Metals, Dissolved - SW6020B/SW7470A																		
Aluminum	μg/L	200	200	U	200	J 20	0 U	1 2	200 L	J	200	U	200	U	200	U	200	U
Antimony	μg/L	6	2.0	U	2.0	J 2.) U	1 2	2.0 L	J	2.0	U	2.0	U	2.0	U	2.0	U
Arsenic	μg/L	10	0.83	J	0.92	J 1.	1 J	· ·	1.1 J	ı	5.0	U	0.67	J	5.0	U	5.5	
Barium	μg/L	2,000	17		17	33	3		16		24		11		13		13	
Beryllium	μg/L	4	1.0	U	1.0 U	J 1.) U	1	1.0 L	J	1.0	U	1.0	U	1.0	U	1.0	U
Cadmium	μg/L	5	1.0	U	1.0 U	J 1.) U	1	1.0 L	J	1.0	U	1.0	U	1.0	U	1.0	U
Calcium	μg/L	na	69,000		70,000	19,0	00	38	,000		16,000		70,000		6,400		4,100	
Chromium	μg/L	50	3.0	U	3.0	J 3.) U	1 3	3.0 L	J	1.2	J	3.0	U	3.0	U	2.4	J
Cobalt	μg/L	50	0.40	J	0.44	J 1.) U	1	1.0 L	J	1.0	U	1.0	U	1.0	U	1.0	U
Copper	μg/L	1,000	0.94	J	1.0	J 1.	6 J	1 7	7.6		2.0	U	1.4	J	2.0	U	0.85	J
Iron	μg/L	300	110	J	110	J 10	; J	8	8.7 J	ı	200	U	69	J	12	J	200	U
Lead	μg/L	15	1.0	U	1.0	J 1.			1.0 L	J	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	na	21,000		21,000	4,8	00	8,	000		3,300	J+	15,000		720		480	
Manganese	μg/L	50	730		740	1	,		38		3.0	U	24		37		3.0	U
Mercury	μg/L	2	0.20	U	0.20	J 0.2	.0 U	0	.20 L	J	0.20	U	0.20	U	0.20	U	0.20	U
Nickel	μg/L	200	2.8	J	2.5	J 1.			3.0 L	J	3.0	U	3.0	U	3.0	U	3.0	U
Potassium	μg/L	na	430	J	420	J 15			230 J	ı	300	J	250	Ĵ	770	Ĵ	700	Ĵ
Selenium	μg/L	50	5.0	U	5.0	J 5.) U		5.0 L	J	12		1.5	J	5.0	U	3.7	J
Silver	μg/L	50	1.0	Ū	1.0	J 1.			1.0 L		1.0	U	1.0	Ū	1.0	Ū	1.0	Ü
Sodium	μg/L	na	2,100,000	_	2,200,000	670,			0,000		580,000	_	1,100,000	_	620,000	_	500,000	_
Thallium	μg/L	2	1.0	U	1.0 U	J 1.			1.0 L	J	1.0	U	1.0	U	1.0	U	1.0	U
Vanadium	μg/L	86	2.9	J	2.8	J 2.			4.5 J	i	2.2	J	2.2	Ĵ	5.0	Ü	19	
Zinc	μg/L	5,000	5.4	J	5.2	J 10			10 L	J	9.7	J	10	Ü	2.1	J	10	U

Fort Wingate Depot Activity Northern Area McKinley County, New Mexico

Northern Area Groundwater Sampling

Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	MW18D102024		MW20102024		MW37102024		TMW06102024		TMW15102024		TMW35102024		TMW47102024		TMW52102024	
DATE SAMPLED:		QUANTITATION	10/09/2024	4	10/09/2024		10/09/202	4	10/09/2024		10/09/202	4	10/09/2024		10/09/2024	1	10/09/202	24
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197835- 280-197835		280-197835-1 280-197835-	-	280-197835 280-197835		280-197835-10 280-197835-2		280-197835 280-197835	-	280-197835- 280-197835		280-197835- 280-197835	-	280-19783 280-19783	-
General Chemistry Orthophosphate as P - EPA 365.1																		
Orthophosphate as P	μg/L	20,000	27	J	50	U	38	J	150		25	J	25	J	28	J	38	J
Anions - SW9056A	/1		500		500		500		500		600		500		500		500	
Bromide	μg/L	na oro ooo	500	U	500	U	500	U	500 U	'	600		500	U	500	U	500	U
Chloride	μg/L	250,000	660,000		1,200,000		180,000		120,000	L	65,000	_ J+	260,000		74,000		69,000	
Fluoride	μg/L	1,600	930	J	500	J	1,400		1,000		2,000		800	J	2,100		1,500	
Nitrate as N	μg/L	10,000	500	U	22,000		500	U	13,000		1,900	J+	6,700		500	UJ	1,600	
Nitrite as N	μg/L	1,000	1,700		1,400	Ī	500	U	160 J		500	U	140	J	500	U	500	U
Sulfate	μg/L	250,000	2,300,000		3,700,000		470,000		760,000		230,000		1,300,000		820,000		410,000	

QA NOTES AND DATA QUALIFIERS:

* - Field duplicate of sample on left.

(NO CODE) - Confirmed identification.

U - Analyte was analyzed for but not detected above the reported limit of quantitation (LOQ).

- UJ Analyte not detected, reported LOQ may be inaccurate or imprecise.
- J Analyte detected, estimated concentration.
- J- Analyte detected, estimated concentration with a low bias.
- J+ Analyte detected, estimated concentration with a high bias.
- X The presence or absence of the analyte cannot be substantiated due to deficiencies in meeting QC criteria.

Detections are bolded.

Detections above the PQLG are highlighted.

NOTES:

[1] The PQLG is the lower of the New Mexico Water Quality Control Commission standard (NM WQCC) and the EPA MCL. If the analyte does not have an NM WQCC or MCL but has an EPA Tap Water RSL, the lower value between the adjusted carcinogenic RSL (target excess cancer risk level of 1 x 10-5) and the non-carcinogenic RSL (with a target hazard index of 1.0) was selected.

μg/L - micrograms per liter

na - Limit not available

-- Analyte was not tested.

Fort Wingate Depot Activity Northern Area McKinley County, New Mexico Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October 2024

SAMPLE ID:		QC0910202	24TB
DATE SAMPLED:		10/09/20	24
LAB SAMPLE ID:		280-19783	5-17
V Lutte O OWOODD	Unit		
Volatile Organics - SW8260D	ua/I	1.0	- 11
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	μg/L	1.0	U
, ,	μg/L	1.0	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	μg/L	1.0 1.0	U
1.1-Dichloroethane	μg/L	1.0	U
1,1-Dichloroethene	μg/L	1.0	U
	μg/L	1.0	U
1,1-Dichloropropene 1,2,3-Trichlorobenzene	μg/L	4.0	U
	μg/L		
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	μg/L	2.5	U
· ·	μg/L	1.0	_
1,2,4-Trimethylbenzene	μg/L	1.0	U
1,2-Dibromo-3-chloropropane	μg/L	5.0	U
1,2-Dibromoethane (EDB)	μg/L	1.0	U
1,2-Dichlorobenzene	μg/L	1.0	U
1,2-Dichloroethane	μg/L	1.0	U
1,2-Dichloropropane	μg/L	1.0	U
1,3,5-Trimethylbenzene	μg/L	1.0	U
1,3-Dichlorobenzene	μg/L	1.0	U
1,3-Dichloropropane	μg/L	1.0	U
1,4-Dichlorobenzene	μg/L	1.0	U
2,2-Dichloropropane	μg/L	1.0	U
2-Butanone (MEK)	μg/L	10	U
2-Chlorotoluene	μg/L	1.0	U
2-Hexanone	μg/L	5.0	U
4-Chlorotoluene	μg/L	1.0	U
4-Isopropyltoluene	μg/L	1.0	U
4-Methyl-2-pentanone (MIBK)	μg/L	5.0	U
Acetone	μg/L	15	U
Benzene	μg/L	1.0	U
Bromobenzene	μg/L	1.0	U
Bromochloromethane	μg/L	1.0	U
Bromodichloromethane	μg/L	1.0	U
Bromoform	μg/L	2.0	U
Bromomethane	μg/L	5.0	UJ
Carbon disulfide	μg/L	2.0	U
Carbon tetrachloride	μg/L	1.0	U
Chlorobenzene	μg/L	1.0	U
Chloroethane	μg/L	2.0	U
Chloroform	μg/L	1.0	U
Chloromethane	μg/L	2.0	U
cis-1,2-Dichloroethene	μg/L	1.0	U
cis-1,3-Dichloropropene	μg/L	1.0	U
Dibromochloromethane	μg/L	1.0	U
Dibromomethane	μg/L	1.0	U
Dichlorodifluoromethane	μg/L	2.0	U
Ethylbenzene	μg/L	1.0	U

Northern Area Field QC Page 1 of 2

Fort Wingate Depot Activity Northern Area McKinley County, New Mexico Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October 2024

SAMPLE ID:		QC0910202	24TB
DATE SAMPLED:	,	10/09/20	24
LAB SAMPLE ID:		280-19783	5-17
Hexachlorobutadiene	μg/L	2.0	U
Isopropylbenzene	μg/L	1.0	U
Methyl acetate	μg/L	5.0	U
Methyl tert-butyl ether (MTBE)	μg/L	5.0	U
Methylene chloride	μg/L	2.0	U
m-Xylene & p-Xylene	μg/L	2.0	U
Naphthalene	μg/L	3.0	U
n-Butylbenzene	μg/L	1.0	U
n-Propylbenzene	μg/L	1.0	U
o-Xylene	μg/L	1.0	U
sec-Butylbenzene	μg/L	1.0	U
Styrene	μg/L	1.0	U
tert-Butylbenzene	μg/L	1.0	U
Tetrachloroethene	μg/L	1.0	U
Toluene	μg/L	1.0	U
trans-1,2-Dichloroethene	μg/L	1.0	U
trans-1,3-Dichloropropene	μg/L	1.0	U
Trichloroethene	μg/L	1.0	U
Trichlorofluoromethane	μg/L	2.0	U
Vinyl chloride	μg/L	1.0	U
Petroleum Hydrocarbons - SW8015D			
Gasoline Range Organics (GRO) C6-C10	μg/L	25	U
Diesel Range Organics (DRO) C10-C28	μg/L		
Oil Range Organics (ORO) C20-C38	μg/L		

QA NOTES AND DATA QUALIFIERS:

(NO CODE) - Confirmed identification.

U - Analyte was analyzed for but not detected above the reported limit of detection (LOQ).

UJ - Analyte not detected, reported LOQ may be inaccurate or imprecise.

J - Analyte detected, estimated concentration.

Detections are bolded.

NOTES:

μg/L - micrograms per liter

-- Analyte was not tested.

Northern Area Field QC Page 2 of 2

Attachment B

Checklists

280-197835 B

VALIDATION CHECKLIST

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

Method: 6020 & 7470

	Validation Area	Acceptable? Y/N/NA	Comments
1.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/Tune	Υ	
IV.	Initial calibration/ICV/LLICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB, ICB/CCB	N	See DVR
VI.	Field blanks	NA	
VII.	Interference check standard	Υ	
VIII.	Matrix spike/Matrix spike duplicate	N	See DVR
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	Υ	
XII.	Dilution test	Υ	
XIII.	Post digestion spike	Υ	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

VALIDATION CHECKLIST

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

Method: 6850

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Υ	
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV/LLICV	Y	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB, ICB/CCB	Υ	
VI.	Field blanks	NA	
VII.	Surrogate spikes	NA	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Y	
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	Y	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Y	

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
I.	Case narrative	Y	
II.	Sample receipt/Technical holding times	N	See DVR
III.	Instrument performance check/Tune	Υ	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	N	See DVR
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	Υ	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

SDG#: 280-197835 **Date**: 2/14/25

 Laboratory:
 EETA

 Reviewer:
 Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Υ	
III.	Instrument performance check/Tune	Y	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	NA	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	NA	
IX.	Laboratory control samples	Y	
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	Y	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Y	

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
l.	Case narrative	Υ	
II.	Sample receipt/Technical holding	Υ	
	times		
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
V.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VII.	Surrogates	N	See DVR
VIII.	Interference check standard	NA	
IX.	Matrix spike/Matrix spike duplicate	NA	
X.	Laboratory control samples	Υ	
XI.	Lab duplicates	NA	
XII.	External standards	Υ	
XIII.	Column Confirmation	Υ	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

Method: 9056A & 365.1

	Validation Area	Acceptable? Y/N/NA	Comments
-	Cara na amartina		
l.	Case narrative	Y	
II.	Sample receipt/Technical holding	Υ	
	times		
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	N	See DVR
VI.	Laboratory Blanks- MB, ICB/CCB	Υ	
VI.	Field blanks	NA	
VII.	Interference check standard	NA	
VIII.	Matrix spike/Matrix spike duplicate	N	See DVR
IX.	Laboratory control samples	Υ	
X.	Lab duplicates	Υ	
XI.	External standards	NA	
XII.	Dilution test	NA	
XIII.	Post digestion spike	NA	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

SDG#: 280-197835 **Date**: 2/14/25

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
-		1/IV/IVA	
l.	Case narrative	Υ	
II.	Sample receipt/Technical holding	N	See DVR
	times		
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	NA	
IX.	Laboratory control samples	N	See DVR
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	NA	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

Attachment C ADR Summary Report

280-197835 C

Reviewed By: KAC (1/29/2025)			Approved By:			Laboratory: TAL DEN	
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code	
Lab Reporting Batc	h: 280-197835-1						
Method: 365.1							
TMW52102024	280-197835-1	Water	Field_Sample	Gen Prep	10/9/2024 8:25:00 AM	S2AVE	
TMW15102024MS	280-197835-5MS	Water	Matrix_Spike	Gen Prep	10/9/2024 8:05:00 AM	S2AVE	
TMW15102024MSD	280-197835-5MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/9/2024 8:05:00 AM	S2AVE	
TMW06102024	280-197835-2	Water	Field_Sample	Gen Prep	10/9/2024 8:35:00 AM	S2AVE	
TMW47102024	280-197835-8	Water	Field_Sample	Gen Prep	10/9/2024 1:20:00 PM	S2AVE	
MW20102024	280-197835-7	Water	Field_Sample	Gen Prep	10/9/2024 11:50:00	S2AVE	
TMW15102024	280-197835-5	Water	Field_Sample	Gen Prep	10/9/2024 8:05:00 AM	S2AVE	
MW37102024	280-197835-3	Water	Field_Sample	Gen Prep	10/9/2024 7:35:00 AM	S2AVE	
MW18D102024	280-197835-4	Water	Field_Sample	Gen Prep	10/9/2024 10:10:00	S2AVE	
TMW35102024	280-197835-6	Water	Field_Sample	Gen Prep	ДМ 10/9/2024 10:15:00 ДМ	S2AVE	
Method: 6020B					AM		
TMW06102024	280-197835-10	Water	Field_Sample	3005A	10/9/2024 8:35:00 AM	S2AVE	
MW37102024	280-197835-11	Water	Field_Sample	3005A	10/9/2024 7:35:00 AM	S2AVE	
TMW35102024	280-197835-14	Water	Field_Sample	3005A	10/9/2024 10:15:00 AM	S2AVE	
TMW47102024	280-197835-16	Water	Field_Sample	3020A	10/9/2024 1:20:00 PM	S2AVE	
TMW15102024	280-197835-13	Water	Field_Sample	3005A	10/9/2024 8:05:00 AM	S2AVE	
TMW15102024MS	280-197835-13MS	Water	Matrix_Spike	3020A	10/9/2024 8:05:00 AM	S2AVE	
MW37102024	280-197835-11	Water	Field_Sample	3020A	10/9/2024 7:35:00 AM	S2AVE	
TMW15102024	280-197835-13	Water	Field_Sample	3020A	10/9/2024 8:05:00 AM	S2AVE	
TMW35102024	280-197835-14	Water	Field_Sample	3020A	10/9/2024 10:15:00	S2AVE	
MW18D102024	280-197835-12	Water	Field_Sample	3005A	10/9/2024 10:10:00	S2AVE	
TMW06102024	280-197835-10	Water	Field_Sample	3020A	ам 10/9/2024 8:35:00 AM	S2AVE	
MW18D102024	280-197835-12	Water	Field_Sample	3020A	10/9/2024 10:10:00	S2AVE	
1/29/2025 11:04:11 AM		ADR version 1.9	.0.325 (Licensed For Use On USACE	Projects Only)	ΔМ	Page 1 of 6	

Reviewed By: KAC (1/29/2025) Approved By: Laboratory: TAL DEN

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 6020B						
MW20102024	280-197835-15	Water	Field_Sample	3020A	10/9/2024 11:50:00 AM	S2AVE
TMW15102024MS	280-197835-13MS	Water	Matrix_Spike	3005A	10/9/2024 8:05:00 AM	S2AVE
TMW15102024MSD	280-197835-13MSD	Water	Matrix_Spike_Duplicate	3005A	10/9/2024 8:05:00 AM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	3020A	10/9/2024 8:25:00 AM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	3005A	10/9/2024 8:25:00 AM	S2AVE
TMW47102024	280-197835-16	Water	Field_Sample	3005A	10/9/2024 1:20:00 PM	S2AVE
MW20102024	280-197835-15	Water	Field_Sample	3005A	10/9/2024 11:50:00 AM	S2AVE
TMW15102024MSD	280-197835-13MSD	Water	Matrix_Spike_Duplicate	3020A	10/9/2024 8:05:00 AM	S2AVE
Method: 6850						
TMW47102024	280-197835-16	Water	Field_Sample	Gen Prep	10/9/2024 1:20:00 PM	S2AVE
MW20102024	280-197835-15	Water	Field_Sample	Gen Prep	10/9/2024 11:50:00 AM	S2AVE
TMW35102024	280-197835-14	Water	Field_Sample	Gen Prep	10/9/2024 10:15:00 AM	S2AVE
MW37102024	280-197835-11	Water	Field_Sample	Gen Prep	10/9/2024 7:35:00 AM	S2AVE
TMW15102024MS	280-197835-13MS	Water	Matrix_Spike	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	Gen Prep	10/9/2024 8:25:00 AM	S2AVE
TMW15102024	280-197835-13	Water	Field_Sample	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
TMW15102024MSD	280-197835-13MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
Method: 7470A						
TMW47102024	280-197835-16	Water	Field_Sample	7470A	10/9/2024 1:20:00 PM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	7470A	10/9/2024 8:25:00 AM	S2AVE
MW37102024	280-197835-11	Water	Field_Sample	7470A	10/9/2024 7:35:00 AM	S2AVE
MW18D102024	280-197835-12	Water	Field_Sample	7470A	10/9/2024 10:10:00 AM	S2AVE
TMW15102024	280-197835-13	Water	Field_Sample	7470A	10/9/2024 8:05:00 AM	S2AVE
TMW15102024MS	280-197835-13MS	Water	Matrix_Spike	7470A	10/9/2024 8:05:00 AM	S2AVE
1/29/2025 11:04:11 AM		ADR version 1.9	.0.325 (Licensed For Use On USACE	Projects Only)		Page 2 of 6

QC09102024TB

TMW35102024

1/29/2025 11:04:11 AM

280-197835-17

280-197835-14

Water

Water

Data Review Sample Summary Report by Analysis Method

Reviewed By: KAC (1/29/2025) **Approved By: Laboratory: TAL DEN Preparation** Client Sample ID Validation Code Lab Sample ID Matrix Sample Type Collection Date Method Method: 7470A MW20102024 280-197835-15 Field Sample 7470A 10/9/2024 11:50:00 S2AVE Water 7470A S2AVE TMW35102024 280-197835-14 Water Field Sample 10/9/2024 10:15:00 7470A S2AVE TMW06102024 280-197835-10 Field Sample 10/9/2024 8:35:00 AM Water TMW15102024MSD 280-197835-13MSD Matrix Spike Duplicate 7470A 10/9/2024 8:05:00 AM S2AVE Water Method: 8015D-DRO S2AVE TMW35102024 280-197835-14 Water Field Sample 3510C 10/9/2024 10:15:00 3510C S2AVE MW37102024 280-197835-11 Field Sample 10/9/2024 7:35:00 AM Water TMW06102024 280-197835-10 Field Sample 3510C 10/9/2024 8:35:00 AM S2AVE Water TMW52102024 280-197835-9 Field Sample 3510C 10/9/2024 8:25:00 AM S2AVF Water MW18D102024 280-197835-12 Field Sample 3510C 10/9/2024 10:10:00 S2AVE Water MW20102024 280-197835-15 3510C S2AVE Water Field Sample 10/9/2024 11:50:00 Method: 8015D-GRO QC09102024TB S2AVE 280-197835-17 Trip Blank Gen Prep 10/9/2024 8:00:00 AM Water MW20102024 280-197835-15 Field Sample Gen Prep 10/9/2024 11:50:00 S2AVE Water MW18D102024 280-197835-12 Field Sample Gen Prep 10/9/2024 10:10:00 S2AVE Water TMW35102024 280-197835-14 Field Sample Gen Prep S2AVE Water 10/9/2024 10:15:00 Field Sample S2AVE TMW52102024 280-197835-9 10/9/2024 8:25:00 AM Water Gen Prep MW37102024 S2AVE 280-197835-11 Water Field Sample Gen Prep 10/9/2024 7:35:00 AM TMW06102024 280-197835-10 Field Sample Gen Prep 10/9/2024 8:35:00 AM S2AVE Water Method: 8260D MW20102024 280-197835-15 Field Sample 5030B 10/9/2024 11:50:00 S2AVE Water TMW15102024MS 280-197835-13MS 5030B 10/9/2024 8:05:00 AM S2AVE Water Matrix Spike

ADR version 1.9.0.325 (Licensed For Use On USACE Projects Only)

5030B

5030B

10/9/2024 8:00:00 AM

10/9/2024 10:15:00

Trip Blank

Field Sample

Page 3 of 6

S2AVE

S2AVE

Reviewed By: KAC (1/29/2025) Approved By: Laboratory: TAL DEN

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 8260D						
TMW06102024	280-197835-10	Water	Field_Sample	5030B	10/9/2024 8:35:00 AM	S2AVE
MW37102024	280-197835-11	Water	Field_Sample	5030B	10/9/2024 7:35:00 AM	S2AVE
TMW15102024	280-197835-13	Water	Field_Sample	5030B	10/9/2024 8:05:00 AM	S2AVE
TMW15102024MSD	280-197835-13MSD	Water	Matrix_Spike_Duplicate	5030B	10/9/2024 8:05:00 AM	S2AVE
MW18D102024	280-197835-12	Water	Field_Sample	5030B	10/9/2024 10:10:00 AM	S2AVE
TMW47102024	280-197835-16	Water	Field_Sample	5030B	10/9/2024 1:20:00 PM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	5030B	10/9/2024 8:25:00 AM	S2AVE
Method: 8270E						
MW18D102024	280-197835-12	Water	Field_Sample	3510C	10/9/2024 10:10:00 AM	S2AVE
MW20102024	280-197835-15	Water	Field_Sample	3510C	10/9/2024 11:50:00 AM	S2AVE
MW37102024	280-197835-11	Water	Field_Sample	3510C	10/9/2024 7:35:00 AM	S2AVE
TMW35102024	280-197835-14	Water	Field_Sample	3510C	10/9/2024 10:15:00 AM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample	3510C	10/9/2024 8:25:00 AM	S2AVE
TMW47102024	280-197835-16	Water	Field_Sample	3510C	10/9/2024 1:20:00 PM	S2AVE
TMW06102024	280-197835-10	Water	Field_Sample	3510C	10/9/2024 8:35:00 AM	S2AVE
Method: 8330B						
TMW06102024	280-197835-10	Water	Field_Sample		3535 10/9/2024 8:35:00 AM	S2AVE
TMW47102024	280-197835-16	Water	Field_Sample		3535 10/9/2024 1:20:00 PM	S2AVE
MW37102024	280-197835-11	Water	Field_Sample		3535 10/9/2024 7:35:00 AM	S2AVE
TMW52102024	280-197835-9	Water	Field_Sample		3535 10/9/2024 8:25:00 AM	S2AVE
Method: 9056A						
MW18D102024	280-197835-4	Water	Field_Sample	Gen Prep	10/9/2024 10:10:00 AM	S2AVE
MW20102024	280-197835-7	Water	Field_Sample	Gen Prep	10/9/2024 11:50:00 AM	S2AVE
TMW06102024	280-197835-2	Water	Field_Sample	Gen Prep	10/9/2024 8:35:00 AM	S2AVE
1/29/2025 11:04:11 AM		ADR version 1.9.	.0.325 (Licensed For Use On USACE	Projects Only)		Page 4 of 6

Reviewed By: KAC (1/29/2025) Approved By: Laboratory: TAL DEN

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 9056A						
TMW52102024	280-197835-1	Water	Field_Sample	Gen Prep	10/9/2024 8:25:00 AM	S2AVE
TMW47102024	280-197835-8	Water	Field_Sample	Gen Prep	10/9/2024 1:20:00 PM	S2AVE
TMW15102024DUP	280-197835-5DUP	Water	Duplicate	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
TMW15102024MS	280-197835-5MS	Water	Matrix_Spike	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
TMW35102024	280-197835-6	Water	Field_Sample	Gen Prep	10/9/2024 10:15:00 AM	S2AVE
MW37102024	280-197835-3	Water	Field_Sample	Gen Prep	10/9/2024 7:35:00 AM	S2AVE
TMW15102024MSD	280-197835-5MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/9/2024 8:05:00 AM	S2AVE
TMW15102024	280-197835-5	Water	Field_Sample	Gen Prep	10/9/2024 8:05:00 AM	S2AVE

Reviewed By: KAC (1/29/2025)

Approved By:

Preparation

Laboratory: TAL DEN

Client Sample ID Lab Sample ID Matrix Sample Type Method Collection Date Validation Code

Validation Label Legend

Label Code	Label Decription	EPA Level
S1VE	Stage_1_Validation_Electronic	N/A
S1VM	Stage_1_Validation_Manual	N/A
S1VEM	Stage_1_Validation_Electronic_and_Manual	N/A
S2AVE	Stage_2A_Validation_Electronic	Level 3 w/o calibration
S2AVM	Stage_2A_Validation_Manual	Level 3 w/o calibration
S2AVEM	Stage_2A_Validation_Electronic_and_Manual	Level 3 w/o calibration
S2BVE	Stage_2B_Validation_Electronic	Level 3 with calibration
S2BVM	Stage_2B_Validation_Manual	Level 3 with calibration
S2BVEM	Stage_2B_Validation_Electronic_and_Manual	Level 3 with calibration
S3VE	Stage_3_Validation_Electronic	Level 4
S3VM	Stage_3_Validation_Manual	Level 4
S3VEM	Stage_3_Validation_Electronic_and_Manual	Level 4
S4VE	Stage_4_Validation_Electronic	Level 4
S4VM	Stage_4_Validation_Manual	Level 4
S4VEM	Stage_4_Validation_Electronic_and_Manual	Level 4
NV	Not_Validated	N/A

Data Review Summary

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: 280-197835-1_52_2a_ParsonsFtWingate eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

Validation Area	Note
Technical Holding Times	A
Temperature	A
Initial Calibration	N
Continuing Calibration/Initial Calibration Verification	N
Method Blanks	SR
Surrogate/Tracer Spikes	SR
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	A
Laboratory Replicates	N
Laboratory Control Samples	SR
Compound Quantitation	SR
Field Duplicates	N
Field Triplicates	N
Field Blanks	A

Temperature Outliers

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

No Data Review Qualifiers Applie

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

No Data Review Qualifiers Applied.

2/13/2025 3:32:58 PM ADR version 1.9.0.325 Page 1 of 1

Trip Blank Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

No Data Review Qualifiers Applied

Method Blank Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: 280-197835-1_52_2a_ParsonsFtWingate eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-670573/1-A	10/18/2024 3:41:53 PM	ALUMINUM CALCIUM MAGNESIUM	11.0 ug/L 38.3 ug/L - 14.1 ug/L -	MW18D102024 MW20102024 MW37102024 TMW06102024 TMW15102024 TMW35102024 TMW47102024 TMW52102024
MB 280-670743/1-A	10/22/2024 4:09:18 AM	ALUMINUM	9.36 ug/L	MW18D102024 MW20102024 MW37102024 TMW06102024 TMW15102024 TMW35102024

The following samples and their listed target analytes were qualified due to contamination reported in this blank

TMW52102024

Sample ID	Analyte	Reported Result	Modified Final Result
MW20102024(Initial/TOT)	ALUMINUM	20 ug/L	200U ug/L
MW37102024(Initial/DIS)	ALUMINUM	8.5 ug/L	200U ug/L
TMW06102024(Initial/TOT)	ALUMINUM	12 ug/L	200U ug/L
TMW15102024(Initial/DIS)	ALUMINUM	8.8 ug/L	200U ug/L
TMW15102024(Initial/TOT)	ALUMINUM	32 ug/L	200U ug/L
TMW35102024(Initial/DIS)	ALUMINUM	19 ug/L	200U ug/L
TMW35102024(Initial/TOT)	ALUMINUM	12 ug/L	200U ug/L
TMW47102024(Initial/DIS)	ALUMINUM	13 ug/L	200U ug/L
TMW47102024(Initial/TOT)	ALUMINUM	15 ug/L	200U ug/L
TMW52102024(Initial/DIS)	ALUMINUM	15 ug/L	200U ug/L

Method: 8015D-DRO

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-671098/1-A	10/18/2024 9:54:00 PM	Oil Range Organics (ORO) C20-C38	, J	MW18D102024 MW20102024 MW37102024 TMW06102024 TMW35102024 TMW52102024

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
TMW35102024(Initial/TOT)	Oil Range Organics (ORO) C20-C38	65 ug/L	65U ug/L

1/29/2025 10:58:33 AM ADR version 1.9.0.325 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

Method: 8015D-DRO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
LCSD 280-671098/3-A (MW18D102024 MW20102024 MW37102024 TMW06102024 TMW35102024 TMW52102024	Diesel Range Organics (DRO) C10-I	-	-	36.00-132.00	34 (30.00)	Diesel Range Organics (DRO) C10	J (all detects)

Surrogate Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

Method: 8330E					
Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
TMW06102024 (Initial/TOT)	1,2-Dinitrobenzene [1,2-DNB]	70	83.00-119.00	All Target Analytes	J- (all detects) UJ (all non-detects)

1/29/2025 10:58:45 AM ADR version 1.9.0.325 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

Method: 6020B							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
TMW15102024MS (Dissolved) TMW15102024MS (Total) TMW15102024MSD (Dissolved) TMW15102024MSD (Total) (TMW15102024)	SODIUM	823	4928	85.00-117.00	-	SODIUM	J (all detects) UJ (all non-detects)
TMW15102024MS (Dissolved) TMW15102024MS (Total) TMW15102024MSD (Total) (TMW15102024)	CALCIUM MAGNESIUM	150 121	206 -	87.00-118.00 83.00-118.00		CALCIUM MAGNESIUM	J+(all detects)

Sample concentrations are greater than 4 times the MS/MSD spike concentrations for calcium and sodium. RECs could not be evaluated, and qualification was not warranted.

Method: 9056A							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
TMW15102024MSD (TMW15102024)	CHLORIDE Nitrate as N	-	113 115	87.00-111.00 88.00-111.00		CHLORIDE Nitrate as N	J+(all detects)

1/29/2025 10:58:57 AM ADR version 1.9.0.325 Page 1 of 1

Lab Duplicate Outlier Report

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

No Data Review Qualifiers Applied

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: 280-197835-1_52_2a_ParsonsFtWingate eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method: 365.1

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW18D102024	Orthophosphate as P	J	27	50	LOQ	ug/L	J (all detects)
MW37102024	Orthophosphate as P	J	38	50	LOQ	ug/L	J (all detects)
TMW15102024	Orthophosphate as P	J	25	50	LOQ	ug/L	J (all detects)
TMW35102024	Orthophosphate as P	J	25	50	LOQ	ug/L	J (all detects)
TMW47102024	Orthophosphate as P	J	28	50	LOQ	ug/L	J (all detects)
TMW52102024	Orthophosphate as P	J	38	50	LOQ	ug/L	J (all detects)

Method: 6020B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW18D102024	ALUMINUM ARSENIC COBALT COPPER IRON NICKEL POTASSIUM	J J J J	76 0.76 0.39 1.3 150 2.9 410	200 5.0 1.0 2.0 200 3.0 1000	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
	VANADIUM ZINC	J	2.4 5.4	5.0 10	LOQ LOQ	ug/L ug/L ug/L	
MW20102024	ALUMINUM ARSENIC CHROMIUM COBALT COPPER IRON NICKEL POTASSIUM SILVER VANADIUM ZINC	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 0.78 1.0 0.44 1.0 110 2.5 710 0.045 2.8 5.2	200 5.0 3.0 1.0 2.0 200 3.0 1000 1.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
MW37102024	ALUMINUM ARSENIC BERYLLIUM COPPER IRON NICKEL POTASSIUM SILVER VANADIUM	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8.5 1.7 0.42 1.6 16 1.1 150 0.054 2.9	200 5.0 1.0 2.0 200 3.0 1000 1.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW06102024	ALUMINUM ARSENIC IRON POTASSIUM VANADIUM	J	12 1.1 8.7 230 4.5	200 5.0 200 1000 5.0	LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L	J (all detects)

1/29/2025 10:59:26 AM ADR version 1.9.0.325 Page 1 of 3

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: 280-197835-1_52_2a_ParsonsFtWingate eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method: 6020B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW15102024	ALUMINUM CHROMIUM IRON MANGANESE POTASSIUM VANADIUM ZINC	J	8.8 1.2 29 1.5 300 2.2 9.7	200 3.0 200 3.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW35102024	ALUMINUM ANTIMONY ARSENIC COPPER IRON POTASSIUM SELENIUM VANADIUM]]]]	9.7 12 0.57 0.67 1.2 11 250 1.7	200 2.0 5.0 2.0 200 1000 5.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW47102024	ALUMINUM ARSENIC IRON POTASSIUM SILVER ZINC	J	15 0.70 17 730 0.091 2.1	200 5.0 200 1000 1.0 10	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW52102024	ALUMINUM ANTIMONY BERYLLIUM CHROMIUM COPPER POTASSIUM SELENIUM]]]	15 0.64 0.83 2.4 0.85 700 3.7	200 2.0 1.0 3.0 2.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)

Method: 6850

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW15102024	PERCHLORATE	J M	0.045	0.20	LOQ	ug/L	J (all detects)

Method: 8015D-DRO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW18D102024	Diesel Range Organics (DRO) C10-C28	JQ	45	270	LOQ	ug/L	J (all detects)
MW20102024	Diesel Range Organics (DRO) C10-C28	JQ	52	270	LOQ	ug/L	J (all detects)
TMW35102024	Diesel Range Organics (DRO) C10-C28 Oil Range Organics (ORO) C20-C38	JQ	41 65	270 540	LOQ LOQ	ug/L ug/L	J (all detects)

Project Name and Number: Fort Wingate Depot Activity Northern Area - NM6213820974

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: 280-197835-1_52_2a_ParsonsFtWingate eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method: 8260D

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
TMW47102024	CARBON DISULFIDE	J	1.5	2.0	LOQ	ug/L	J (all detects)

Method: 9056A

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW18D102024	FLUORIDE	J	930	1000	LOQ	ug/L	J (all detects)
MW20102024	FLUORIDE	J	500	1000	LOQ	ug/L	J (all detects)
TMW06102024	Nitrite as N	J	160	500	LOQ	ug/L	J (all detects)
TMW35102024	FLUORIDE Nitrite as N	J J	800 140	1000 500	LOQ LOQ	ug/L ug/L	J (all detects)

1/29/2025 10:59:26 AM ADR version 1.9.0.325 Page 3 of 3

Field QC Assignments and Associated Samples

EDD File Name: 280-197835-1

eQapp Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

	Associated Samples	Sample Collection Date
Field QC QC09102024TB QC Type: Trip_Blank		
	TMW47102024	10/9/2024 1:20:00 PM
	MW18D102024	10/9/2024 10:10:00 AM
	TMW52102024	10/9/2024 8:25:00 AM
	TMW06102024	10/9/2024 8:35:00 AM
	MW37102024	10/9/2024 7:35:00 AM
	TMW35102024	10/9/2024 10:15:00 AM
	MW20102024	10/9/2024 11:50:00 AM
	TMW15102024	10/9/2024 8:05:00 AM

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

 ${\tt 280\text{-}197835\text{-}1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_}$

rev

Method Category: GENCHEM

Sample ID:MW18D102024	Collec	10/9/2 cted: AM	024 10:1		nalvsis i	Гуре: Initia	al/TOT	,	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	27	J	40	LOD	50	LOQ	ug/L	J	TR	
Sample ID:MW37102024	Collec	10/9/2 cted: AM	024 7:35		nalysis i	Гуре: Initia	al/TOT	ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	38	J	40	LOD	50	LOQ	ug/L	J	TR	
Sample ID:TMW15102024	Collec	10/9/2 cted: AM	024 8:05		nalysis i	Гуре: Initia	al/TOT	ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	25	J	40	LOD	50	LOQ	ug/L	J	TR	
Sample ID:TMW35102024	Collec	10/9/2 cted: AM	024 10:1		nalysis i	Гуре: Initia	al/TOT	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	25	J	40	LOD	50	LOQ	ug/L	J	TR	
Sample ID:TMW47102024	Collec	10/9/2 cted: PM	024 1:20		nalysis i	Гуре: Initia	al/TOT	ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	28	J	40	LOD	50	LOQ	ug/L	J	TR	
Sample ID:TMW52102024	Collec	10/9/2 cted: AM	024 8:25		nalysis	Гуре: Initia	al/TOT	1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Orthophosphate as P	38	J	40	LOD	50	LOQ	ug/L	J	TR	
				1						

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 **Laboratory: TAL DEN**

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

Method Category: **GENCHEM**

		10/9/2024 8:05:00							
Sample ID:TMW15102024	Collec	Collected: AM				Type: Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PERCHLORATE	0.045	JM	0.10	LOD	0.20	LOQ	ug/L	J	TR

10/9/2024 10:10:00

Method Category:	GENCHEM	

Sample ID:MW18D102024	Collec	Collected: AM			nalysis 1	<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	930	J	500	LOD	1000	LOQ	ug/L	J	TR
	·	10/9/2	024 11:5	0:00	•				

Sample ID:MW20102024	Collec	Collected: AM			nalysis 1	Гуре: Initi	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	500	J	500	LOD	1000	100	ug/l	J	TR	

	10/3/2024 0.3	55.00	
Sample ID:TMW06102024	Collected: AM	Analysis Type: Initial/TOT	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrite as N	160	J	100	LOD	500	LOQ	ug/L	J	TR

10/9/2024 8:05:00 Collected: AM Sample ID:TMW15102024 Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLORIDE	65000	J1	2500	LOD	3000	LOQ	ug/L	J+	MD1
Nitrate as N	1900	J1	200	LOD	500	LOQ	ug/L	J+	MD1

10/9/2024 10:15:00 Collected: AM Sample ID:TMW35102024 Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	800	J	500	LOD	1000	LOQ	ug/L	J	TR
Nitrite as N	140	J	100	LOD	500	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: GENCHEM

10/9/2024 1:20:00

Sample ID:TMW47102024	Collec	ted:PM		Α	nalysis 1	Type: Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrate as N	200	υQ	200	LOD	500	LOQ	ua/L	UJ	CV2

Method Category: METALS

10/9/2024 10:10:00

Sample ID:MW18D102024	Colle	Collected: AM			nalysis 1	<i>ype:</i> Initia	al/DIS	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	0.83	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
COBALT	0.40	J	0.90	LOD	1.0	LOQ	ug/L	J	TR	
COPPER	0.94	J	1.8	LOD	2.0	LOQ	ug/L	J	TR	
IRON	110	J	40	LOD	200	LOQ	ug/L	J	TR	
NICKEL	2.8	J	1.9	LOD	3.0	LOQ	ug/L	J	TR	
POTASSIUM	430	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	2.9	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	
ZINC	5.4	J	8.0	LOD	10	LOQ	ug/L	J	TR	

10/9/2024 10:10:00
Sample ID:MW18D102024
Collected: AM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	76	J	30	LOD	200	LOQ	ug/L	J	TR
ARSENIC	0.76	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
COBALT	0.39	J	0.90	LOD	1.0	LOQ	ug/L	J	TR
COPPER	1.3	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
IRON	150	J	40	LOD	200	LOQ	ug/L	J	TR
NICKEL	2.9	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	410	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	2.4	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	8.3	J	8.0	LOD	10	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: METALS

10/9/2024 11:50:00

Sample ID:MW20102024	Colle	cted: AM		Α	nalysis 1	<i>Type:</i> Initia	al/DIS	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	0.92	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
COBALT	0.44	J	0.90	LOD	1.0	LOQ	ug/L	J	TR	
COPPER	1.0	J	1.8	LOD	2.0	LOQ	ug/L	J	TR	
IRON	110	J	40	LOD	200	LOQ	ug/L	J	TR	
NICKEL	2.5	J	1.9	LOD	3.0	LOQ	ug/L	J	TR	
POTASSIUM	420	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	2.8	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	
ZINC	5.2	J	8.0	LOD	10	LOQ	ug/L	J	TR	

10/9/2024 11:50:00

Sample ID:MW20102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
20	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
0.78	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
1.0	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
710	J	76	LOD	1000	LOQ	ug/L	J	TR
0.045	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB
	20 0.78 1.0 710	Result Qual 20 J 0.78 J 1.0 J 710 J	Result Qual DL 20 J 30 0.78 J 2.0 1.0 J 1.8 710 J 76	Result Qual DL Type 20 J 30 LOD 0.78 J 2.0 LOD 1.0 J 1.8 LOD 710 J 76 LOD	Result Qual DL Type RL 20 J 30 LOD 200 0.78 J 2.0 LOD 5.0 1.0 J 1.8 LOD 3.0 710 J 76 LOD 1000	Result Qual DL Type RL Type 20 J 30 LOD 200 LOQ 0.78 J 2.0 LOD 5.0 LOQ 1.0 J 1.8 LOD 3.0 LOQ 710 J 76 LOD 1000 LOQ	Result Qual DL Type RL Type Units 20 J 30 LOD 200 LOQ ug/L 0.78 J 2.0 LOD 5.0 LOQ ug/L 1.0 J 1.8 LOD 3.0 LOQ ug/L 710 J 76 LOD 1000 LOQ ug/L	Lab Result Lab Qual DL Type RL Type RL Type RL Type Review Qual 20 J 30 LOD 200 LOQ ug/L U 0.78 J 2.0 LOD 5.0 LOQ ug/L J 1.0 J 1.8 LOD 3.0 LOQ ug/L J 710 J 76 LOD 1000 LOQ ug/L J

10/9/2024 7:35:00
Sample ID:MW37102024
Collected: AM Analysis Type: Initial/DIS Dilution: 1

oumpro is inition research	00.70	O O I O O CO O O O O O O O O O O O O O O				JP 0	u., D.O	Direction 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	8.5	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU	
ARSENIC	1.1	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
COPPER	1.6	J	1.8	LOD	2.0	LOQ	ug/L	J	TR	
IRON	16	J	40	LOD	200	LOQ	ug/L	J	TR	
NICKEL	1.1	J	1.9	LOD	3.0	LOQ	ug/L	J	TR	
POTASSIUM	150	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	2.9	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

 ${\bf 280\text{-}197835\text{-}1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_}$

rev

SILVER

Method Category: METALS

10/9/2024 7:35:00

Sample ID:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Collec	tea: AM		A	naiysis i	ype: initia	al/101	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	1.7	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
BERYLLIUM	0.42	J	0.60	LOD	1.0	LOQ	ug/L	J	TR	

0.054

J 0.15 L 10/9/2024 8:35:00

LOD

1.0

LOQ

ICB/CCB

Dilution: 1

Sample ID:TMW06102024	Collec	cted: AM		A	nalysis 1	<i>ype:</i> Initia	al/DIS	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	1.1	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
IRON	8.7	J	40	LOD	200	LOQ	ug/L	J	TR	
POTASSIUM	230	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	4.5	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	

10/9/2024 8:35:00

Sample ID:TMW06102024	Collec	ted: AM		Α	nalysis 1	Dilution: 1			
∆nalvte	Lab Result	Lab	DI	DL Type	RI	RL Type	Units	Data Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
ALUMINUM	12	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
ARSENIC	1.4	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
IRON	13	J	40	LOD	200	LOQ	ug/L	U	ICB/CCB
POTASSIUM	270	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	3.9	J	3.0	LOD	5.0	LOQ	ug/L	J	TR

10/9/2024 8:05:00
Sample ID:TMW15102024 Collected: AM Analysis Type: Initial/DIS

		Alvi				11			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	8.8	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
CHROMIUM	1.2	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
MAGNESIUM	3300	J1	15	LOD	200	LOQ	ug/L	J+	MD1
POTASSIUM	300	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	2.2	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	9.7	J	8.0	LOD	10	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: METALS

10/9/2024 8:05:00

Sample ID:TMW15102024	Colle	cted: AM		Α	nalysis 1	<i>ype:</i> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	32	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU	
CHROMIUM	1.1	J	1.8	LOD	3.0	LOQ	ug/L	J	TR	
IRON	29	J	40	LOD	200	LOQ	ug/L	U	ICB/CCB	
MAGNESIUM	3300		15	LOD	200	LOQ	ug/L	J+	MD1	
MANGANESE	1.5	J	1.8	LOD	3.0	LOQ	ug/L	U	ICB/CCB	
POTASSIUM	310	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	1.8	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	
ZINC	7.3	J	8.0	LOD	10	LOQ	ug/L	U	ICB/CCB	

10/9/2024 10:15:00

Sample ID:TMW35102024 Collected: AM Analysis Type: Initial/DIS Dilution: 1

oumpro is initioo io soul	00.10	Otou. Alvi		randyolo Typorimada Bio				Direction 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	19	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU	
ANTIMONY	0.57	J	1.0	LOD	2.0	LOQ	ug/L	U	ICB/CCB	
ARSENIC	0.67	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
COPPER	1.4	J	1.8	LOD	2.0	LOQ	ug/L	J	TR	
IRON	69	J	40	LOD	200	LOQ	ug/L	J	TR	
POTASSIUM	250	J	76	LOD	1000	LOQ	ug/L	J	TR	
SELENIUM	1.5	J	4.0	LOD	5.0	LOQ	ug/L	J	TR	
VANADIUM	2.2	J	3.0	LOD	5.0	LOQ	ug/L	J	TR	

10/9/2024 10:15:00

 Sample ID:TMW35102024
 Collected: AM
 Analysis Type: Initial/TOT
 Dilution: 1

 Lab
 Lab
 DL
 RL
 RL
 Data Review Reason

 Analyte
 Result
 Qual
 DL
 Type
 RL
 Type
 Units
 Qual
 Code

 ALUMINUM
 12
 J
 30
 LOD
 200
 LOQ
 ug/L
 U
 BLT/BLU

Analyte	Resuit	Quai	DL	rype	KL	rype	Ullits	Quai	Code
ALUMINUM	12	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
COPPER	1.2	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
IRON	11	J	40	LOD	200	LOQ	ug/L	U	ICB/CCB
POTASSIUM	250	J	76	LOD	1000	LOQ	ug/L	J	TR
SELENIUM	1.7	J	4.0	LOD	5.0	LOQ	ug/L	J	TR
VANADIUM	1.7	J	3.0	LOD	5.0	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: METALS

10/9/2024 1:20:00 Collected: Dat

Sample ID: HWW47 102024	Collec	Collected: PM			naiysis i	ype: mu	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	13	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
IRON	12	J	40	LOD	200	LOQ	ug/L	J	TR
POTASSIUM	770	J	76	LOD	1000	LOQ	ug/L	J	TR
ZINC	2.1	1	8.0	LOD	10	100	ua/l	ı	TR

10/9/2024 1:20:00

Sample ID:TMW47102024 Collected: PM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	15	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
ARSENIC	0.70	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
IRON	17	J	40	LOD	200	LOQ	ug/L	U	ICB/CCB
POTASSIUM	730	J	76	LOD	1000	LOQ	ug/L	J	TR
SILVER	0.091	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB

10/9/2024 8:25:00

Sample ID:TMW52102024 Collected: AM Analysis Type: Initial/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	15	J	30	LOD	200	LOQ	ug/L	U	BLT/BLU
ANTIMONY	0.64	J	1.0	LOD	2.0	LOQ	ug/L	U	ICB/CCB
CHROMIUM	2.4	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
COPPER	0.85	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
POTASSIUM	700	J	76	LOD	1000	LOQ	ug/L	J	TR
SELENIUM	3.7	J	4.0	LOD	5.0	LOQ	ug/L	J	TR

10/9/2024 8:25:00

Sample ID:TMW52102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BERYLLIUM	0.83	J	0.60	LOD	1.0	LOQ	ug/L	J	TR
SELENIUM	3.7	J	4.0	LOD	5.0	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: SVOA

					-		_
10	/9	/2(124	10	1.1	ก・ก	n

Sample ID:MW18D102024	Collec	ted: AM		A	nalysis ī	<i>ype:</i> Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Diesel Range Organics (DRO) C10-C28	45	JQ	130	LOD	270	LOQ	ug/L	J	TR, LC7

10/9/2024 11:50:00

Sample ID:WW20102024	Collec	tea: AM	M Analysis Type: Initial/101					Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Diesel Range Organics (DRO) C10-C28	52	JO	130	LOD	270	LOQ	ug/L	J	TR. LC7	

10/9/2024 10:15:00

Sa	ample ID:1 MVV35102024	Collec	tea: AM	A	naiysis i	ype: initia	31/101	U	ilution: 1
		l ab	l ab	DI		RI		Data Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
Diesel Range Organics (DRO) C10-C28	41	JQ	130	LOD	270	LOQ	ug/L	J	TR, LC7
Oil Range Organics (ORO) C20-C38	65	J	140	LOD	540	LOQ	ug/L	U	BLT/BLU

Method Category: SVOA

10/9/2024 8:35:00

Sample ID:TMW06102024	Collec	ted: AM		Α	nalysis T	ype: Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,3,5-TRINITROBENZENE	0.20	UQ	0.20	LOD	0.21	LOQ	ug/L	UJ	SU2	
1,3-DINITROBENZENE	0.099	UQ	0.099	LOD	0.11	LOQ	ug/L	UJ	SU2	
2,4,6-TRINITROTOLUENE	0.099	UQ	0.099	LOD	0.11	LOQ	ug/L	UJ	SU2	
2,4-DINITROTOLUENE	0.079	UQ	0.079	LOD	0.099	LOQ	ug/L	UJ	SU2	
2,6-DINITROTOLUENE	0.079	UQ	0.079	LOD	0.099	LOQ	ug/L	UJ	SU2	
2-AMINO-4,6-DINITROTOLUENE	0.099	UQ	0.099	LOD	0.11	LOQ	ug/L	UJ	SU2	
4-AMINO-2,6-DINITROTOLUENE	0.12	UQ	0.12	LOD	0.15	LOQ	ug/L	UJ	SU2	
Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.20	UQ	0.20	LOD	0.21	LOQ	ug/L	UJ	SU2	
m-Nitrotoluene	0.35	UQ	0.35	LOD	0.40	LOQ	ug/L	UJ	SU2	
NITROBENZENE	0.20	UQ	0.20	LOD	0.21	LOQ	ug/L	UJ	SU2	
Nitroglycerin	2.0	UMQ	2.0	LOD	2.1	LOQ	ug/L	UJ	SU2	
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.20	UQ	0.20	LOD	0.21	LOQ	ug/L	UJ	SU2	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: SVOA

10/9/2024 8:35:00

Sample ID:TMW06102024	Collec	Collected: AM			nalysis ī	<i>Type:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
o-Nitrotoluene	0.20	UQ	0.20	LOD	0.21	LOQ	ug/L	UJ	SU2
Pentaerythritol tetranitrate (PETN)	0.99	UQ	0.99	LOD	1.1	LOQ	ug/L	UJ	SU2
p-Nitrotoluene	0.40	UQ	0.40	LOD	0.40	LOQ	ug/L	UJ	SU2

Method Category: VOA

Trinitrophenylmethylnitramine (Tetryl)

10/9/2024 10:10:00

0.099

Sample ID:MW18D102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1

UQ

0.099

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Gasoline Range Organics (GRO) C6-C10	50		20	LOD	25	LOQ	ug/L	J-	SC1

Method Category: VOA

10/9/2024 10:10:00

LOD

0.11

LOQ

ug/L

UJ

SU₂

Sample ID:MW18D102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1 Data Lab Lab DL Review Reason Analyte Result Qual DL Type RL Type **Units** Qual Code 1,1,1,2-TETRACHLOROETHANE 0.80 LOD LOQ ug/L U 0.80 1.0 UJ SC1 U UJ 1,1,1-TRICHLOROETHANE 0.50 0.50 LOD 1.0 LOQ ug/L SC1 U UJ 1,1,2,2-TETRACHLOROETHANE 0.80 0.80 LOD 1.0 LOQ ug/L SC1 U UJ 1,1,2-TRICHLOROETHANE 0.80 0.80 LOD 1.0 LOQ ug/L SC1 UJ 1,1-DICHLOROETHANE 0.80 U 0.80 LOD LOQ ug/L SC1 1,1-DICHLOROETHENE 0.80 U 0.80 LOD 1.0 LOQ UJ SC1 ug/L ug/L UJ 1,1-DICHLOROPROPENE 0.80 U 0.80 LOD 1.0 LOQ SC1 U UJ 1,2,3-TRICHLOROBENZENE 2.5 2.5 LOD 4.0 LOQ ug/L SC1 U UJ 1,2,3-TRICHLOROPROPANE 1.8 LOD 2.5 LOQ SC1 1.8 ug/L 1,2,4-TRICHLOROBENZENE 0.80 U 0.80 LOD 1.0 LOQ UJ ug/L SC1 1,2,4-TRIMETHYLBENZENE 0.40 U 0.40 LOD LOQ UJ SC1 ug/L

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

 ${\tt 280\text{-}197835\text{-}1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_}$

rev

Method Category: VOA

10/9/2024 10:10:00

Sample ID:MW18D102024	Collec	A	nalysis 1	<i>ype:</i> Initia	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2-DIBROMO-3-CHLOROPROPANE	4.0	U	4.0	LOD	5.0	LOQ	ug/L	UJ	SC1
1,2-Dibromoethane (EDB)	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
1,2-DICHLOROBENZENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
1,2-DICHLOROETHANE	81		0.50	LOD	1.0	LOQ	ug/L	J-	SC1
1,2-DICHLOROPROPANE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
1,3,5-TRIMETHYLBENZENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
1,3-DICHLOROBENZENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1
1,3-DICHLOROPROPANE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
1,4-DICHLOROBENZENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
2,2-DICHLOROPROPANE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
2-BUTANONE (MEK)	8.0	U	8.0	LOD	10	LOQ	ug/L	UJ	SC1
2-CHLOROTOLUENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1
2-HEXANONE	4.0	U	4.0	LOD	5.0	LOQ	ug/L	UJ	SC1
4-CHLOROTOLUENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
4-ISOPROPYLTOLUENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
4-METHYL-2-PENTANONE (MIBK)	3.2	U	3.2	LOD	5.0	LOQ	ug/L	UJ	SC1
ACETONE	8.0	U	8.0	LOD	15	LOQ	ug/L	UJ	SC1
BENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
BROMOBENZENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
BROMOCHLOROMETHANE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
BROMODICHLOROMETHANE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
BROMOFORM	1.8	U	1.8	LOD	2.0	LOQ	ug/L	UJ	SC1
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2, SC1
CARBON DISULFIDE	0.80	U	0.80	LOD	2.0	LOQ	ug/L	UJ	SC1
CARBON TETRACHLORIDE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1
CHLOROBENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
CHLOROETHANE	1.0	U	1.0	LOD	2.0	LOQ	ug/L	UJ	SC1
CHLOROFORM	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1
CHLOROMETHANE	1.0	U	1.0	LOD	2.0	LOQ	ug/L	UJ	SC1
CIS-1,2-DICHLOROETHENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_

rev

Method Category: VOA

10/9/2024 10:10:00

Sample ID:MW18D102024	Collec	Collected: AM				Analysis Type: Initial/TOT				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CIS-1,3-DICHLOROPROPENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
DIBROMOCHLOROMETHANE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1	
DIBROMOMETHANE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
DICHLORODIFLUOROMETHANE	1.0	U	1.0	LOD	2.0	LOQ	ug/L	UJ	SC1	
ETHYLBENZENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
HEXACHLOROBUTADIENE	1.8	U	1.8	LOD	2.0	LOQ	ug/L	UJ	SC1	
SOPROPYLBENZENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1	
METHYL ACETATE	4.0	U	4.0	LOD	5.0	LOQ	ug/L	UJ	SC1	
METHYL TERT-BUTYL ETHER	0.80	U	0.80	LOD	5.0	LOQ	ug/L	UJ	SC1	
METHYLENE CHLORIDE	1.8	U	1.8	LOD	2.0	LOQ	ug/L	UJ	SC1	
m-Xylene & p-Xylene	0.80	U	0.80	LOD	2.0	LOQ	ug/L	UJ	SC1	
NAPHTHALENE	2.0	U	2.0	LOD	3.0	LOQ	ug/L	UJ	SC1	
N-BUTYLBENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
N-PROPYLBENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
O-XYLENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
SEC-BUTYLBENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
STYRENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
TERT-BUTYLBENZENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
TETRACHLOROETHENE	0.80	U	0.80	LOD	1.0	LOQ	ug/L	UJ	SC1	
TOLUENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
TRANS-1,2-DICHLOROETHENE	0.50	U	0.50	LOD	1.0	LOQ	ug/L	UJ	SC1	
TRANS-1,3-DICHLOROPROPENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
TRICHLOROETHENE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
TRICHLOROFLUOROMETHANE	0.80	U	0.80	LOD	2.0	LOQ	ug/L	UJ	SC1	
/INYL CHLORIDE	0.40	U	0.40	LOD	1.0	LOQ	ug/L	UJ	SC1	
Sample ID:MW27402024	Colleg		024 7:35		nalvaia T	Tuno: Initi:	N/TOT		Dilution: 1	

Sample ID:MW37102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

 ${\bf 280\text{-}197835\text{-}1_52_2a_ParsonsFtWingate_rev_rev_rev_rev_}$

rev

Method Category: VOA

Sample ID:QC09102024TB	Collec	10/9/2024 8:00 Collected: AM				0:00 Analysis Type:Initial/TOT				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2	
Sample ID:TMW06102024	Collec	10/9/2 cted: AM	024 8:35		nalysis 1	Гуре: Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2	
Sample ID:TMW15102024	Collec	10/9/2024 8:05:00 Collected: AM Analysis Type: Initial/TOT							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2	
Sample ID:TMW47102024	Collec	10/9/2 cted: PM	024 1:20		nalysis 1	Гуре: Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CARBON DISULFIDE	1.5	J	0.80	LOD	2.0	LOQ	ug/L	J	TR	
Sample ID:TMW52102024	Collec	10/9/2 cted: AM	024 8:25		nalysis ī	Гуре: Initia	al/TOT	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMOMETHANE	4.0	UQ	4.0	LOD	5.0	LOQ	ug/L	UJ	CV2	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197835-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197835-1_52_2a_ParsonsFtWingate_rev_rev_rev_

rev

Reason Code Legend

Reason Code	Description
BLT/BLU	Method Blank Contamination
CV2	Continuing Calibration Verification Percent Difference Upper Estimation
CV2	Continuing Calibration Verification Percent Recovery Upper Estimation
ICB/CCB	Calibration Blank Contamination
LC7	Laboratory Control Precision
MD1	Matrix Spike Upper Estimation
MD2	Matrix Spike Lower Estimation
SC1	Sampling to Analysis Estimation
SU2	Surrogate/Tracer Recovery Lower Estimation
TR	Reporting Limit Trace Value

^{*} denotes a non-reportable result