DATA VALIDATION SUMMARY REPORT

for Samples Collected During
Groundwater Monitoring
Fort Wingate Depot Activity
McKinley County, New Mexico

Data Validation by: Kortney Curry
Project Manager: Carrie Ross
Report Date: 2/14/25
Parsons - Austin

INTRODUCTION

The following data validation summary report covers thirteen (13) water samples, and associated field quality control (QC) samples collected on October 1 and 2, 2024, at Fort Wingate Depot Activity (FWDA), located in McKinley County, New Mexico. The samples were logged under Sample Delivery Group (SDG) 280-197491.

The samples in this SDG were analyzed for the following parameters: orthophosphate as P by EPA Method 365.1, anions by U.S. EPA Method 9056A, volatile organic compounds (VOCs) by U.S. EPA Method 8260D, semivolatile organic compounds (SVOCs) by U.S. EPA Method 8270E, total petroleum hydrocarbons-gasoline/diesel/oil range organics (TPH-GRO/DRO/ORO) by U.S. EPA Method 8015D, pesticides by U.S.EPA Method 8081B, polychlorinated biphenyls (PCBs) by U.S. EPA Method 8082A, explosives by EPA Method 8330B, perchlorate by EPA Method 6850, herbicides by U.S. EPA Method 8321B, metals (total and dissolved) by U.S. EPA Method 6020B and mercury (total and dissolved) by U.S. EPA Method 7470A.

All samples were collected by Eco & Associates, Inc. (ECO) and were submitted for analysis to Eurofins Environmental Testing America (EETA) Denver located in Arvada, Colorado. All containers were received by EETA at temperatures within the required temperature range of 0.1 to 6.0° Celsius. All containers were received at the laboratory in good condition.

All samples were prepared and analyzed following the procedures outlined in the project-specific Uniform Federal Policy - Quality Assurance Project Plan (UFP-QAPP) and the Department of Defense (DoD) Quality Systems Manual (QSM) Version 5.4. The following table details the samples included in this SDG discussed in this report and the analytical parameters performed.

SAMPLE IDS AND REQUESTED PARAMETERS

Client Sample ID	Laboratory Sample ID	Matrix	Parameter
QC02102024TB (Trip Blank)	280-197491-1	Water	V, TPH
BGMW11102024	280-197491-2	Water	V, S, M, P, E, TPH
TMW31S102024	280-197491-3	Water	V, M, P, E
TMW63102024	280-197491-4	Water	V, S, M, P, E, TPH
MW29102024	280-197491-5	Water	V, S, M, P, E, TPH
TMW26102024	280-197491-6	Water	V, M
TMW40D102024	280-197491-7	Water	V, M, P, E
TMW39D102024	280-197491-8	Water	V, M, P, E
FDUP03-102024 (Field Duplicate of BGMW11102024)	280-197491-9	Water	V, S, M, P, E, TPH
QC02102024EB (Equipment Blank)	280-197491-10	Water	V, S, M, P, E, TPH, Pest, H, PCB
SMW01102024	280-197491-11	Water	V, M
MW02102024	280-197491-12	Water	V, S, M, TPH
TMW56102024	280-197491-13	Water	P
BGMW11102024	280-197491-14	Water	A, O
TMW31S102024	280-197491-15	Water	A, O
TMW63102024	280-197491-16	Water	A, O
MW29102024	280-197491-17	Water	A, O
TMW26102024	280-197491-18	Water	A, O
TMW40D102024	280-197491-19	Water	A, O
TMW39D102024	280-197491-20	Water	A, O
FDUP03-102024 (Field Duplicate of BGMW11102024)	280-197491-21	Water	A, O
QC02102024EB (Equipment Blank)	280-197491-22	Water	A, O
SMW01102024	280-197491-23	Water	A, O

Parameters:

A=Anions

O= Orthophosphate as P

V=VOCs S=SVOCs

TPH=GRO/DRO/ORO

Pest=Pesticides H=Herbicides

PCB=Polychlorinated Biphenyls

E=Explosives
P=Perchlorate
M=Metals/Mercury

EXTRACTION, ANALYTICAL, AND REPORTING DETAILS

Parameter	Matrix	Prep Method	Analytical Method	Units
Anions	Water		SW846 9056A	ug/L
Orthophosphate as P	Water		EPA 365.1	ug/L
VOCs	Water		SW846 8260D	ug/L
SVOCs	Water	3510C	SW846 8270E	ug/L
TPH GRO	Water		SW846 8015D	ug/L
TPH DRO/ORO	Water	3510C	SW846 8015D	ug/L
Pesticides	Water	3510C	SW846 8081B	ug/L
Herbicides	Water		SW846 8321B	ug/L
PCBs	Water	3510C	SW846 8082A	ug/L
Explosives	Water	3535	EPA 8330B	ug/L
Perchlorate	Water		EPA 6850	ug/L
Metals	Water	3005A/3020A	SW846 6020B	ug/L
Mercury	Water	7470A	SW846 7470A	ug/L

μg/L= micrograms per liter

EVALUATION CRITERIA

The data submitted by the laboratory has been reviewed and validated at a Stage 2B Validation was performed following the guidelines outlined in the project-specific UFP QAPP, DoD General Data Validation Guidelines, Rev 1 (Nov 2019) and published data validation guideline modules. Information reviewed in the data packages included sample results; field and laboratory quality control results; instrument calibration; calibration verifications; case narratives; sample receipt forms, chain-of-custody (COC) forms. The analyses and findings presented in this report are based on the reviewed information, and whether guidelines in the associated analytical method, DoD QSM and QAPP were met.

A table detailing the data qualifiers applied for the samples in this SDG as a result of the data validation process is included as Attachment A to this report. Data validation checklists for each analytical method listed in the table above are also included in this report as Attachment B. An ADR.net summary report is included in this report as Attachment C.

ANIONS

General

The anions portion of this SDG consisted of ten (10) water samples. The samples were collected on October 2, 2024, and were analyzed for anions as specified in the project-specific UFP-QAPP.

The anions analyses were performed in accordance with U.S. EPA Method SW846 9056A. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the Laboratory Control Sample (LCS), Laboratory Control Sample Duplicate (LCSD), Matrix Spike (MS) and Matrix Spike Duplicate (MSD). Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the relative percent difference (RPD) obtained from the LCS/LCSD, MS/MSD and laboratory duplicate concentrations.

All LCS/LCSD, MS/MSD and laboratory duplicate RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following sample was submitted to the lab as a blind field duplicate sample: FDUP03-102024 (parent sample – BGMW11102024). The RPD for bromide exceeded the acceptance criteria of 30%, as such, the results for nitrate were qualified "J" as estimated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method with the exceptions previously noted. The following QC elements were also evaluated:

- All initial calibration (ICAL) criteria were met.
- The initial calibration verification (ICV) samples were prepared from a second source standard. All ICV criteria were met.
- All initial and continuing calibration blanks (ICB/CCB) criteria were met.

• All continuing calibration verification (CCV) criteria were met.

Fourteen laboratory method blanks were associated with the anions analyses in this SDG. Chloride was detected in one or more laboratory method blanks. The associated samples were greater than 5 times the method blank detections, as such, qualification was not warranted.

One equipment blank was associated with the anions analyses in this SDG. Chloride was detected in the equipment blank. The associated samples were greater than 5 times the equipment blank detection, as such, qualification was not warranted.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for anions for the samples in this SDG were considered usable. Therefore, the completeness for the anions portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

ORTHOPHOSPHATE AS P

General

The orthophosphate portion of this SDG consisted of ten (10) water samples. The samples were collected on October 2, 2024 and were analyzed for orthophosphate as specified in the project-specific UFP-QAPP.

The orthophosphate analyses were performed in accordance with U.S. EPA Method 365.1. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, and MS/MSD. Samples TMW63102024 and TMW39D102024 were designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following sample was submitted to the lab as a blind field duplicate sample: FDUP03-102024 (parent

sample – BGMW11102024). The results for orthophosphate were non-detect, as such, the RPD could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All ICB/CCB criteria were met.
- All CCV criteria were met.

One laboratory method blank was associated with the orthophosphate analyses in this SDG. The laboratory method blank was non-detect for orthophosphate.

One equipment blank was associated with the orthophosphate analyses in this SDG. The equipment blank was non-detect for orthophosphate.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for orthophosphate for the samples in this SDG were considered usable. Therefore, the completeness for the orthophosphate portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

VOLATILE ORGANIC COMPOUNDS

General

The VOCs portion of this SDG consisted of twelve (12) water samples. The samples were collected on October 1 and 2, 2024 and were analyzed for VOCs as specified in the project-specific UFP-QAPP.

The VOC analyses were performed in accordance with U.S. EPA Method 8260D. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, MS/MSD and the surrogate spikes. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate samples: FDUP03-102024 (parent sample – BGMW11102024). The RPDs for all VOCs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All ICAL criteria were met.

- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All internal standard criteria were met.

One laboratory method blank was associated with the VOC analyses in this SDG. The laboratory method blank was non-detect for VOCs.

One equipment blank and one trip blank was associated with the VOC analyses in this SDG. Chlorodibromomethane, chloroform and dichlorobromomethane were detected in the equipment blank. The associated samples were non-detect for all VOCs, as such qualification was not warranted.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for VOCs for the samples in this SDG were considered usable. Therefore, the completeness for the VOCs portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

SEMI-VOLATILE ORGANIC COMPOUNDS

General

The SVOCs portion of this SDG consisted of six (6) water samples. The samples were collected on October 1 and 2, 2024 and were analyzed for SVOCs as specified in the project-specific UFP-QAPP.

The SVOC analyses were performed in accordance with U.S. EPA Method 8270E. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS, MS/MSD and the surrogate spikes. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS and MS/MSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria. It should be noted that surrogate 2,4,6-tribromophenol recovery in the CCV associated with batches 670107 and 670247 were outside control limits. The surrogate recovery in the associated samples were within control limits; therefore, corrective action was not necessary, and qualification of data was not warranted.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

One or more MS/MSD RPDs for SVOCs exceeded acceptance criteria for sample TMW63102024. All SVOCs were non-detect in the noted sample, as such qualification was not warranted.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate samples: FDUP03-102024 (parent sample – BGMW11102024). All SVOCs were non-detect, as such RPDs could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met with the following exception:
 - The CCV associated with batch 670107 exceeded the percent difference (%D) criteria for 2,2'-oxybis[1-chloropropane], 3-nitroaniline, pentachlorophenol and 4,6-dinitro-2-methylphenol. The associated sample, MW02102024, was non-detect for these analytes, as such, the results were qualified "UJ" as estimated at the reporting limit.
- All internal standard criteria were met.

Two laboratory method blanks were associated with the SVOC analyses in this SDG. The laboratory method blanks were non-detect for SVOCs.

One equipment blank was associated with the SVOC analyses in this SDG. The equipment blank was non-detect for all target SVOCs.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for SVOCs for the sample in this SDG were considered usable. Therefore, the completeness for the SVOCs portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

TOTAL PETROLEUM HYDROCARBONS GRO

General

The TPH GRO portion of this SDG consisted of seven (7) water samples. The samples were collected on October 1 and 2, 2024, and were analyzed for TPH GRO as specified in the project-specific UFP-QAPP.

The TPH GRO analyses were performed in accordance with U.S. EPA Method 8015D. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, MS/MSD and the surrogate spikes.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate samples: FDUP03-102024 (parent sample – BGMW11102024). TPH GRO was non-detect, as such the RPD could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.

Two laboratory method blanks were associated with the TPH GRO analyses in this SDG. The laboratory method blanks were non-detect for TPH GRO.

One equipment blank and one trip blank were associated with the TPH GRO analyses in this SDG. The equipment blank and trip blank were non-detect for TPH GRO.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for TPH GRO for the samples in this SDG were considered usable. Therefore, the completeness for the TPH GRO portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

TOTAL PETROLEUM HYDROCARBONS DRO/ORO

General

The TPH DRO/ORO portion of this SDG consisted of six (6) water samples. The samples were collected on October 1 and 2, 2024, and were analyzed for TPH DRO/ORO as specified in the project-specific UFP-QAPP.

The TPH DRO/ORO analyses were performed in accordance with U.S. EPA Method 8015D. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, MS/MSD and the surrogate spikes.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate samples: FDUP03-102024 (parent sample – BGMW11102024). TPH DRO/ORO were non-detect, as such the RPDs could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.

One laboratory method blank was associated with the TPH DRO/ORO analyses in this SDG. The laboratory method blank was non-detect for TPH DRO/ORO.

One equipment blank was associated with the TPH DRO/ORO analyses in this SDG. The equipment blank was non-detect for TPH DRO/ORO.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for TPH DRO/ORO for the samples in this SDG were considered usable. Therefore, the completeness for the TPH DRO/ORO portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

PESTICIDES

General

The pesticides portion of this SDG consisted of one (1) water sample, an equipment blank. The sample was collected on October 2, 2024, and was analyzed for pesticides as specified in the project-specific UFP-QAPP.

The pesticide analyses were performed in accordance with U.S. EPA Method 8081B. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD and the surrogate spikes.

All LCS/LCSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD concentrations.

All LCS/LCSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and

• Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All DDT-Endrin breakdown criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All internal standard criteria were met.

One laboratory method blank was associated with the pesticides analyses in this SDG. The laboratory method blank was non-detect for all target pesticides.

One equipment blank was associated with the pesticides analyses in this SDG. The equipment blank was non-detect for all target pesticides.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for pesticides for the samples in this SDG were considered usable. Therefore, the completeness for the pesticides portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

HERBICIDES

General

The herbicides portion of this SDG consisted of one (1) water sample, an equipment blank. The sample was collected on October 2, 2024 and was analyzed for herbicides as specified in the project-specific UFP-QAPP.

The herbicides analysis was performed in accordance with U.S. EPA Method 8321. The sample in this SDG was analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. The sample was prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS/LCSD, MS/MSD and the surrogate spikes. Sample QC01102024EB was designated for MS/MSD analysis by the laboratory.

All LCS/LCSD and MS/MSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations.

All LCS/LCSD and MS/MSD RPDs were within acceptance criteria.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All internal standard criteria were met.

One laboratory method blank was associated with the herbicides analyses in this SDG. The laboratory method blank was non-detect for all target herbicides.

One equipment blank was associated with the herbicides analyses in this SDG. The equipment blank was non-detect for all target herbicides.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for herbicides for the samples in this SDG were considered usable. Therefore, the completeness for the herbicides portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

POLYCHLORINATED BIPHENYLS

General

The PCBs portion of this SDG consisted of one (1) water sample, an equipment blank. The sample was collected on October 2, 2024, and was analyzed for PCBs as specified in the project-specific UFP-QAPP.

The PCB analyses were performed in accordance with U.S. EPA Method 8082A. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and the surrogate spikes.

All LCS spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria.

Precision

Precision is evaluated using the RPD obtained from the LCS/LCSD and MS/MSD concentrations. Since a LCSD and MS/MSD were not reported, precision could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.

- All CCV criteria were met except for the following:
 - O PCB-1016, PCB-1260, tetrachloro-m-xylene and decachlorobiphenyl were above acceptance limits on column 1 for one or more CCVs associated with prep batch 669957. PCB-1016, PCB-1260 and decachlorobiphenyl were above acceptance limits on column 2 for one or more CCVs associated with prep batch 669957. Sample QC02102024 was non-detect for PCB-1016 and PCB-1260, as such, the results were qualified "UJ" as estimated at the reporting limit.
- All internal standard criteria were met.
- Dual column confirmation for the field samples could not be evaluated because the results were non-detect.

One laboratory method blank was associated with the PCB analyses in this SDG. The laboratory method blank was non-detect for all target PCBs.

One equipment blank was associated with the PCB analyses in this SDG. The equipment blank was non-detect for all target PCBs.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for PCBs for the samples in this SDG were considered usable. Therefore, the completeness for the PCB portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

EXPLOSIVES

General

The explosives portion of this SDG consisted of eight (8) water samples. The samples were collected on October 2, 2024, and were analyzed for explosives as specified in the project-specific UFP-QAPP.

The explosives analyses were performed in accordance with U.S. EPA Method 8330B. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS, MS/MSD and the surrogate spikes. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS and MS/MSD spike recoveries were within acceptance criteria.

Surrogate spike compounds were added to every field and QC sample. All surrogate spike recoveries were within acceptance criteria except for the following:

Sample BGMW11102024												
Surrogate	%REC	Criteria										
1,2-dinitrobenzene	82	83-119%										
Sam	ple TMW6310202	4										
Surrogate	%REC	Criteria										
1,2-dinitrobenzene	77	83-119%										

Surrogate, 1,2-dinitrobenzene, recovered below acceptance criteria in samples BGMW11102024 and TMW63102024. As such, all explosive analytes were qualified "UJ" as estimated at the reporting limit.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

All MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate samples: FDUP03-102024 (parent sample – BGMW11102024). All target explosives were non-detect, as such the RPDs could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project OAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.

- All CCV criteria were met.
- Column confirmation criteria for detected results met criteria with the following exception: the primary and confirmation column RPD for 1,3-dinitrobenzene, 2,4-dinitrotoluene and HMX exceeded 40% for samples TMW31S102024 and TMW39D102024. As such, the results were qualified "J" as estimated.

One laboratory method blank was associated with the explosives analyses in this SDG. The laboratory method blank was non-detect for target explosives.

One equipment blank was associated with the explosive analyses in this SDG. The equipment blank was non-detect for all target explosives.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for explosives for the samples in this SDG were considered usable. Therefore, the completeness for the explosives portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

PERCHLORATE

General

The perchlorate portion of this SDG consisted of nine (9) water samples. The samples were collected on October 2, 2024, and were analyzed for perchlorate as specified in the project-specific UFP-QAPP.

The perchlorate analyses were performed in accordance with U.S. EPA Method 6850. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and MS/MSD. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS spike recoveries were within acceptance criteria.

All MS/MSD spike recoveries were within acceptance criteria, except for the following:

Parent Sample TMW63102024												
Analyte	MS %REC	MSD %REC	Criteria									
perchlorate	103	122*	84-119%									

*outside acceptance criteria

Perchlorate recovered high and outside criteria in the MSD. Perchlorate was non-detect in TMW63102024, as such qualification of data was not warranted.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

All MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following sample was submitted to the lab as a blind field duplicate sample: FDUP03-102024 (parent sample – BGMW11102024). Perchlorate was non-detect in the parent sample and field duplicate. As such, the RPDs could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All isotope ratio criteria were met.
- All ICAL criteria were met.
- The ICV samples were prepared from a second source standard. All ICV criteria were met.
- All interference check solutions (ICS) were within criteria.
- All CCV criteria were met.
- All initial calibration blank (ICB) criteria were met.
- All continuing calibration blank (CCB) criteria were met.
- All internal standard criteria were met.

One laboratory method blank was associated with the perchlorate analyses in this SDG. The laboratory method blank was non-detect for perchlorate.

One equipment blank was associated with the perchlorate analyses in this SDG. The equipment blank was non-detect for perchlorate.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for perchlorate for the samples in this SDG were considered usable. Therefore, the completeness for the perchlorate portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

METALS

General

The metals portion of this SDG consisted of eleven (11) water samples. The samples were collected on October 1 and 2, 2024 and were analyzed for metals as specified in the project-specific UFP-QAPP.

The metals analyses were performed in accordance with U.S. EPA Method 6020B. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP. All samples were prepared and analyzed within the holding time required by the method.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and MS/MSD. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS spike recoveries were within acceptance criteria.

All MS/MSD recoveries were within acceptance criteria, except for the following:

Sample TMW63102024												
Analyte	MS %R	MSD %R	Criteria									
aluminum	105	156*	84-117%									
iron	85*	85*	87-118%									
manganese	101	120*	87-115%									
magnesium	100	182*	83-118%									
potassium	97	132*	83-118%									

^{*} indicates the recovery was outside acceptance criteria.

The MS and/or MSD RECs for the above noted metals recovered outside criteria in sample TMW63102024. Detections of aluminum, magnesium, manganese and potassium were qualified "J" as estimated and "J+" as estimated high bias. Non-detects of iron were qualified "J-" as estimated low bias. It should be noted that one or more MS/MSD RECs for calcium and sodium exceeded acceptance criteria, however; the sample concentrations are greater than 4 times the MS/MSD spike concentrations. As such, the MS/MSD RECs could not be evaluated, and qualification was not warranted.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

All MS/MSD RPDs were within acceptance criteria except for the following:

Sample TMW63102024												
Analyte	%RPD	Criteria										
aluminum	26	RPD ≤ 20										
magnesium	33	RPD ≤ 20										

The MS/MSD RPDs for aluminum and magnesium exceeded acceptance criteria for sample TMW63102024. Aluminum and magnesium were detected in the above noted sample and were qualified "J" as estimated.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as a blind field duplicate sample: FDUP03-102024 (parent sample – BGMW11102024). The RPDs for one or more metals exceeded the acceptance criteria of 30%, as such, the results for were qualified "J" as estimated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method. The following QC elements were also evaluated:

- All instrument tune criteria were met.
- All initial calibration criteria were met.
- The ICV was prepared from a second source standard. All ICV criteria were met.
- All CCV criteria were met.
- All low-level ICV (LL ICV) criteria were met.
- All ICS were within criteria.

- All ICB criteria were met except for the follow:
 - The ICB associated with batch 669742 had a detection of dissolved silver. Dissolved silver was detected less than 5 times the ICB detection in associated sample MW29102024. As such, the result was qualified "U" as non-detect.
 - The ICB associated with batch 670308 had a detection of total silver. Total silver was detected less than 5 times the ICB detection in one or more associated samples, as such, the results were qualified "U" as non-detect.
- All CCB criteria were met except for the following:
 - The CCBs associated with batch 669978 had detections of potassium, silver and sodium. Silver and sodium were either non-detect or greater than 5 times the CCB detections. As such, no qualification was warranted for these analytes. Potassium was detected less than 5 times the CCBs detections in one or more associated samples. As such, the results were qualified "U" as non-detect.
 - The CCBs associated with batch 669742 had detections of aluminum, calcium, magnesium, potassium, sodium and silver. Calcium, magnesium, potassium and sodium were either non-detect or greater than 5 times the CCB detections. As such, no qualification was warranted for these analytes. Aluminum and silver were detected less than 5 times the CCBs detections in one or more associated samples. As such, the results were qualified "U" as non-detect.
 - The CCBs associated with batch 670308 had detections of aluminum, magnesium, potassium, sodium and silver. Aluminum, magnesium, potassium and sodium were either non-detect or greater than 5 times the CCB detections. As such, no qualification was warranted for these analytes. Silver was detected less than 5 times the CCBs detections in one or more associated samples. As such, the results were qualified "U" as non-detect.
- All internal standard criteria associated with the target metals were met.
- A serial dilution test (DT) was performed on the same sample as the MS/MSD. The DT was only applicable for those metals that failed in the MS/MSD and were detected in the parent sample at a concentration of 50 times the LOQ or greater. All applicable metals met criteria in the DT.
- The post digestion spike (PDS) was performed on the same sample as the MS/MSD. The PDS was only applicable for those metals that failed in the MS/MSD. All metals met criteria in the PDS.

Four laboratory method blanks were associated with the metals analyses in this SDG. Iron, manganese and vanadium were detected in one or more of the laboratory method blanks. The associated samples with detections less than 5 times the laboratory method blank detections were qualified "U" as non-detect.

One equipment blank was associated with the metals analyses in this SDG. Aluminum, calcium, magnesium, potassium, sodium and zinc were detected in the equipment blank. The associated samples with detections less than 5 times the equipment blank detections were qualified "U" as non-detect.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for metals for the samples in this SDG were considered usable. Therefore, the completeness for the metals portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

MERCURY

General

The mercury portion of this SDG consisted of eleven (11) water samples. The samples were collected on October 2, 2024, and were analyzed for total and dissolved mercury as specified in the project-specific UFP-QAPP.

The mercury analyses were performed in accordance with U.S. EPA Method 7470A. All samples in this SDG were analyzed following the procedures outlined in the DoD QSM, version 5.4 and the project QAPP.

All samples were prepared and analyzed within the holding time required by the method with the following exception: all samples were prepared for dissolved mercury outside the method required holding time documented in the QAPP. This was due to the analysis being requested after preparation holding time had expired. As such, all dissolved mercury results were qualified "UJ" as estimated at the reporting limit.

Accuracy

Accuracy was evaluated using the percent recovery obtained from the LCS and MS/MSD. Sample TMW63102024 was designated for MS/MSD analysis by the laboratory.

All LCS and MS/MSD spike recoveries were within acceptance criteria.

Precision

Precision was evaluated using the RPD obtained from the MS/MSD concentrations.

All MS/MSD RPDs were within acceptance criteria.

Precision was further evaluated by comparing the field duplicate results. The following samples were submitted to the lab as blind field duplicate sample: FDUP03-102024 (parent sample – BGMW11102024). Mercury was non-detect in the parent sample and field duplicate, as such, the RPDs could not be evaluated.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents actual site conditions. Representativeness has been evaluated by:

- Comparing the COC procedures to those described in the DoD QSM and project QAPP;
- Comparing actual analytical procedures to those described in the DoD QSM and project-specific UFP-QAPP;
- Evaluating holding times; and
- Examining blanks for cross contamination of samples during analysis.

The samples in this SDG were analyzed following the COC and the analytical procedures described in the DoD QSM and project-specific UFP-QAPP. All samples were prepared and analyzed within the holding time required by the method with the exceptions previously noted. The following QC elements were also evaluated:

- All initial calibration criteria were met.
- All ICV criteria were met.
- All CCV criteria were met.
- All LL ICV criteria were met.
- All ICB criteria were met.
- All CCB criteria were met.
- A serial DT was performed on the same sample as the MS/MSD. The DT was only applicable for those metals that failed in the MS/MSD and were detected in the parent sample at a concentration of 50 times the LOQ or greater. All mercury results met criteria in the DT.
- The PDS was performed on the same sample as the MS/MSD. The PDS was only applicable when mercury results failed in the MS/MSD. The mercury results met criteria.

Two laboratory method blanks were associated with the mercury analyses in this SDG. The laboratory method blanks were non-detect for mercury.

One equipment blank was associated with the mercury analyses in this SDG. The equipment blank was non-detect for mercury.

Completeness

Completeness has been evaluated by comparing the total number of samples collected with the total number of samples with valid analytical data.

All results for mercury for the samples in this SDG were considered usable. Therefore, the completeness for the mercury portion of this SDG is 100%, which meets the minimum acceptance criteria of 90%.

COMPARABILITY

All data was generated using contract-specific standard methods and reported with known data quality, type of analysis, units, etc.

DATA USABILITY

The purpose of this data validation report is to ensure the integrity and reliability of analytical laboratory data. The data quality is evaluated based on precision, accuracy, representativeness, comparability, and completeness (PARCC) characteristics of the data. The validated data indicated that the laboratory correctly performed the analyses. Based on the data quality assessment, none of the data were qualified as rejected.

All data in this SDG are considered usable, as qualified, for the purposes of this project. All Method Quality Objectives have been met.

SENSITIVITY

The detection limit (DL), LOD and limit of quantitation (LOQ) values reported for the samples were compared to those listed in WS #15, Table 15.1 of the QAPP to ensure that sensitivity requirements were met. The DL, LOD, and LOQ values matched those listed in the QAPP before dilutions were taken into account. The following LOQs exceed the project quantitation limits (PQLs):

Methods	Parameters	Samples
8270E	2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2-Chlorophenol, 2-Methylnaphthalene, 3,3'-Dichlorobenzidine, 4,6-Dinitro-2-methylphenol, 4-Chloroaniline, 4-Nitroaniline, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Bis(2-chloroethoxy)methane, Bis(2-chloroethyl)ether, Bis(2-ethylhexyl) phthalate, Dibenz(a,h)anthracene, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno[1,2,3-cd]pyrene, Isophorone, Naphthalene, Nitrobenzene, N-Nitrosodi-n-propylamine, N-Nitrosodiphenylamine, Pentachlorophenol, Phenol and Pyrene	MW29102024
8330B	nitroglycerin	QC02102024EB, BGMW11102024, TMW31S102024, TMW63102024, MW29102024, TMW40D102024, TMW39D102024, and FDUP03-102024

Methods	Parameters	Samples
8015D	DRO	QC02102024EB,
		MW02102024,
		BGMW11102024 and
		MW29102024

DATA QUALIFIER CHANGES

The sample results and final data qualifiers and reason codes that were added, removed, or changed as a result of the data validation process are included in a table as Attachment A to this report.

DATA QUALIFIER DEFINITIONS

The data qualifiers are defined in WS #36, Table 36.2 of the project QAPP as follows.

U = The analyte was not detected and was reported as less than the LOD. The LOD has been adjusted for any dilution or concentration of the sample.

J = The reported result was an estimated value with an unknown bias.

J+= The reported result was an estimated quantity, but the result may be biased high.

J- = The reported result was an estimated quantity, but the result may be biased low.

UJ = The analyte was not detected and was reported as less than the LOD. However, the reported numerical value is approximate.

X= The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance (J-flag) or rejection (R-flag) of the data should be decided by the project team (which should include a project chemist) during the Data Usability Assessment process.

REASON CODE DEFINITIONS

These data validation reason codes were used to document the logic behind all data validation qualifiers:

Validation Qualifier Reason Codes	Validation Comments
BLL	Concentration in equipment blank at or above reporting limit.
BLM	Concentration in equipment blank less than reporting limit
BLN	Concentration in trip blank at or above reporting limit.
BLO	Concentration in trip blank less than reporting limit.
BLR	Concentration in field blank or decon blank at or above reporting limit.
BLS	Concentration in field blank or decon blank less than reporting limit.
BLT	Concentration in method blank less than reporting limit.
BLU	Concentration in method blank at or above reporting limit.
CO1	Column confirmation RPD exceeds acceptance limit.
CR1	Result exceeded calibration range.
DU1	Field duplicate RPD exceeds acceptance limit.
DU2	Laboratory duplicate RPD exceeds acceptance limit.
DU3	Field Duplicate RPD not calculated but results demonstrate a high degree of variability.
HS	VOA vial has headspace greater than 6 millimeters.
LC1	LCS and/or LCSD recovery above upper acceptance limit.
LC2	LCS and/or LCSD recovery below lower acceptance limit.
LC7	LCS/LCSD RPD exceeds acceptance limit.
MD1	MS and/or MSD recovery above upper acceptance limit.
MD2	MS and/or MSD recovery below lower acceptance limit.
MD5	MS/MSD RPD exceeds acceptance limit.
PJ	Professional judgment used. See specific details in Data Validation Report.
SC1	Analysis holding time exceeded.
SC3	Extraction holding time exceeded.
SC6	Temperature of sample outside acceptance range.
SU1	Surrogate recovery above upper acceptance limit.
SU2	Surrogate recovery below lower acceptance limit.
PR1	Samples not properly preserved.
TR	Result is detected between the reporting limit and detection limit.

ACRONYMS AND ABBREVIATIONS

The following is a list of acronyms and abbreviations that were used in this data validation report.

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CoC Chain of Custody
DL Detection Limit

DoD Department of Defense

DT Dilution Test

ETTA Eurofins Environment Testing America

FWDA Fort Wingate Depot Activity

ICAL Initial Calibration

ICB Initial Calibration Blank

ICS Interference Check Sample

ICV Initial Calibration Verification

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection

LOQ Limit of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

PQL Project Quantitation Limit

PDS Post Digestion Spike

QC Quality Control

QSM Quality Systems Manual

RPD Relative Percent Difference

SDG Sample Delivery Group

UFP-QAPP Uniform Federal Policy – Quality Assurance Project Plan

Attachment A

Validated Data Summary

280-197491 A

Northern Area Groundwater Sampling Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	BGMW11102024	FDUP	03-102024*	MW02102024	MW291020	24	SMW01102024	TMW26	102024	TMW31S102024	TMW	/39D102024	TMW4	0D102024	TMW56102024	TMW63102024
DATE SAMPLED:		QUANTITATION	10/02/2024	10.	/02/2024	10/01/2024	10/02/202	4	10/02/2024	10/02	/2024	10/02/2024	10	/02/2024	10/0	2/2024	10/02/2024	10/02/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14	280-197491-9 280-197491-21		280-197491-12 280-197419-32			280-197491-11 280-197491-23	280-19 280-197		280-197491-3 280-197491-15	280-197491-8 280-197491-20		280-197491-7 280-197491-19		280-197491-13	280-197491-4 280-197491-16
	Unit																	
Volatile Organics - SW8260D		5.7	4.0		4.0	4.0	1 40		4.0	4.0		4.0		4.0 11				4.0
1,1,1,2-Tetrachloroethane	μg/L	5.7 200	1.0 L 1.0 L		1.0 U		J 1.0 J 1.0	U	1.0 U	1.0		1.0 L		1.0 U 1.0 U	1.		-	1.0 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	μg/L	200 10					-	IJ		1.0	-				1.		-	1.0
1,1,2,7-retrachioroethane	μg/L	5	1.0 L 1.0 L		1.0 U 1.0 U		J 1.0 J 1.0	IJ	1.0 U 1.0 U	1.0	-	1.0 L 1.0 L		1.0 U 1.0 U	1. 1.		-	1.0 U 1.0 U
1,1,2-Trichloroethane	μg/L	25	1.0 C		1.0 U		J 1.0	IJ	1.0 U	1.0		1.0 C		1.0 U	1.		_	1.0 U
1.1-Dichloroethane	μg/L	7	1.0 C		1.0 U		J 1.0	U	1.0 U	1.0		1.0 C		1.0 U	1.			1.0 U
1,1-Dichloroperne	μg/L μg/L	4.7	1.0 C		1.0 U		J 1.0	IJ	1.0 U	1.0	-	1.0 C		1.0 U	1.		_	1.0 U
1.2.3-Trichlorobenzene	μg/L μg/L	7	4.0 L		4.0 U		J 4.0	IJ	4.0 U	4.0	-	4.0 L		4.0 U	4.			4.0 U
1,2,3-Trichloropropane	μg/L	2.5	2.5 L	-	2.5 U		J 2.5	IJ	2.5 U	2.5	-	2.5 L		2.5 U	2.		_	2.5 U
1.2.4-Trichlorobenzene	μg/L	70	1.0 L		1.0 U		J 1.0	IJ	1.0 U	1.0	-	1.0 L		1.0 U	1.		_	1.0 U
1,2,4-Trimethylbenzene	μg/L	56	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0	-	1.0 L		1.0 U	1.			1.0 U
1.2-Dibromo-3-chloropropane	μg/L	5	5.0 L		5.0 U		5.0	Ü	5.0 U	5.0	-	5.0 L		5.0 U	5.			5.0 U
1,2-Dibromoethane (EDB)	μg/L	1	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0		1.0 L		1.0 U	1.			1.0 U
1.2-Dichlorobenzene	μg/L	600	1.0		1.0 U		J 1.0	Ü	1.0 U	1.0	-	1.0 L		1.0 U	1.			1.0 U
1.2-Dichloroethane	μg/L	5	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0		1.0 L		1.0 U	1.			1.0 U
1.2-Dichloropropane	μg/L	5	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0		1.0 L		1.0 U	1.			1.0 U
1,3,5-Trimethylbenzene	μg/L	60	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0		1.0 L		1.0 U	1.			1.0 U
1.3-Dichlorobenzene	μg/L	75	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0		1.0 L		1.0 U	1.			1.0 U
1,3-Dichloropropane	μg/L	370	1.0 L		1.0 U		J 1.0	Ū	1.0 U	1.0	-	1.0 L		1.0 U	1.			1.0 U
1.4-Dichlorobenzene	μg/L	75	1.0 L		1.0 U		J 1.0	Ü	1.0 U	1.0	Ü	1.0 L		1.0 U	1.			1.0 U
2,2-Dichloropropane	μg/L	5	1.0 L	1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U		1.0 U
2-Butanone (MEK)	μg/L	5,600	10 L	J .	10 U	10	J 10	U	10 U	10	U	10 L		10 U	10) U		10 U
2-Chlorotoluene	μg/L	240	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U		1.0 U
2-Hexanone	μg/L	38	5.0 L	J	5.0 U	5.0	J 5.0	U	5.0 U	5.0	U	5.0 L		5.0 U	5.	0 U		5.0 U
4-Chlorotoluene	μg/L	250	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L	1 .	1.0 U	1.	0 U		1.0 U
4-Isopropyltoluene	μg/L	450	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U		1.0 U
4-Methyl-2-pentanone (MIBK)	μg/L	6,300	5.0 L	J f	5.0 U	5.0	J 5.0	U	5.0 U	5.0	U	5.0 L		5.0 U	5.	0 U	-	5.0 U
Acetone	μg/L	18,000	15 L	J	15 U	15 I	J 15	U	15 U	15	U	15 L		15 U	15	5 U	-	15 U
Benzene	μg/L	5	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U	-	1.0 U
Bromobenzene	μg/L	62	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U	-	1.0 U
Bromochloromethane	μg/L	83	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U	-	1.0 U
Bromodichloromethane	μg/L	80	1.0 L	J 1	1.0 U	1.0	J 1.0	U	1.0 U	1.0	U	1.0 L		1.0 U	1.	0 U	-	1.0 U
Bromoform	μg/L	80	2.0 L	J 2	2.0 U	2.0	J 2.0	U	2.0 U	2.0	U	2.0 L	1	2.0 U	2.			2.0 U
Bromomethane	μg/L	7.5	5.0 L	J f	5.0 U	5.0	J 5.0	U	5.0 U	5.0	U	5.0 L		5.0 U	5.	0 U		5.0 U

Northern Area Groundwater Page 1 of 6

Northern Area Groundwater Sampling Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID: DATE SAMPLED: LAB SAMPLE ID:		PROJECT	BGMW11102024	4 F	FDUP03-102024*		MW02102024	MW2910	2024	SMW01102024	4	TMW26102024	TMW31S1	02024	TMW39D102	2024	TMW40D102024	TMW56102024	TMW63102024
		QUANTITATION	10/02/2024		10/02/2024		10/01/2024	10/02/2	2024	10/02/2024		10/02/2024	10/02/2	024	10/02/202	24	10/02/2024	10/02/2024	10/02/2024
		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14				80-197491-12 80-197419-32	280-197 280-197		280-197491-11 280-197491-23		280-197491-6 280-197491-18	280-197491-3 280-197491-15		280-197491-8 280-197491-20		280-197491-7 280-197491-19	280-197491-13	280-197491-4 280-197491-16
Carbon disulfide	μg/L	810	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U	-	2.0 U
Carbon tetrachloride	μg/L	5	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Chlorobenzene	μg/L	100	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Chloroethane	μg/L	8,300	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
Chloroform	μg/L	80	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Chloromethane	μg/L	190	0.45	J	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
cis-1,2-Dichloroethene	μg/L	70	1.0 l	U	1.0 U	1	1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
cis-1,3-Dichloropropene	μg/L	4.7	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Dibromochloromethane	μg/L	80	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Dibromomethane	μg/L	8.3	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Dichlorodifluoromethane	μg/L	200	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
Ethylbenzene	μg/L	700	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Hexachlorobutadiene	μg/L	2	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
Isopropylbenzene	μg/L	450	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
Methyl acetate	μg/L	20,000	5.0 l	U	5.0 U		5.0 U	5.0	U	5.0 U	U	5.0 U	5.0	U	5.0	U	5.0 U		5.0 U
Methyl tert-butyl ether (MTBE)	μg/L	100	5.0 l	U	5.0 U		5.0 U	5.0	U	5.0 U	U	5.0 U	5.0	U	5.0	U	5.0 U		5.0 U
Methylene chloride	μg/L	5	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U	-	2.0 U
m-Xylene & p-Xylene	μg/L	620	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
Naphthalene	μg/L	30	3.0 U	U	3.0 U		3.0 U	3.0	U	3.0 L	U	3.0 U	3.0	U	3.0	U	3.0 U		3.0 U
n-Butylbenzene	μg/L	1,000	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
n-Propylbenzene	μg/L	660	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
o-Xylene	μg/L	620	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U
sec-Butylbenzene	μg/L	2,000	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
Styrene	μg/L	100	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
tert-Butylbenzene	μg/L	690	1.0 l	U	1.0 U	1	1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
Tetrachloroethene	μg/L	5	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
Toluene	μg/L	1,000	1.0 l	U	1.0 U	1	1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
trans-1,2-Dichloroethene	μg/L	100	1.0 l	U	1.0 U	1	1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
trans-1,3-Dichloropropene	μg/L	4.7	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
Trichloroethene	μg/L	5	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 l	U	1.0 U	1.0	U	1.0	U	1.0 U	-	1.0 U
Trichlorofluoromethane	μg/L	5,200	2.0 l	U	2.0 U		2.0 U	2.0	U	2.0 l	U	2.0 U	2.0	U	2.0	U	2.0 U		2.0 U
Vinyl chloride	μg/L	2	1.0 l	U	1.0 U		1.0 U	1.0	U	1.0 U	U	1.0 U	1.0	U	1.0	U	1.0 U		1.0 U

Northern Area Groundwater Page 2 of 6

Northern Area Groundwater Sampling Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	BGMW11102024	FDUP03-1	02024*	MW0210202	24	MW29102024	SMW01102024	TMW26102024	TMW31S102024	TMW39D102024	TMW40D102024	TMW56102024	TMW63102024
DATE SAMPLED:		QUANTITATION	10/02/2024	10/02/2	024	10/01/2024	1	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14	280-197491-9 280-197491-21		280-197491-12 280-197419-32		280-197491-5 280-197491-17	280-197491-11 280-197491-23	280-197491-6 280-197491-18	280-197491-3 280-197491-15	280-197491-8 280-197491-20	280-197491-7 280-197491-19	280-197491-13	280-197491-4 280-197491-16
Semivolatile Organics - SW8270E															
2,2'-Oxybis (1-chloropropane)	μg/L	710	9.3 U	10	U	9.8	UJ	100 U				-	-	-	9.5 U
2,4,5-Trichlorophenol	μg/L	1,200	9.3 U	10	U	9.8	U	100 U					-		9.5 U
2,4,6-Trichlorophenol	μg/L	12	9.3 U	10	U	9.8	U	100 U					-		9.5 U
2,4-Dichlorophenol	μg/L	46	9.3 U	10	U	9.8	U	100 U					-		9.5 U
2,4-Dimethylphenol	μg/L	360	9.3 U	10	U	9.8	U	100 U					-		9.5 U
2,4-Dinitrophenol	μg/L	39	28 U	31	U	29	U	300 U					-	-	29 U
2,4-Dinitrotoluene	μg/L	10	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
2,6-Dinitrotoluene	μg/L	10	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
2-Chloronaphthalene	μg/L	750	3.7 U	4.1	U	3.9	U	40 U					-	-	3.8 U
2-Chlorophenol	μg/L	91	9.3 U	10	U	9.8	U	100 U					-		9.5 U
2-Methylnaphthalene	μg/L	30	3.7 U	4.1	U	3.9	U	40 U				-	-	-	3.8 U
2-Methylphenol	μg/L	930	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
2-Nitroaniline	μg/L	190	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
2-Nitrophenol	μg/L	na	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
3 & 4 Methylphenol	μg/L	370	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
3,3'-Dichlorobenzidine	μg/L	50	47 U	51	U	49	U	500 U					-	-	48 U
3-Nitroaniline	μg/L	38	9.3 U	10	U	9.8	UJ	100 U					-		9.5 U
4,6-Dinitro-2-methylphenol	μg/L	50	47 U	51	U	49	UJ	500 U					-		48 U
4-Bromophenyl phenyl ether	μg/L	na	9.3 U	10	U	9.8	U	100 U					-		9.5 U
4-Chloro-3-methylphenol	μg/L	1,400	9.3 U	10	U	9.8	U	100 U					-		9.5 U
4-Chloroaniline	μg/L	20	19 U	20	U	20	U	200 U					-		19 U
4-Chlorophenyl phenyl ether	μg/L	na	9.3 U	10	U	9.8	U	100 U				-	-	-	9.5 U
4-Nitroaniline	μg/L	38	9.3 U	10	U	9.8	U	100 U					-	-	9.5 U
4-Nitrophenol	μg/L	na	23 U	26	U	24	U	250 U					-	-	24 U
Acenaphthene	μg/L	530	3.7 U	4.1	U	3.9	U	40 U					-	-	3.8 U
Acenaphthylene	μg/L	120	3.7 U	4.1	U	3.9	U	40 U					-	-	3.8 U
Anthracene	μg/L	1,800	3.7 U	4.1	U	3.9	U	40 U					-		3.8 U
Benzaldehyde	μg/L	190	4.7 U	5.1	U	4.9	U	50 U				-	-		4.8 U
Benz(a)anthracene	μg/L	4	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Benzo(a)pyrene	μg/L	4	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Benzo(b)fluoranthene	μg/L	4	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Benzo(g,h,i)perylene	μg/L	120	3.7 U	4.1	U	3.9	U	40 U							3.8 U

Northern Area Groundwater Page 3 of 6

Northern Area Groundwater Sampling Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	BGMW11102024	FDUP03-102	2024*	MW021020	24	MW29102024	SMW01102024	TMW26102024	TMW31S102024	TMW39D102024	TMW40D102024	TMW56102024	TMW63102024
DATE SAMPLED:		QUANTITATION	10/02/2024	10/02/202	24	10/01/2024	4	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14			280-197491-12 280-197419-32		280-197491-5 280-197491-17	280-197491-11 280-197491-23	280-197491-6 280-197491-18	280-197491-3 280-197491-15	280-197491-8 280-197491-20	280-197491-7 280-197491-19	280-197491-13	280-197491-4 280-197491-16
Benzo(k)fluoranthene	μg/L	25	3.7 U	4.1	U	3.9	U	40 U	-	-		-	-	-	3.8 U
bis(2-Chloroethoxy)methane	μg/L	59	9.3 U	10	U	9.8	U	100 U							9.5 U
bis(2-Chloroethyl)ether	μg/L	10	9.3 U	10	U	9.8	U	100 U							9.5 U
bis(2-Ethylhexyl)phthalate	μg/L	10	9.3 U	10	U	9.8	U	100 U				-	-	-	9.5 U
Butyl benzyl phthalate	μg/L	160	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Caprolactam	μg/L	9,900	14 U	15	U	15	U	150 U							14 U
Carbazole	μg/L	290	3.7 U	4.1	U	3.9	U	40 U				-			3.8 U
Chrysene	μg/L	250	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Dibenz(a,h)anthracene	μg/L	10	9.3 U	10	U	9.8	U	100 U							9.5 U
Dibenzofuran	μg/L	7.9	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Diethyl phthalate	μg/L	15,000	3.7 U	4.1	U	3.9	U	40 U				-	-	-	3.8 U
Dimethyl phthalate	μg/L	na	3.7 U	4.1	U	3.9	U	40 U							3.8 U
Di-n-butyl phthalate	μg/L	900	3.7 U	4.1	U	3.9	U	40 U				-			3.8 U
Di-n-octyl phthalate	μg/L	200	9.3 U	10	U	9.8	U	100 U				-			9.5 U
Fluoranthene	μg/L	800	3.7 U	4.1	U	3.9	U	40 U				-			3.8 U
Fluorene	μg/L	290	3.7 U	4.1	U	3.9	U	40 U				-			3.8 U
Hexachlorobenzene	μg/L	10	9.3 U	10	U	9.8	U	100 U				-			9.5 U
Hexachlorobutadiene	μg/L	10	9.3 U	10	U	9.8	U	100 U				-			9.5 U
Hexachlorocyclopentadiene	μg/L	50	47 U	51	U	49	U	500 U							48 U
Hexachloroethane	μg/L	10	9.3 U	10	U	9.8	U	100 U							9.5 U
Indeno(1,2,3-cd)pyrene	μg/L	10	9.3 U	10	U	9.8	U	100 U				-			9.5 U
Isophorone	μg/L	780	9.3 U	10	U	9.8	U	100 U				-			9.5 U
Naphthalene	μg/L	30	3.7 U	4.1	U	3.9	U	40 U				-			3.8 U
Nitrobenzene	μg/L	10	9.3 U	10	U	9.8	U	100 U				-			9.5 U
n-Nitrosodi-n-propylamine	μg/L	10	9.3 U	10	U	9.8	U	100 U				-		-	9.5 U
N-Nitrosodiphenylamine	μg/L	120	9.3 U	10	U	9.8	U	100 U				-		-	9.5 U
Pentachlorophenol	μg/L	50	47 U	51	U	49	UJ	500 U				-		-	48 U
Phenanthrene	μg/L	170	3.7 U	4.1	U	3.9	U	40 U				-		-	3.8 U
Phenol	μg/L	10	9.3 U	10	U	9.8	U	100 U				-		-	9.5 U
Pyrene	μg/L	120	9.3 U	10	U	9.8	U	100 U							9.5 U

Northern Area Groundwater Page 4 of 6

Northern Area Groundwater Sampling Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	BGMW11102024	4 F	FDUP03-102024*	MV	V02102024		MW29102024	SMW01102024	TMW26102024	TMW31S102024	TMW39D1	02024	TMW40D102024	TMW56102024	TMW63102024
DATE SAMPLED:		QUANTITATION	10/02/2024		10/02/2024	10	0/01/2024		10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/20)24	10/02/2024	10/02/2024	10/02/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14	280-197491-9 280-197491-21		280-197491-12 280-197419-32			280-197491-5 280-197491-17	280-197491-11 280-197491-23	280-197491-6 280-197491-18	280-197491-3 280-197491-15	280-197491-8 280-197491-20		280-197491-7 280-197491-19	280-197491-13	280-197491-4 280-197491-16
Petroleum Hydrocarbons - SW8015D																	
Gasoline Range Organics (GRO) C6-C10	μg/L	25	25 L	J	25 U		25 L	J	25 U								25 U
Diesel Range Organics (DRO) C10-C28	μg/L	250	500 L	-	240 U		65 .	J	1,300 U				-		-	-	240 U
Oil Range Organics (ORO) C20-C38	μg/L	60,200	1,000 L	J	470 U		140 .	J	300 J				-		-	-	480 U
Explosives - SW8330B																	
1,3,5-Trinitrobenzene	μg/L	590	0.22 U	IJ	0.23 U		-		0.23 U			0.23 U	0.22	U	0.22	J	0.23 U
1,3-Dinitrobenzene	μg/L	2	0.12 U	IJ	0.12 U		-		0.12 U			0.12 U.			0.12		0.12 UJ
2,4,6-Trinitrotoluene (TNT)	μg/L	9.8	0.12 U	IJ	0.12 U		-		0.12 U			0.12 U		U	0.12		0.12 U
2,4-Dinitrotoluene	μg/L	2.4	0.10 U	IJ	0.11 U		-		0.11 U			0.11 UJ	0.39		0.11	J	0.11 U
2,6-Dinitrotoluene	μg/L	0.49	0.10 U	IJ	0.11 U		-		0.11 U			0.11 U	0.10	U	0.11		0.11 U
2-Amino-4,6-dinitrotoluene	μg/L	1.9	0.12 U	IJ	0.12 U		-		0.12 U			0.12 U	0.11	U	0.12	J	0.12 U
4-Amino-2,6-dinitrotoluene	μg/L	1.9	0.16 U	-	0.17 U				0.16 U			0.17 U		U	0.16		0.16 U
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	μg/L	9.7	0.22 U		0.23 U		-		0.23 U			0.23 U	0.22	U	0.22		0.23 U
m-Nitrotoluene	μg/L	1.7	0.42 U	IJ	0.44 U		-		0.44 U			0.44 U		U	0.42		0.44 U
Nitrobenzene	μg/L	1.4	0.22 U	IJ	0.23 U		-		0.23 U			0.23 U	0.22	U	0.22	J	0.23 U
Nitroglycerin	μg/L	2.1	2.2 U		2.3 U		-		2.3 U			2.3 U	2.2	U	2.2		2.3 U
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	μg/L	1,000	0.22 U	IJ	0.23 U		-		0.23 U			0.17 J	0.22	U	0.22		0.23 U
o-Nitrotoluene	μg/L	3.1	0.22 U	IJ	0.23 U				0.23 U			0.23 U	0.22	U	0.22	J	0.23 U
Pentaerythritol Tetranitrate (PETN)	μg/L	170	1.2 U	IJ	1.2 U		-		1.2 U			1.2 U	1.1	U	1.2	J	1.2 U
p-Nitrotoluene	μg/L	43	0.43 U	IJ	0.45 U		-		0.45 U			0.45 U	0.42	U	0.43	J	0.45 U
Trinitrophenylmethylnitramine (Tetryl)	μg/L	39	0.12 U	IJ	0.12 U		-		0.12 U			0.12 U	0.11	U	0.12	J	0.12 U
Perchlorate - SW6850																	
Perchlorate	μg/L	14	0.20 L	J	0.20 U		-		0.21			590	60		200	0.20 U	0.20 U
Metals, Total - SW6020B/SW7470A																	
Aluminum	μg/L	200	1,000	J	370 J	5	5,600		3,600	260	640	1,900	480		110	I	530 J
Antimony	μg/L	6	2.0 L	J	2.0 U		0.80	ı 🗀	1.0 J	2.0 U	2.0 U	2.0 U	2.0	U	2.0	J	2.0 U
Arsenic	μg/L	10	1.4	J	0.77 J		1.6	J	3.5 J	2.4 J	1.6 J	0.52 J	5.0	U	0.69	I	0.51 J
Barium	μg/L	2,000	14		11		83		70	36	26	28	9.9		8.6	-	17
Beryllium	μg/L	4	1.0 L	J	1.0 U		1.0 L	J	1.0 U	1.0 U	0.62 J	1.0 U	1.2		1.0	-	1.0 U
Cadmium	μg/L	5	1.0 L	J	1.0 U		1.0 L	J	0.49 J	1.0 U	1.0 U	1.0 U	1.0	U	0.33	I	1.0 U
Calcium	μg/L	na	84,000	J	130,000 J	9	4,000		45,000	17,000	20,000	120,000	32,000		14,000	-	9,600
Chromium	μg/L	50	1.3	_	5.5 J		4.9		7.5	0.50 J	1.0 J	4.2	0.50	J	0.55		1.5 J
Cobalt	μg/L	50	0.50	J	0.85 J		1.8		3.7	0.59 J	0.61 J	0.52 J	1.0	U	1.0		1.0 U
Copper	μg/L	1,000	2.1		2.3		3.4		100	2.9	2.9	0.91 J	2.0	U	2.0		2.0 U
Iron	μg/L	300	690		710		,200		3,200	180 J	290	1,100	240		200		350 J-
Lead	μg/L	15	0.27	J	1.0 U		3.7		2.6	1.0 U	0.26 J	0.55 J	1.0	U	1.0	J	1.0 U
Magnesium	μg/L	na	35,000	ıL	53,000 J		0,000		9,200	5,600	7,300	21,000	4,600		2,000	-	1,100 J
Manganese	μg/L	50	220	J 📘	380 J		340		72	190	120	54	55		51	-	31 J+
Mercury	μg/L	2	0.20 L	J	0.20 U		0.20 L	J	0.20 U	0.20 U	0.20 U	0.20 U	0.20	U	0.20	, –	0.20 U
Nickel	μg/L	200	1.6	J	3.7 J		4.3		7.1	2.5 J	2.3 J	3.0	3.0	U	3.0	J	0.90 J
Potassium	μg/L	na	790	J	660 J	1	,600		1,200	1,000 U	360 J	580 J	1,200		940	I	750 J
Selenium	μg/L	50	5.0 L	-	5.0 U		3.3		12	5.0 U	5.0 U	5.4	1.6	J	2.8		5.0 U
Silver	μg/L	50	1.0 L	J	1.0 U		1.0 L	J	1.0 U	1.0 U	1.0 U	1.0 U	1.0	U	1.0	J	1.0 U
Sodium	μg/L	na	1,100,000		1,400,000		0,000		930,000	1,100,000	920,000	560,000	770,000		720,000	-	690,000
Thallium	μg/L	2	1.0 L	J	1.0 U		1.0 L	J	0.92 J	1.0 U	1.0 U	1.0 U	1.0	U	1.0	J	1.0 U
Vanadium	μg/L	86	5.0 U	IJ	5.0 UJ		11		11	7.2 J+	5.3 J+	5.4 J+	5.0	U	5.0	J	5.0 U
Zinc	μg/L	5,000	2.6	J	6.1 J		75		9.9 J	2.0 J	10 U	5.7 J	4.1	J	3.2	<u> </u>	10 U

Northern Area Groundwater Page 5 of 6

Fort Wingate Depot Activity Northern Area McKinley County, New Mexico

Northern Area Groundwater Sampling

Validated Data Summary for Water Samples Collected September and October 2024

SAMPLE ID:		PROJECT	BGMW11102024	FDUP03-102024	MW02102024	MW29102024	SMW01102024	TMW26102024	TMW31S102024	TMW39D102024	TMW40D102024	TMW56102024	TMW63102024
DATE SAMPLED:		QUANTITATION	10/02/2024	10/02/2024	10/01/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024	10/02/2024
LAB SAMPLE ID:		LIMIT GOAL (PQLG) ^[1]	280-197491-2 280-197491-14	280-197491-9 280-197491-21	280-197491-12 280-197419-32	280-197491-5 280-197491-17	280-197491-11 280-197491-23	280-197491-6 280-197491-18	280-197491-3 280-197491-15	280-197491-8 280-197491-20	280-197491-7 280-197491-19	280-197491-13	280-197491-4 280-197491-16
Metals, Dissolved - SW6020B/SW7470A													
Aluminum	μg/L	200	200 U	200 L				200 U	200 U	200 U	200 U		200 U
Antimony	μg/L	6	2.0 U	2.0 L	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U		2.0 U
Arsenic	μg/L	10	0.66 J	0.77	5.0 U	1.9 J	2.7 J	1.6 J	0.62 J	5.0 U	0.50 J		0.58 J
Barium	μg/L	2,000	8.6	7.7	28	31	28	18	12	8.3	8.7		13
Beryllium	μg/L	4	1.0 U	1.0 L			1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Cadmium	μg/L	5	1.0 U	1.0 L	1.0 U	0.19 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Calcium	μg/L	na	94,000	110,000	84,000	39,000	17,000	19,000	110,000	28,000	15,000		9,200
Chromium	μg/L	50	3.0 U	0.50	3.0 U	0.60 J	3.0 U	3.0 U	1.0 J	3.0 U	3.0 U		3.0 U
Cobalt	μg/L	50	0.45 J	0.60	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Copper	μg/L	1,000	2.0	1.6	1.1 J	35	2.4	1.7 J	2.0 U	2.0 U	2.0 U		2.0 U
Iron	μg/L	300	180 J	270	200 U	200 U	200 U	200 U	19 J	200 U	200 U		12 J
Lead	μg/L	15	1.0 U	1.0 L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Magnesium	μg/L	na	42,000	50,000	17,000	8,100	5,600	7,300	21,000	4,000	1,900		980 J
Manganese	μg/L	50	290	350	34	8.3	33	120	19	50	51		25 J+
Mercury	μg/L	2	0.20 U	0.20 U	J 0.20 U.	J 0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	-	0.20 UJ
Nickel	μg/L	200	1.5 J	1.5	3.0 U	1.5 J	2.2 J	1.9 J	0.88 J	3.0 U	3.0 U	-	3.0 U
Potassium	μg/L	na	580 J	610	1,000 U	500 J	1,000 U	1,000 U	390 J	1,000	970 J	-	720 J
Selenium	μg/L	50	5.0 U	5.0 L	3.2 J	11	5.0 U	5.0 U	5.3	5.0 U	2.2 J	-	5.0 U
Silver	μg/L	50	1.0 U	1.0 L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Sodium	μg/L	na	1,200,000	1,300,000	590,000	940,000	1,100,000	910,000	570,000	730,000	710,000		690,000
Thallium	μg/L	2	1.0 U	1.0 L	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U		1.0 U
Vanadium	μg/L	86	1.8 J	1.3	2.1 J	4.1 J	7.4	3.6 J	2.3 J	5.0 U	3.1 J		5.0 U
Zinc	μg/L	5,000	10 U	10 L	22 J+	- 10 U	10 U	10 U	10 U	11 J+	10 U	-	10 U
General Chemistry Orthophosphate as P - EPA 365.1													
Orthophosphate as P	μg/L	20,000	50 U	50 L	50 U	30 J	32 J	30 J	110	50 U	50 U		50 U
Anions - SW9056A	µg/∟	20,000	00	55	33 0	55	"- "	"	1		55 0		55 0
Bromide	μg/L	na	1,100 J	1,600	260 J	560	500 U	1,000	1,300	580	870		340 J
Chloride	μg/L	250.000	400.000	310.000	43.000	220.000	690.000	240.000	190,000	360.000	150.000		110.000
Fluoride	μg/L μg/L	1,600	1,500	1,800	440 J	740 J	1,500	2.000	390 J	680 J	490 J		600 J
Nitrate as N	μg/L μg/L	10.000	500 U	500 L		6.700	500 U	500 U	7,500	890	1,300		500 U
Nitrite as N		1.000	500 U	500 L	500 U	.,	500 U	500 U	500 U	500 U	1,300 120 J		500 U
Sulfate	μg/L μg/L	250.000	1.500.000	1.400.000	750.000	820.000	800.000	750.000	950.000	1.100.000	1.000.000	_	970.000
ounate	μg/L	250,000	1,500,000	1,400,000	750,000	020,000	000,000	750,000	950,000	1,100,000	1,000,000	-	970,000

QA NOTES AND DATA QUALIFIERS:

* - Field duplicate of sample on left.

(NO CODE) - Confirmed identification.

- U Analyte was analyzed for but not detected above the reported limit of quantitation (LOQ).

 UJ Analyte not detected, reported LOQ may be inaccurate or imprecise.
- J Analyte detected, estimated concentration.
- J- Analyte detected, estimated concentration with a low bias.
- J+ Analyte detected, estimated concentration with a high bias.
- X The presence or absence of the analyte cannot be substantiated due to deficiencies in meeting QC criteria.

Detections are bolded.

Detections above the PQLG are highlighted.

[1] The PQLG is the lower of the New Mexico Water Quality Control Commission standard (NM WQCC) and the EPA MCL. If the analyte does not have an NM WQCC or MCL but has an EPA Tap Water RSL, the lower value between the adjusted carcinogenic RSL (target excess cancer risk level of 1 x 10-5) and the non-carcinogenic RSL (with a target hazard index of 1.0) was selected.

μg/L - micrograms per liter

na - Limit not available

-- Analyte was not tested.

Northern Area Groundwater Page 6 of 6

Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October 2024

		ı			
SAMPLE ID:		QC0210202	4EB	QC02102024	ITB
DATE SAMPLED:		10/02/202	24	10/02/202	4
LAB SAMPLE ID:		280-197491 280-197491		280-197491	-1
	Unit				
Volatile Organics - SW8260D					
1,1,1,2-Tetrachloroethane	μg/L	1.0	U	1.0	U
1,1,1-Trichloroethane	μg/L	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	μg/L	1.0	U	1.0	U
1.1.2-Trichloroethane	μg/L	1.0	U	1.0	U
1,1-Dichloroethane	μg/L	1.0	U	1.0	U
1,1-Dichloroethene	μg/L	1.0	U	1.0	U
1,1-Dichloropropene	μg/L	1.0	Ü	1.0	U
1,2,3-Trichlorobenzene	μg/L	4.0	U	4.0	U
1,2,3-Trichloropropane	μg/L	2.5	Ü	2.5	U
1,2,4-Trichlorobenzene	μg/L	1.0	Ü	1.0	Ü
1,2,4-Trimethylbenzene	μg/L	1.0	Ü	1.0	U
1,2-Dibromo-3-chloropropane	μg/L	5.0	Ü	5.0	U
1,2-Dibromoethane (EDB)	μg/L	1.0	Ü	1.0	U
1.2-Dichlorobenzene	μg/L	1.0	Ü	1.0	U
1,2-Dichloroethane	μg/L	1.0	Ü	1.0	Ü
1,2-Dichloropropane	μg/L	1.0	Ü	1.0	U
1,3,5-Trimethylbenzene	μg/L	1.0	Ü	1.0	U
1,3-Dichlorobenzene	μg/L	1.0	Ü	1.0	Ü
1,3-Dichloropropane	μg/L	1.0	Ü	1.0	U
1,4-Dichlorobenzene	μg/L	1.0	Ü	1.0	Ü
2,2-Dichloropropane	μg/L	1.0	Ü	1.0	U
2-Butanone (MEK)	μg/L	10	Ü	10	U
2-Chlorotoluene	μg/L	1.0	Ü	1.0	U
2-Hexanone	μg/L	5.0	Ü	5.0	U
4-Chlorotoluene	μg/L	1.0	U	1.0	U
4-Isopropyltoluene	μg/L	1.0	Ü	1.0	U
4-Methyl-2-pentanone (MIBK)	μg/L	5.0	Ü	5.0	U
Acetone	μg/L	15	Ü	15	U
Benzene	μg/L	1.0	Ü	1.0	U
Bromobenzene	μg/L	1.0	Ü	1.0	U
Bromochloromethane	μg/L	1.0	U	1.0	U
Bromodichloromethane	μg/L	0.86	J	1.0	U
Bromoform	μg/L	2.0	U	2.0	U
Bromomethane	μg/L	5.0	U	5.0	U

Northern Area Field QC Page 1 of 8

Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October 2024

SAMPLE ID:		QC0210202	4EB	QC02102024	тв
DATE SAMPLED:		10/02/202	24	10/02/2024	ļ
LAB SAMPLE ID:		280-197491 280-197491	-	280-197491	-1
Carbon disulfide	μg/L	2.0	U	2.0	U
Carbon tetrachloride	μg/L	1.0	U	1.0	U
Chlorobenzene	μg/L	1.0	U	1.0	U
Chloroethane	μg/L	2.0	U	2.0	U
Chloroform	μg/L	6.0		1.0	U
Chloromethane	μg/L	2.0	U	2.0	U
cis-1,2-Dichloroethene	μg/L	1.0	U	1.0	U
cis-1,3-Dichloropropene	μg/L	1.0	U	1.0	U
Dibromochloromethane	μg/L	0.66	J	1.0	U
Dibromomethane	μg/L	1.0	U	1.0	U
Dichlorodifluoromethane	μg/L	2.0	U	2.0	U
Ethylbenzene	μg/L	1.0	U	1.0	U
Hexachlorobutadiene	μg/L	2.0	U	2.0	U
Isopropylbenzene	μg/L	1.0	U	1.0	U
Methyl acetate	μg/L	5.0	U	5.0	U
Methyl tert-butyl ether (MTBE)	μg/L	5.0	U	5.0	U
Methylene chloride	μg/L	2.0	U	2.0	U
m-Xylene & p-Xylene	μg/L	2.0	U	2.0	U
Naphthalene	μg/L	3.0	U	3.0	U
n-Butylbenzene	μg/L	1.0	U	1.0	U
n-Propylbenzene	μg/L	1.0	U	1.0	U
o-Xylene	μg/L	1.0	U	1.0	U
sec-Butylbenzene	μg/L	1.0	U	1.0	U
Styrene	μg/L	1.0	U	1.0	U
tert-Butylbenzene	μg/L	1.0	U	1.0	U
Tetrachloroethene	μg/L	1.0	U	1.0	U
Toluene	μg/L	1.0	U	1.0	U
trans-1,2-Dichloroethene	μg/L	1.0	U	1.0	U
trans-1,3-Dichloropropene	μg/L	1.0	U	1.0	U
Trichloroethene	μg/L	1.0	U	1.0	U
Trichlorofluoromethane	μg/L	2.0	U	2.0	U
Vinyl chloride	μg/L	1.0	U	1.0	U

Northern Area Field QC Page 2 of 8

Northern Area Groundwater Sampling

Validated Data Summary for Water QC Samples Collected September and October 2024

		1	1	
SAMPLE ID:		QC0210202	4EB	QC02102024TB
DATE SAMPLED:		10/02/202	4	10/02/2024
LAB SAMPLE ID:		280-197491 280-197491		280-197491-1
Semivolatile Organics - SW8270E				
2,2'-Oxybis (1-chloropropane)	μg/L	11	U	
2,4,5-Trichlorophenol	μg/L	11	U	
2,4,6-Trichlorophenol	μg/L	11	U	
2,4-Dichlorophenol	μg/L	11	U	
2,4-Dimethylphenol	μg/L	11	U	
2,4-Dinitrophenol	μg/L	32	U	
2,4-Dinitrotoluene	μg/L	11	U	
2,6-Dinitrotoluene	μg/L	11	U	
2-Chloronaphthalene	μg/L	4.3	U	
2-Chlorophenol	μg/L	11	U	
2-Methylnaphthalene	μg/L	4.3	U	
2-Methylphenol	μg/L	11	U	
2-Nitroaniline	μg/L	11	U	
2-Nitrophenol	μg/L	11	U	
3 & 4 Methylphenol	μg/L	11	U	
3,3'-Dichlorobenzidine	μg/L	54	U	
3-Nitroaniline	μg/L	11	U	
4,6-Dinitro-2-methylphenol	μg/L	54	U	
4-Bromophenyl phenyl ether	μg/L	11	U	
4-Chloro-3-methylphenol	μg/L	11	U	
4-Chloroaniline	μg/L	21	U	
4-Chlorophenyl phenyl ether	μg/L	11	U	
4-Nitroaniline	μg/L	11	U	
4-Nitrophenol	μg/L	27	U	
Acenaphthene	μg/L	4.3	U	
Acenaphthylene	μg/L	4.3	U	
Anthracene	μg/L	4.3	U	
Benz(a)anthracene	μg/L	4.3	U	
Benzaldehyde	μg/L	5.4	Ü	
Benzo(a)pyrene	μg/L	4.3	U	
Benzo(b)fluoranthene	μg/L	4.3	U	
Benzo(g,h,i)perylene	μg/L	4.3	U	

Northern Area Field QC Page 3 of 8

2024

Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October

		I			
SAMPLE ID:		QC0210202	4EB	QC02102024	ГВ
DATE SAMPLED:		10/02/202	24	10/02/2024	
LAB SAMPLE ID:		280-197491 280-197491	-	280-197491-	1
Benzo(k)fluoranthene	μg/L	4.3	U		
bis(2-Chloroethoxy)methane	μg/L	11	U		
bis(2-Chloroethyl)ether	μg/L	11	U		
bis(2-Ethylhexyl)phthalate	μg/L	11	U		
Butyl benzyl phthalate	μg/L	4.3	U		
Caprolactam	μg/L	16	U		
Carbazole	μg/L	4.3	U		
Chrysene	μg/L	4.3	U		
Dibenz(a,h)anthracene	μg/L	11	U		
Dibenzofuran	μg/L	4.3	U		
Diethyl phthalate	μg/L	4.3	U		
Dimethyl phthalate	μg/L	4.3	U		
Di-n-butyl phthalate	μg/L	4.3	U		
Di-n-octyl phthalate	μg/L	11	U		
Fluoranthene	μg/L	4.3	U		
Fluorene	μg/L	4.3	U		
Hexachlorobenzene	μg/L	11	U		
Hexachlorobutadiene	μg/L	11	U		
Hexachlorocyclopentadiene	μg/L	54	U		
Hexachloroethane	μg/L	11	U		
Indeno(1,2,3-cd)pyrene	μg/L	11	U		
Isophorone	μg/L	11	U		
Naphthalene	μg/L	4.3	U		
Nitrobenzene	μg/L	11	U		
n-Nitrosodi-n-propylamine	μg/L	11	U		
N-Nitrosodiphenylamine	μg/L	11	U		
Pentachlorophenol	μg/L	54	U		
Phenanthrene	μg/L	4.3	U		
Phenol	μg/L	11	U		
Pyrene	μg/L	11	U		
•	'				
Petroleum Hydrocarbons - SW8015D					
Gasoline Range Organics (GRO) C6-C10	μg/L	25	U	25	U
Diesel Range Organics (DRO) C10-C28	μg/L	250	U		
Oil Range Organics (ORO) C20-C38	μg/L	500	U		

Northern Area Field QC Page 4 of 8

Northern Area Groundwater Sampling

Validated Data Summary for Water QC Samples Collected September and October 2024

		1	1	
SAMPLE ID:		QC0210202	4EB	QC02102024TB
DATE SAMPLED:		10/02/202	4	10/02/2024
LAB SAMPLE ID:		280-197491 280-197491		280-197491-1
Organochlorine Pesticides - SW8081B	,,	0.050		
4,4'-DDD	μg/L	0.053	U	
4,4'-DDE	μg/L	0.053	U	
4,4'-DDT	μg/L	0.053	U	
Aldrin	μg/L	0.053	U	
alpha-BHC	μg/L	0.053		
alpha-Chlordane	μg/L	0.053	U	
beta-BHC delta-BHC	μg/L	0.053	U	
delta-BHC Dieldrin	μg/L	0.053 0.053	U	
Endosulfan I	μg/L	0.053	U	
Endosulfan II	μg/L			
	μg/L	0.053	U	
Endosulfan sulfate	μg/L	0.053	U	
Endrin	μg/L	0.053	U	
Endrin aldehyde Endrin ketone	μg/L	0.053	U	
	μg/L	0.053		
gamma-BHC (Lindane)	μg/L	0.053	U	
gamma-Chlordane	μg/L	0.053	U	
Heptachlor	μg/L	0.053	U	
Heptachlor epoxide	μg/L	0.053	U	
Methoxychlor	μg/L	0.11	U	
Toxaphene	μg/L	3.2	U	
PCBs - SW8082				
Aroclor 1016	μg/L	1.1	UJ	
Aroclor 1221	μg/L	1.1	U	
Aroclor 1232	μg/L	1.1	U	
Aroclor 1242	μg/L	1.1	U	
Aroclor 1248	μg/L	1.1	U	
Aroclor 1254	μg/L	1.1	U	
Aroclor 1260	μg/L	1.1	UJ	
Aroclor 1262	μg/L	1.1	U	
Aroclor 1268	μg/L	1.1	U	

Northern Area Field QC Page 5 of 8

2024

Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October

		I	1	
SAMPLE ID:		QC02102024	4EB	QC02102024TB
DATE SAMPLED:		10/02/202	4	10/02/2024
LAB SAMPLE ID:		280-197491 280-197491	-	280-197491-1
Explosives - SW8330B				
1,3,5-Trinitrobenzene	μg/L	0.23	U	
1.3-Dinitrobenzene	μg/L μg/L	0.23	U	
2,4,6-Trinitrotoluene (TNT)	μg/L μg/L	0.12	U	
2.4-Dinitrotoluene	μg/L μg/L	0.12	U	
2.6-Dinitrotoluene	μg/L μg/L	0.11	U	
2-Amino-4,6-dinitrotoluene	μg/L μg/L	0.11	U	
4-Amino-2,6-dinitrotoluene	μg/L μg/L	0.12	U	
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	μg/L μg/L	0.17	U	
m-Nitrotoluene	μg/L μg/L	0.44	U	
Nitrobenzene	µg/L	0.23	U	
Nitroglycerin	μg/L	2.3	U	
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	µg/L	0.23	U	
o-Nitrotoluene	μg/L	0.23	U	
Pentaerythritol Tetranitrate (PETN)	μg/L	1.2	U	
p-Nitrotoluene	μg/L	0.46	U	
Trinitrophenylmethylnitramine (Tetryl)	μg/L	0.12	U	
Transcopriorly and driving (10 days)	Mg/ L	0.12	Ü	
Herbicides - SW8321B				
2,4,5-T	μg/L	5.0	U	
2,4,5-TP (Silvex)	μg/L	5.0	U	
2,4-D	μg/L	5.0	U	
2,4-DB	μg/L	6.0	U	
Dicamba	μg/L	5.0	U	
Dichloroprop	μg/L	5.0	U	
Dinoseb	μg/L	5.0	U	
MCPA	μg/L	5.0	U	
MCPP	μg/L	5.0	U	
Perchlorate - SW6850				
Perchlorate	μg/L	0.20	U	

Northern Area Field QC Page 6 of 8

Northern Area Groundwater Sampling Validated Data Summary for Water QC Samples Collected September and October 2024

SAMPLE ID:		QC02102024	ŀЕВ	QC02102024TB
DATE SAMPLED:		10/02/202	4	10/02/2024
		280-197491		
LAB SAMPLE ID:		280-197491		280-197491-1
Metals, Total - SW6020B/SW7470A				
Aluminum	μg/L	200	U	
Antimony	μg/L	2.0	U	
Arsenic	μg/L	5.0	U	
Barium	μg/L	3.0	U	
Beryllium	μg/L	1.0	U	
Cadmium	μg/L	1.0	U	
Calcium	μg/L	50	J	
Chromium	μg/L	3.0	U	
Cobalt	μg/L	1.0	U	
Copper	μg/L	2.0	U	
Iron	μg/L	200	U	
Lead	μg/L	1.0	U	
Magnesium	μg/L	10	J	
Manganese	μg/L	3.0	U	
Mercury	μg/L	0.20	U	
Nickel	μg/L	3.0	U	
Potassium	μg/L	61	J	
Selenium	μg/L	5.0	U	
Silver	μg/L	1.0	U	
Sodium	μg/L	770	J	
Thallium	μg/L	1.0	U	
Vanadium	μg/L	5.0	U	
Zinc	μg/L	10	U	
Metals, Dissolved - SW6020B/SW7470A				
Aluminum	μg/L	86	J	
Antimony	μg/L	2.0	U	
Arsenic	μg/L	5.0	U	
Barium	μg/L	3.0	U	
Beryllium	μg/L	1.0	U	
Cadmium	μg/L	1.0	U	
Calcium	μg/L	60	J	
Chromium	μg/L	3.0	U	
Cobalt	μg/L	1.0	U	
Copper	μg/L	2.0	U	
Iron	μg/L	200	U	
Lead	μg/L	1.0	U	
Magnesium	μg/L	8.6	J	
Manganese	μg/L	3.0	U	
Mercury	μg/L	0.20	UJ	
Nickel	μg/L	3.0	U	
Potassium	μg/L	59	J	
Selenium	μg/L	5.0	U	
Silver	μg/L	1.0	U	
Sodium	μg/L	610	J	
Thallium	μg/L	1.0	U	
Vanadium	μg/L	5.0	U	
Zinc	μg/L	5.9	J	

Northern Area Field QC Page 7 of 8

Northern Area Groundwater Sampling

Validated Data Summary for Water QC Samples Collected September and October 2024

SAMPLE ID: DATE SAMPLED: LAB SAMPLE ID:		QC02102024 10/02/202 280-197491 280-197491	4 -10	QC02102024TB 10/02/2024 280-197491-1
General Chemistry Orthophosphate as P - EPA 365.1 Orthophosphate as P	μg/L	50	C	1
Anions - SW9056A Bromide	μg/L	500	U	
Chloride	μg/L	1,300	J	
Fluoride Nitrate as N	μg/L μg/L	1,000 500	U U	
Nitrite as N Sulfate	μg/L μg/L	500 5,000	U U	

QA NOTES AND DATA QUALIFIERS:

(NO CODE) - Confirmed identification.

U - Analyte was analyzed for but not detected above the reported limit of detection (LOQ).

UJ - Analyte not detected, reported LOQ may be inaccurate or imprecise.

J - Analyte detected, estimated concentration.

Detections are bolded.

NOTES:

μg/L - micrograms per liter

-- Analyte was not tested.

Northern Area Field QC Page 8 of 8

Attachment B

Checklists

280-197491 B

 Laboratory:
 EETA

 Reviewer:
 Kortney Curry

Method: 6020 & 7470

	Validation Area	Acceptable?	Comments
		Y/N/NA	
I.	Case narrative	Υ	
II.	Sample receipt/Technical holding	N	See DVR
	times		
III.	Instrument performance check/Tune	Y	
IV.	Initial calibration/ICV/LLICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB, ICB/CCB	N	See DVR
VI.	Field blanks	N	See DVR
VII.	Interference check standard	Υ	
VIII.	Matrix spike/Matrix spike duplicate	N	See DVR
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	N	See DVR
XI.	Internal standards	Υ	
XII.	Dilution test	Υ	
XIII.	Post digestion spike	Υ	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV/LLICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB, ICB/CCB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	N	See DVR
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	Υ	
XI.	Internal standards	Υ	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

 Laboratory:
 EETA

 Reviewer:
 Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
1.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/DDT- Endrin Breakdown	Y	
IV.	Initial calibration/ICV	Y	
٧.	Continuing Calibration	Y	
VI.	Laboratory Blanks- MB	Y	
VII.	Surrogates	Y	
VIII.	Field Blanks	Y	
IX.	Matrix spike/Matrix spike duplicate	NA	
X.	Laboratory control samples	Y	
XI.	Lab duplicates	NA	
XII.	Internal standards	Y	
XIII.	Compound quantitation LOQ/LOD/DL	Y	
XIV.	Target compound identification	Y	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
l.	Case narrative	Υ	
II.	Sample receipt/Technical holding	Υ	
	times		
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	N	See DVR
VI.	Laboratory Blanks- MB	Υ	
VII.	Surrogates	Υ	
VIII.	Field Blanks	Υ	
IX.	Matrix spike/Matrix spike duplicate	NA	
X.	Laboratory control samples	Υ	
XI.	Lab duplicates	NA	
XII.	Internal standards	Υ	
XIII.	Column Confirmation	Υ	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/Tune	Υ	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	Υ	
XI.	Internal standards	Υ	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
I.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/Tune	Υ	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	N	See DVR
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	Υ	
XI.	Internal standards	Υ	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

 Laboratory:
 EETA

 Reviewer:
 Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Υ	
III.	Instrument performance check/Tune	Υ	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Y	
Χ.	Field duplicates/Field triplicates	NA	
XI.	Internal standards	Y	
XII.	Compound quantitation LOQ/LOD/DL	Y	
XIII.	Target compound identification	Y	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
l.	Case narrative	Υ	
II.	Sample receipt/Technical holding	Υ	
	times		
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VII.	Surrogates	N	See DVR
VIII.	Field Blanks	Υ	
IX.	Matrix spike/Matrix spike duplicate	Υ	
X.	Laboratory control samples	Υ	
XI.	Lab duplicates	Υ	
XII.	External standards	Y	
XIII.	Column Confirmation	N	See DVR
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

Laboratory: EETA Reviewer: Kortney Curry

Method: 9056A & 365.1

	Validation Area	Acceptable? Y/N/NA	Comments
I.	Case narrative	Y	
II.	Sample receipt/Technical holding times	Y	
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB, ICB/CCB	Υ	
VI.	Field blanks	Υ	
VII.	Matrix spike/Matrix spike duplicate	Υ	
VIII.	Laboratory control samples	Υ	
IX.	Lab duplicates	N	See DVR
Χ.	Field duplicates/Field triplicates	Υ	
XI.	External standards	NA	
XII.	Dilution test	NA	
XIII.	Post digestion spike	NA	
XIV.	Compound quantitation LOQ/LOD/DL	Υ	
XV	Target compound identification	Υ	

Laboratory: EETA Reviewer: Kortney Curry

	Validation Area	Acceptable? Y/N/NA	Comments
١.	Case narrative	Υ	
II.	Sample receipt/Technical holding times	Υ	
III.	Instrument performance check/Tune	NA	
IV.	Initial calibration/ICV	Υ	
٧.	Continuing Calibration	Υ	
VI.	Laboratory Blanks- MB	Υ	
VI.	Field blanks	Υ	
VII.	Surrogate spikes	Υ	
VIII.	Matrix spike/Matrix spike duplicate	Υ	
IX.	Laboratory control samples	Υ	
Χ.	Field duplicates/Field triplicates	Υ	
XI.	Internal standards	Υ	
XII.	Compound quantitation LOQ/LOD/DL	Υ	
XIII.	Target compound identification	Υ	

Attachment C ADR Summary Report

280-197491 C

Reviewed By: Approved By: Laboratory: TAL DEN Preparation Client Sample ID Validation Code Lab Sample ID Matrix Sample Type **Collection Date** Method Lab Reporting Batch: 280-197491-1 Method: 365.1 TMW26102024 280-197491-18 Water Field Sample Gen Prep 10/2/2024 10:30:00 S2AVE S2AVE TMW63102024MS 280-197491-16MS Water Matrix Spike Gen Prep 10/2/2024 12:45:00 MW29102024 280-197491-17 Field Sample Gen Prep S2AVE 10/2/2024 9:40:00 AM Water TMW40D102024 280-197491-19 Field Sample Gen Prep 10/2/2024 1:55:00 PM S2AVF Water TMW39D102024MS 280-197491-20MS 10/2/2024 12:00:00 S2AVE Water Matrix Spike Gen Prep SMW01102024 280-197491-23 Water Field Sample Gen Prep 10/2/2024 8:50:00 AM S2AVE QC02102024EB 280-197491-22 Equipment Blank Gen Prep 10/2/2024 2:00:00 PM S2AVE Water S2AVE TMW63102024MSD 280-197491-16MSD Matrix Spike Duplicate Gen Prep 10/2/2024 12:45:00 Water TMW39D102024 280-197491-20 Field Sample Gen Prep 10/2/2024 12:00:00 S2AVF Water FDUP03-102024 280-197491-21 Field Duplicate Gen Prep 10/2/2024 12:10:00 S2AVF Water S2AVE TMW31S102024 280-197491-15 Water Field Sample Gen Prep 10/2/2024 8:05:00 AM TMW39D102024MSD 280-197491-20MSD Matrix Spike Duplicate Gen Prep 10/2/2024 12:00:00 S2AVE Water S2AVE TMW63102024 280-197491-16 Field Sample Gen Prep 10/2/2024 12:45:00 Water BGMW11102024 280-197491-14 Water Field Sample Gen Prep 10/2/2024 12:00:00 S2AVE Method: 6020B TMW31S102024 280-197491-3 Field Sample 3020A 10/2/2024 8:05:00 AM S2AVE Water Field Duplicate 3005A S2AVE FDUP03-102024 280-197491-9 10/2/2024 12:10:00 Water S2AVE TMW39D102024 280-197491-8 Water Field Sample 3020A 10/2/2024 12:00:00 TMW26102024 280-197491-6 Water Field Sample 3020A 10/2/2024 10:30:00 S2AVE TMW26102024 280-197491-6 3005A 10/2/2024 10:30:00 S2AVE Water Field Sample 3005A S2AVE BGMW11102024 280-197491-2 Water Field Sample 10/2/2024 12:00:00 ΡМ TMW63102024 280-197491-4 Field Sample 3020A 10/2/2024 12:45:00 S2AVF Water MW02102024 280-197491-12 Field Sample 3020A 10/1/2024 9:45:00 AM S2AVE Water ADR version 1.9.0.325 (Licensed For Use On USACE Projects Only) 2/10/2025 8:56:02 AM Page 1 of 7

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 6020B						
FDUP03-102024	280-197491-9	Water	Field_Duplicate	3020A	10/2/2024 12:10:00 PM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	3020A	10/2/2024 12:45:00 PM	S2AVE
TMW31S102024	280-197491-3	Water	Field_Sample	3005A	10/2/2024 8:05:00 AM	S2AVE
SMW01102024	280-197491-11	Water	Field_Sample	3020A	10/2/2024 8:50:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	3020A	10/2/2024 2:00:00 PM	S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	3020A	10/2/2024 1:55:00 PM	S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	3005A	10/2/2024 1:55:00 PM	S2AVE
SMW01102024	280-197491-11	Water	Field_Sample	3005A	10/2/2024 8:50:00 AM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	3020A	10/2/2024 9:40:00 AM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	3005A	10/2/2024 12:45:00 PM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	3020A	10/2/2024 12:00:00 PM	S2AVE
TMW39D102024	280-197491-8	Water	Field_Sample	3005A	10/2/2024 12:00:00 PM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	3020A	10/2/2024 12:45:00 PM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	3005A	10/2/2024 9:40:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	3005A	10/2/2024 2:00:00 PM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	3005A	10/2/2024 12:45:00 PM	S2AVE
MW02102024	280-197491-12	Water	Field_Sample	3005A	10/1/2024 9:45:00 AM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	3005A	10/2/2024 12:45:00 PM	S2AVE
Method: 6850					PIM	
QC02102024EB	280-197491-10	Water	Equipment_Blank	Gen Prep	10/2/2024 2:00:00 PM	S2AVE
TMW56102024	280-197491-13	Water	Field_Sample	Gen Prep	10/2/2024 8:45:00 AM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	Gen Prep	10/2/2024 9:40:00 AM	S2AVE
TMW31S102024	280-197491-3	Water	Field_Sample	Gen Prep	10/2/2024 8:05:00 AM	S2AVE
2/10/2025 8:56:02 AM ADR version 1.9.0.325 (Licensed For Use On USACE Projects Only)						Page 2 of 7

Reviewed By:

Approved By:

Laboratory: TAL DEN

Preparation

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Method Method	Collection Date	Validation Code
Method: 6850						
FDUP03-102024	280-197491-9	Water	Field_Duplicate	Gen Prep	10/2/2024 12:10:00 PM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
TMW39D102024	280-197491-8	Water	Field_Sample	Gen Prep	10/2/2024 12:00:00 PM	S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	Gen Prep	10/2/2024 1:55:00 PM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	Gen Prep	10/2/2024 12:00:00 PM	S2AVE
Method: 7470A						
SMW01102024	280-197491-11	Water	Field_Sample	7470A	10/2/2024 8:50:00 AM	S2AVE
TMW39D102024	280-197491-8	Water	Field_Sample	7470A	10/2/2024 12:00:00 PM	S2AVE
FDUP03-102024	280-197491-9	Water	Field_Duplicate	7470A	10/2/2024 12:10:00 PM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	7470A	10/2/2024 12:00:00 PM	S2AVE
TMW31S102024	280-197491-3	Water	Field_Sample	7470A	10/2/2024 8:05:00 AM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	7470A	10/2/2024 9:40:00 AM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	7470A	10/2/2024 12:45:00 PM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	7470A	10/2/2024 12:45:00 PM	S2AVE
MW02102024	280-197491-12	Water	Field_Sample	7470A	10/1/2024 9:45:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	7470A	10/2/2024 2:00:00 PM	S2AVE
TMW26102024	280-197491-6	Water	Field_Sample	7470A	10/2/2024 10:30:00 AM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	7470A	10/2/2024 12:45:00 PM	S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	7470A	10/2/2024 1:55:00 PM	S2AVE
Method: 8015D-DRO						
MW02102024	280-197491-12	Water	Field_Sample	3510C	10/1/2024 9:45:00 AM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	3510C	10/2/2024 12:45:00 PM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	3510C	10/2/2024 12:00:00 PM	S2AVE
2/10/2025 8:56:02 AM		ADR version 1.9.	0.325 (Licensed For Use On USACE	Projects Only)	PM	Page 3 of 7

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
	240 Sumple 12	17200100		Methou	Concensor Bute	, , , , , , , , , , , , , , , , , , , ,
Method: 8015D-DRO FDUP03-102024	280-197491-9	Water	Field_Duplicate	3510C	10/2/2024 12:10:00	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	3510C	PM 10/2/2024 12:45:00	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	3510C	PM 10/2/2024 12:45:00	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	3510C	РМ 10/2/2024 9:40:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	3510C	10/2/2024 2:00:00 PM	S2AVE
Method: 8015D-GRO						
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	Gen Prep	10/2/2024 9:40:00 AM	S2AVE
MW02102024	280-197491-12	Water	Field_Sample	Gen Prep	10/1/2024 9:45:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	Gen Prep	10/2/2024 2:00:00 PM	S2AVE
QC02102024TB	280-197491-1	Water	Field_Sample	Gen Prep	10/2/2024 8:00:00 AM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	Gen Prep	10/2/2024 12:45:00	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	Gen Prep	10/2/2024 12:00:00	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	Gen Prep	PM 10/2/2024 12:45:00 PM	S2AVE
FDUP03-102024	280-197491-9	Water	Field_Duplicate	Gen Prep	10/2/2024 12:10:00 PM	S2AVE
Method: 8081B						
QC02102024EB	280-197491-10	Water	Equipment_Blank	3510C	10/2/2024 2:00:00 PM	S2AVE
Method: 8082A						
QC02102024EB	280-197491-10	Water	Equipment_Blank	3510C	10/2/2024 2:00:00 PM	S2AVE
Method: 8260D						
TMW63102024	280-197491-4	Water	Field_Sample	5030B	10/2/2024 12:45:00 PM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	5030B	10/2/2024 2:00:00 PM	S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	5030B	10/2/2024 1:55:00 PM	S2AVE
MW02102024	280-197491-12	Water	Field_Sample	5030B	10/1/2024 9:45:00 AM	S2AVE
2/10/2025 8:56:02 AM		ADR version 1.9	.0.325 (Licensed For Use On USACE	Projects Only)		Page 4 of 7

·				Preparation		•
Client Sample ID	Lab Sample ID	Matrix	Sample Type	Method	Collection Date	Validation Code
Method: 8260D						
TMW26102024	280-197491-6	Water	Field_Sample	5030B	10/2/2024 10:30:00	S2AVE
TMW39D102024	280-197491-8	Water	Field_Sample	5030B	10/2/2024 12:00:00 PM	S2AVE
SMW01102024	280-197491-11	Water	Field_Sample	5030B	10/2/2024 8:50:00 AM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	5030B	10/2/2024 9:40:00 AM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	5030B	10/2/2024 12:00:00 PM	S2AVE
FDUP03-102024	280-197491-9	Water	Field_Duplicate	5030B	10/2/2024 12:10:00 PM	S2AVE
QC02102024TB	280-197491-1	Water	Field_Sample	5030B	10/2/2024 8:00:00 AM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	5030B	10/2/2024 12:45:00 PM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	5030B	10/2/2024 12:45:00 PM	S2AVE
TMW31S102024	280-197491-3	Water	Field_Sample	5030B	10/2/2024 8:05:00 AM	S2AVE
Method: 8270E						
MW29102024	280-197491-5	Water	Field_Sample	3510C	10/2/2024 9:40:00 AM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	3510C	10/2/2024 2:00:00 PM	S2AVE
MW02102024	280-197491-12	Water	Field_Sample	3510C	10/1/2024 9:45:00 AM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	3510C	10/2/2024 12:45:00 PM	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	3510C	10/2/2024 12:45:00 PM	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	3510C	10/2/2024 12:45:00 PM	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	3510C	10/2/2024 12:00:00 PM	S2AVE
FDUP03-102024	280-197491-9	Water	Field_Duplicate	3510C	10/2/2024 12:10:00 PM	S2AVE
Method: 8321B					· '''	
QC02102024EBMSD	280-197491-10MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/2/2024 2:00:00 PM	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	Gen Prep	10/2/2024 2:00:00 PM	S2AVE
QC02102024EBMS	280-197491-10MS	Water	Matrix_Spike	Gen Prep	10/2/2024 2:00:00 PM	S2AVE

Client Sample ID	Lab Sample ID	Matrix	Sample Type	Preparation Method	Collection Date	Validation Code
Method: 8330B						
FDUP03-102024	280-197491-9	Water	Field_Duplicate	353	5 10/2/2024 12:10:00	S2AVE
TMW63102024	280-197491-4	Water	Field_Sample	353	40/0/0004 40:45:00	S2AVE
TMW31S102024	280-197491-3	Water	Field_Sample	353	40/0/0004 0:05:00 ANA	S2AVE
BGMW11102024	280-197491-2	Water	Field_Sample	353	5 10/2/2024 12:00:00 PM	S2AVE
TMW63102024MS	280-197491-4MS	Water	Matrix_Spike	353	10/0/0001 10 15 00	S2AVE
TMW63102024MSD	280-197491-4MSD	Water	Matrix_Spike_Duplicate	353	10/0/0001 10 15 00	S2AVE
QC02102024EB	280-197491-10	Water	Equipment_Blank	353	10/0/0001 0 00 00 01	S2AVE
TMW39D102024	280-197491-8	Water	Field_Sample	353	5 10/2/2024 12:00:00 PM	S2AVE
MW29102024	280-197491-5	Water	Field_Sample	353		S2AVE
TMW40D102024	280-197491-7	Water	Field_Sample	353	5 10/2/2024 1:55:00 PM	S2AVE
Method: 9056A						
SMW01102024	280-197491-23	Water	Field_Sample	Gen Prep	10/2/2024 8:50:00 AM	S2AVE
TMW26102024	280-197491-18	Water	Field_Sample	Gen Prep	10/2/2024 10:30:00 AM	S2AVE
TMW63102024MSD	280-197491-16MSD	Water	Matrix_Spike_Duplicate	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
TMW63102024MS	280-197491-16MS	Water	Matrix_Spike	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
FDUP03-102024	280-197491-21	Water	Field_Duplicate	Gen Prep	10/2/2024 12:10:00 PM	S2AVE
TMW31S102024	280-197491-15	Water	Field_Sample	Gen Prep	10/2/2024 8:05:00 AM	S2AVE
TMW39D102024	280-197491-20	Water	Field_Sample	Gen Prep	10/2/2024 12:00:00 PM	S2AVE
TMW63102024DUP	280-197491-16DUP	Water	Duplicate	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
QC02102024EB	280-197491-22	Water	Equipment_Blank	Gen Prep	10/2/2024 2:00:00 PM	S2AVE
MW29102024	280-197491-17	Water	Field_Sample	Gen Prep	10/2/2024 9:40:00 AM	S2AVE
TMW40D102024	280-197491-19	Water	Field_Sample	Gen Prep	10/2/2024 1:55:00 PM	S2AVE
TMW63102024	280-197491-16	Water	Field_Sample	Gen Prep	10/2/2024 12:45:00 PM	S2AVE
BGMW11102024	280-197491-14	Water	Field_Sample	Gen Prep	10/2/2024 12:00:00 PM	S2AVE
2/10/2025 8:56:02 AM		ADR version 1.9.0.3	325 (Licensed For Use On USACE Pr	rojects Only)	PM	Page 6 of 7

Reviewed By:

Approved By:

Laboratory: TAL DEN

Preparation

Client Sample ID Lab Sample ID Matrix Sample Type Method Collection Date Validation Code

Validation Label Legend

Label Code	Label Decription	EPA Level
S1VE	Stage_1_Validation_Electronic	N/A
S1VM	Stage_1_Validation_Manual	N/A
S1VEM	Stage_1_Validation_Electronic_and_Manual	N/A
S2AVE	Stage_2A_Validation_Electronic	Level 3 w/o calibration
S2AVM	Stage_2A_Validation_Manual	Level 3 w/o calibration
S2AVEM	Stage_2A_Validation_Electronic_and_Manual	Level 3 w/o calibration
S2BVE	Stage_2B_Validation_Electronic	Level 3 with calibration
S2BVM	Stage_2B_Validation_Manual	Level 3 with calibration
S2BVEM	Stage_2B_Validation_Electronic_and_Manual	Level 3 with calibration
S3VE	Stage_3_Validation_Electronic	Level 4
S3VM	Stage_3_Validation_Manual	Level 4
S3VEM	Stage_3_Validation_Electronic_and_Manual	Level 4
S4VE	Stage_4_Validation_Electronic	Level 4
S4VM	Stage_4_Validation_Manual	Level 4
S4VEM	Stage_4_Validation_Electronic_and_Manual	Level 4
NV	Not_Validated	N/A

Field Blanks

Data Review Summary

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

Validation Area	Note
Technical Holding Times	SR
Temperature	A
Initial Calibration	N
Continuing Calibration/Initial Calibration Verification	N
Method Blanks	SR
Surrogate/Tracer Spikes	SR
Matrix Spike/Matrix Spike Duplicates	SR
Laboratory Duplicates	A
Laboratory Replicates	N
Laboratory Control Samples	A
Compound Quantitation	SR
Field Duplicates	SR
Field Triplicates	N

SR

Temperature Outliers

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

No Data Review Qualifiers Applie

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197491-1_52_2a_ParsonsFtWingate_rev

Method: 7470A					Preparation Method: 7470A
Matrix: Water					
Sample ID	Туре	Actual	Criteria	Units	Flag
BGMW11102024 (Initial/DIS) FDUP03-102024 (Initial/DIS) MW02102024 (Initial/DIS) MW29102024 (Initial/DIS) QC02102024EB (Initial/DIS) SMW01102024 (Initial/DIS)	Sampling To Analysis	36.00 36.00 37.00 36.00 36.00 36.00	28.00 28.00 28.00 28.00 28.00 28.00	DAYS DAYS DAYS DAYS DAYS DAYS	J- (all detects) UJ (all non-detects)
TMW26102024 (Initial/DIS) TMW31S102024 (Initial/DIS) TMW39D102024 (Initial/DIS) TMW40D102024 (Initial/DIS) TMW63102024 (Initial/DIS) TMW63102024MS (Initial/DIS) TMW63102024MSD (Initial/DIS)		36.00 36.00 36.00 36.00 36.00 36.00 36.00	28.00 28.00 28.00 28.00 28.00 28.00 28.00	DAYS DAYS DAYS DAYS DAYS DAYS DAYS DAYS	

2/10/2025 8:47:28 AM ADR version 1.9.0.325 Page 1 of 1

Trip Blank Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

No Data Review Qualifiers Applied

Equipment Rinsate Blank Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

 ${\bf 280\text{-}197491\text{-}1_52_2a_ParsonsFtWingate_rev}$

Method: 6020B				
Equipment Blank Sample ID	Collected Date	Analyte	Result	Associated Samples
QC02102024EB(Initial/DIS)	10/2/2024 2:00:00 PM	ALUMINUM CALCIUM MAGNESIUM POTASSIUM SODIUM ZINC	86 ug/L 60 ug/L 8.6 ug/L 59 ug/L 610 ug/L 5.9 ug/L	BGMW11102024 FDUP03-102024 MW02102024 SMW01102024 SMW01102024 TMW26102024 TMW31S102024 TMW39D102024 TMW40D102024 TMW40D102024 TMW66102024 TMW66102024
QC02102024EB(Initial/TOT)	10/2/2024 2:00:00 PM	CALCIUM MAGNESIUM POTASSIUM SODIUM	50 ug/L 10 ug/L 61 ug/L 770 ug/L	BGMW11102024 FDUP03-102024 MW02102024 MW29102024 SMW01102024 TMW26102024 TMW31S102024 TMW39D102024 TMW40D102024 TMW56102024 TMW63102024

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
BGMW11102024(Initial/DIS)	ZINC	5.3 ug/L	10U ug/L
FDUP03-102024(Initial/DIS)	ALUMINUM	26 ug/L	200U ug/L
FDUP03-102024(Initial/DIS)	ZINC	3.3 ug/L	10U ug/L
MW02102024(Initial/DIS)	ZINC	22 ug/L	22U ug/L
SMW01102024(Initial/DIS)	ALUMINUM	13 ug/L	200U ug/L
SMW01102024(Initial/DIS)	POTASSIUM	180 ug/L	1000U ug/L
SMW01102024(Initial/TOT)	POTASSIUM	200 ug/L	1000U ug/L
TMW26102024(Initial/DIS)	POTASSIUM	290 ug/L	1000U ug/L
TMW31S102024(Initial/DIS)	ZINC	3.2 ug/L	10U ug/L
TMW39D102024(Initial/DIS)	ZINC	11 ug/L	11U ug/L
TMW40D102024(Initial/DIS)	ALUMINUM	22 ug/L	200U ug/L
TMW40D102024(Initial/DIS)	ZINC	2.4 ug/L	10U ug/L

2/10/2025 8:51:12 AM ADR version 1.9.0.325 Page 1 of 1

Method Blank Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method	<i>l:</i> 6020B			

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-669978/1-A	10/10/2024 9:35:05 AM	IRON	15.1 ug/L	MW02102024 SMW01102024
MB 280-670308/1-A	10/10/2024 5:10:12 PM	MANGANESE VANADIUM	0.744 ug/L 1.55 ug/L	BGMW11102024 FDUP03-102024 MW02102024 MW29102024 QC02102024EB SMW01102024 TMW26102024 TMW31S102024 TMW39D102024 TMW40D102024 TMW40D102024
MB 280-670669/1-A	10/14/2024 6:18:00 PM	IRON	34.5 ug/L	BGMW11102024 FDUP03-102024 MW02102024 MW29102024 QC02102024EB SMW01102024 TMW26102024 TMW31S102024 TMW39D102024 TMW40D102024 TMW40D102024

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
BGMW11102024(Initial/TOT)	VANADIUM	4.3 ug/L	5.0U ug/L
FDUP03-102024(Initial/TOT)	VANADIUM	1.8 ug/L	5.0U ug/L
SMW01102024(Initial/DIS)	IRON	11 ug/L	200U ug/L
SMW01102024(Initial/TOT)	VANADIUM	7.2 ug/L	7.2U ug/L
TMW26102024(Initial/TOT)	VANADIUM	5.3 ug/L	5.3U ug/L
TMW31S102024(Initial/TOT)	VANADIUM	5.4 ug/L	5.4U ug/L
TMW39D102024(Initial/TOT)	VANADIUM	2.2 ug/L	5.0U ug/L
TMW40D102024(Initial/TOT)	IRON	28 ug/L	200U ug/L
TMW40D102024(Initial/TOT)	VANADIUM	4.1 ug/L	5.0U ug/L
TMW63102024(Initial/TOT)	VANADIUM	2.0 ug/L	5.0U ug/L

Method: 9056A

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-670904/39	10/14/2024 10:29:00 PM	CHLORIDE	J	BGMW11102024 FDUP03-102024 QC02102024EB SMW01102024 TMW26102024 TMW39D102024 TMW40D102024 TMW63102024

2/10/2025 8:47:42 AM ADR version 1.9.0.325 Page 1 of 2

Method Blank Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-670904/6	10/14/2024 1:04:00 PM	CHLORIDE	1160 ug/L	BGMW11102024 FDUP03-102024 QC02102024EB SMW01102024 TMW26102024 TMW39D102024 TMW40D102024 TMW63102024
MB 280-670904/80	10/15/2024 6:11:00 AM	CHLORIDE	1150 ug/L	BGMW11102024 FDUP03-102024 QC02102024EB SMW01102024 TMW26102024 TMW39D102024 TMW40D102024 TMW63102024

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
QC02102024EB(Initial/TOT)	CHLORIDE	1300 ug/L	1300U ug/L

2/10/2025 8:47:42 AM ADR version 1.9.0.325 Page 2 of 2

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

No Data Review Qualifiers Applie

Surrogate Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197491-1_52_2a_ParsonsFtWingate_rev

Method: 8330B
Matrice

Sample ID (Analysis Type)	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
BGMW11102024 (Initial/TOT)	1,2-Dinitrobenzene [1,2-DNB]	82	83.00-119.00	All Target Analytes	J- (all detects) UJ (all non-detects)
TMW63102024 (Initial/TOT)	1,2-Dinitrobenzene [1,2-DNB]	77	83.00-119.00	All Target Analytes	J-(all detects) UJ(all non-detects)

2/10/2025 8:47:55 AM ADR version 1.9.0.325 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

Method: 6020B							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
TMW63102024MS (Dissolved) TMW63102024MS (Total) TMW63102024MSD (Dissolved) TMW63102024MSD (Total) (TMW63102024)	ALUMINUM MAGNESIUM SODIUM	- - 45	156 182 607	84.00-117.00 83.00-118.00 85.00-117.00	26 (20.00) 33 (20.00)	ALUMINUM MAGNESIUM SODIUM	J (all detects) UJ (all non-detects)
TMW63102024MS (Total) TMW63102024MSD (Dissolved) TMW63102024MSD (Total) (TMW63102024)	CALCIUM IRON	- 85	80 85	87.00-118.00 87.00-118.00	-	CALCIUM IRON	J-(all detects) UJ(all non-detects)
TMW63102024MSD (Total) (TMW63102024)	MANGANESE POTASSIUM	- -	120 132	87.00-115.00 87.00-115.00	-	MANGANESE POTASSIUM	J+(all detects)

Sample concentrations are greater than 4 times the MS/MSD spike concentrations for calcium and sodium . RECs could not be evaluated, and qualification was not warranted.

Method: 6850							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
TMW63102024MSD (TMW63102024)	PERCHLORATE	-	122	84.00-119.00	17 (15.00)	PERCHLORATE	J(all detects)
Method: 8270E							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
TMW63102024MSD (TMW63102024)	HEXACHLOROBUTADIENE HEXACHLOROETHANE		- - -	22.00-124.00 10.00-120.00 21.00-115.00	36 (20.00) 42 (20.00) 35 (20.00)	HEXACHLOROBUTADIENE HEXACHLOROETHANE	J(all detects)

2/10/2025 8:48:08 AM ADR version 1.9.0.325 Page 1 of 1

Lab Duplicate Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

No Data Review Qualifiers Applied

Field Duplicate Outlier Report

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ

280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method: 6020B

	Concentra	ation (ug/L)				
Analyte	BGMW11102024 (Dissolved)	FDUP03-102024 (Dissolved)	Sample RPD	eQAPP RPD	Flag	
IRON	180	270	40	30.00	J (all detects) UJ (all non-detects)	

	Concentra	ation (ug/L)			
Analyte	BGMW11102024 (Total)	Sample RPD	eQAPP RPD	Flag	
ALUMINUM	1000	370	92	30.00	
ARSENIC	1.4	0.77	58	30.00	
CALCIUM	84000	130000	43	30.00	
CHROMIUM	1.3	5.5	124	30.00	
COBALT	0.50	0.85	52	30.00	J(all detects)
MAGNESIUM	35000	53000	41	30.00	UJ(all non-detects)
MANGANESE	220	380	53	30.00	
NICKEL	1.6	3.7	79	30.00	
VANADIUM	4.3	1.8	82	30.00	
ZINC	2.6	6.1	80	30.00	

Method: 9056A

Concentration (ug/L) Sample eQAPP Analyte FDUP03-102024 RPD **RPD** BGMW11102024 Flag BROMIDE 1100 1600 37 30.00 J(all detects) U(all non-detects)

2/11/2025 12:27:09 PM ADR version 1.9.0.325 Page 1 of 1

Field QC Assignments and Associated Samples

EDD File Name: 280-197491-1

eQapp Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

	Associated	Sample Collection
	Samples	Date
Field QC FDUP03-102024		
QC Type: Field_Duplicate		
- · ·		
	BGMW11102024	10/2/2024 12:00:00 PM
	BGMW11102024	10/2/2024 12:00:00 PM
Field QC QC02102024EB		
QC Type: Equipment_Blank		
	TMM62402024	40/2/2024 42:45:00 DN
	TMW63102024	10/2/2024 12:45:00 PN
	FDUP03-102024	10/2/2024 12:10:00 PN
	MW02102024	10/1/2024 9:45:00 AM
	TMW40D102024	10/2/2024 1:55:00 PM
	SMW01102024	10/2/2024 8:50:00 AM
	TMW39D102024	10/2/2024 12:00:00 PM
	BGMW11102024	10/2/2024 12:00:00 PM
	MW29102024	10/2/2024 9:40:00 AM
	TMW31S102024	10/2/2024 8:05:00 AM
	TMW26102024	10/2/2024 10:30:00 AN
	TMW56102024	10/2/2024 8:45:00 AM
	TMW63102024	10/2/2024 12:45:00 PM
	FDUP03-102024	10/2/2024 12:10:00 PM
	MW02102024	10/1/2024 9:45:00 AM
	TMW40D102024	10/2/2024 1:55:00 PM
	SMW01102024	10/2/2024 8:50:00 AM
	TMW39D102024	10/2/2024 12:00:00 PM
	BGMW11102024	10/2/2024 12:00:00 PM
	MW29102024	10/2/2024 9:40:00 AM
	TMW31S102024	10/2/2024 8:05:00 AM
	TMW26102024	10/2/2024 10:30:00 AN
	TMW56102024	10/2/2024 8:45:00 AM
Field QC QC02102024TB		
QC Type: Trip_Blank		
	TMW63102024	10/2/2024 12:45:00 PM
	FDUP03-102024	10/2/2024 12:10:00 PM
	MW02102024	10/1/2024 9:45:00 AM

Associated Samples	Sample Collection Date
TMW40D102024	10/2/2024 1:55:00 PM
SMW01102024	10/2/2024 8:50:00 AM
TMW39D102024	10/2/2024 12:00:00 PM
BGMW11102024	10/2/2024 12:00:00 PM
MW29102024	10/2/2024 9:40:00 AM
TMW31S102024	10/2/2024 8:05:00 AM
TMW26102024	10/2/2024 10:30:00 AM
TMW56102024	10/2/2024 8:45:00 AM

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197491-1_52_2a_ParsonsFtWingate_rev

Method: 365.1

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW29102024	Orthophosphate as P	J	30	50	LOQ	ug/L	J (all detects)
SMW01102024	Orthophosphate as P	J	32	50	LOQ	ug/L	J (all detects)
TMW26102024	Orthophosphate as P	J	30	50	LOQ	ug/L	J (all detects)

Method: 6020B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
BGMW11102024	ARSENIC CHROMIUM COBALT IRON LEAD NICKEL POTASSIUM VANADIUM ZINC)))))	1.4 1.3 0.50 180 0.27 1.6 790 4.3 5.3	5.0 3.0 1.0 200 1.0 3.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
FDUP03-102024	ALUMINUM ARSENIC CHROMIUM COBALT COPPER NICKEL POTASSIUM VANADIUM ZINC]]]]	26 0.77 0.50 0.60 1.6 1.5 610 1.3 3.3	200 5.0 3.0 1.0 2.0 3.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
MW02102024	ANTIMONY ARSENIC COPPER POTASSIUM SELENIUM VANADIUM	J J J	0.80 1.6 1.1 380 3.3 2.1	2.0 5.0 2.0 1000 5.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
MW29102024	ANTIMONY ARSENIC CADMIUM CHROMIUM NICKEL POTASSIUM SILVER THALLIUM VANADIUM ZINC]]]]]	1.0 3.5 0.49 0.60 1.5 500 0.14 0.92 4.1 9.9	2.0 5.0 1.0 3.0 3.0 1000 1.0 1.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
QC02102024EB	ALUMINUM CALCIUM MAGNESIUM POTASSIUM SODIUM ZINC	J J J	86 50 10 61 770 5.9	200 200 200 1000 1000 10	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)

Project Name and Number: Fort Wingate Depot Activity Northern Area - USACE Project: NM6213820974

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197491-1_52_2a_ParsonsFtWingate_rev

Method: 6020B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SMW01102024	ALUMINUM ARSENIC CHROMIUM COBALT IRON NICKEL POTASSIUM SILVER ZINC	J	13 2.7 0.50 0.59 11 2.2 180 0.079 2.0	200 5.0 3.0 1.0 200 3.0 1000 1.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW26102024	ARSENIC BERYLLIUM CHROMIUM COBALT COPPER LEAD NICKEL POTASSIUM VANADIUM	J J J J	1.6 0.62 1.0 0.61 1.7 0.26 1.9 290 3.6	5.0 1.0 3.0 1.0 2.0 1.0 3.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW31S102024	ARSENIC CHROMIUM COBALT COPPER IRON LEAD NICKEL POTASSIUM VANADIUM ZINC		0.62 1.0 0.52 0.91 19 0.55 0.88 390 2.3 3.2	5.0 3.0 1.0 2.0 200 1.0 3.0 1000 5.0 10	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW39D102024	CHROMIUM SELENIUM VANADIUM ZINC	J	0.50 1.6 2.2 4.1	3.0 5.0 5.0 10	LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L	J (all detects)
TMW40D102024	ALUMINUM ARSENIC CADMIUM CHROMIUM IRON POTASSIUM SELENIUM SILVER VANADIUM ZINC))))	22 0.50 0.33 0.55 28 970 2.2 0.050 3.1 2.4	200 5.0 1.0 3.0 200 1000 5.0 1.0 5.0	LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)
TMW63102024	ARSENIC CHROMIUM IRON NICKEL POTASSIUM VANADIUM	J J J J1	0.51 1.5 12 0.90 750 2.0	5.0 3.0 200 3.0 1000 5.0	LOQ LOQ LOQ LOQ LOQ LOQ	ug/L ug/L ug/L ug/L ug/L ug/L	J (all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename:

280-197491-1_52_2a_ParsonsFtWingate_rev

Method: 8015D-DRO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW02102024	Diesel Range Organics (DRO) C10-C28 Oil Range Organics (ORO) C20-C38	J	65 140	270 540	LOQ LOQ	ug/L ug/L	J (all detects)
MW29102024	Oil Range Organics (ORO) C20-C38	J	300	2500	LOQ	ug/L	J (all detects)

Method: 8260D

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
BGMW11102024	CHLOROMETHANE	J	0.45	2.0	LOQ	ug/L	J (all detects)
1	BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE	J	0.86 0.66	1.0 1.0	LOQ LOQ	ug/L ug/L	J (all detects)

Method: 8330B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	J J1 M	0.17	0.23	LOQ	ug/L	J (all detects)

Method: 9056A

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
MW29102024	FLUORIDE	J	740	1000	LOQ	ug/L	J (all detects)
QC02102024EB	CHLORIDE	J	1300	3000	LOQ	ug/L	J (all detects)
TMW31S102024	FLUORIDE	J	390	1000	LOQ	ug/L	J (all detects)
TMW39D102024	FLUORIDE	J	680	1000	LOQ	ug/L	J (all detects)
TMW40D102024	FLUORIDE Nitrite as N	J	490 120	1000 500	LOQ LOQ	ug/L ug/L	J (all detects)
TMW63102024	BROMIDE FLUORIDE	J	340 600	500 1000	LOQ LOQ	ug/L ug/L	J (all detects)

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename:

280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **GENCHEM**

Sample ID:MW29102024	Collec	10/2/2 ted: AM	024 9:40		nalveie 1	Гуре: Initia	al/TOT	,	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Orthophosphate as P	30	J	40	LOD	50	LOQ	ug/L	J	TR		
Sample ID:SMW01102024	Collec	10/2/2024 8:50:0 Collected: AM			0:00 Analysis Type:Initial/TO				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Orthophosphate as P	32	J	40	LOD	50	LOQ	ug/L	J	TR		
Sample ID:TMW26102024	Collec	10/2/2 ted: _{AM}	024 10:3		nalysis 1	' Гуре: Initia	al/TOT	L	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Orthophosphate as P	30	J	40	LOD	50	LOQ	ug/L	J	TR		

Method Category:	GENCHEM	

Sample ID:BGMW11102024	10/2/2024 12:00:00 BGMW11102024									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BROMIDE	1100		500	LOD	500	LOQ	ug/L	J	DU1	
		10/2/2	024 12:1	0:00						

Collected: PM Sample ID:FDUP03-102024 Analysis Type: Initial/TOT Dilution: 1 Data DL RL Review Lab Lab Reason Analyte Result Qual DL Type RL **Type Units** Qual Code BROMIDE 1600 500 LOD LOQ DU1 ug/L

Sample ID:MW29102024 10/2/2024 9:40:00 Collected: AM Analysis Type: Initial/TOT									
Analyte	Lab Result	Lab Qual	DL	DL DL RL Data DL RL Review DL Type RL Type Units Qual					Reason Code
FLUORIDE	740	J	500	LOD	1000	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename:

280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: GENCHEM

Sample ID:QC02102024EB	Collec	10/2/2 ted:рм	024 2:00		nalveie 1	<i>ype:</i> Initia	al/TOT	,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLORIDE	1300	J	2500	LOD	3000	LOQ	ug/L	J	TR
Sample ID:TMW31S102024	Collec	10/2/2 ted: AM	024 8:05		nalysis 1	<i>ype:</i> Initia	al/TOT	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	390	J	500	LOD	1000	LOQ	ug/L	J	TR
Sample ID:TMW39D102024	Collec	10/2/2 ted:рм	024 12:0		nalysis 1	ype:Initia	al/TOT		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	680	J	500	LOD	1000	LOQ	ug/L	J	TR
Sample ID:TMW40D102024	Collec	10/2/2 ted:pM	024 1:55		nalysis 1	<i>ype:</i> Initia	al/TOT	L	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	490	J	500	LOD	1000	LOQ	ug/L	J	TR
Nitrite as N	120	J	100	LOD	500	LOQ	ug/L	J	TR
Sample ID:TMW63102024	Collec	10/2/2 ted: PM	024 12:4		nalysis 1	<i>ype:</i> Initia	al/TOT	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BROMIDE	340	J	500	LOD	500	LOQ	ug/L	J	TR
FLUORIDE	600	J	500	LOD	1000	LOQ	ug/L	J	TR

Method	Category	/: M	ETALS

Sample ID:BGMW11102024	10/2/2024 12:0 Collected: PM				nalysis 1	ype: Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	0.66	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
COBALT	0.45	J	0.90	LOD	1.0	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

4	Λ	n	n	'n	24	4	2		n	n	١.	n	n
-1	u	12	12	U.	24	- 1	_	31	U	u		u	u

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Sample ID:BGMW11102024	Collec	Collected: PM				<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	180	J	40	LOD	200	LOQ	ug/L	J	TR, DU1
NICKEL	1.5	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	580	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	1.8	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	5.3	J	8.0	LOD	10	LOQ	ug/L	U	BLL/BLM

10/2/2024 12:00:00

Collected: PM Sample ID:BGMW11102024 Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	1000		30	LOD	200	LOQ	ug/L	J	DU1
ARSENIC	1.4	J	2.0	LOD	5.0	LOQ	ug/L	J	TR, DU1
CALCIUM	84000		100	LOD	200	LOQ	ug/L	J	DU1
CHROMIUM	1.3	J	1.8	LOD	3.0	LOQ	ug/L	J	TR, DU1
COBALT	0.50	J	0.90	LOD	1.0	LOQ	ug/L	J	TR, DU1
LEAD	0.27	J	0.70	LOD	1.0	LOQ	ug/L	J	TR
MAGNESIUM	35000		15	LOD	200	LOQ	ug/L	J	DU1
MANGANESE	220		1.8	LOD	3.0	LOQ	ug/L	J	DU1
NICKEL	1.6	J	1.9	LOD	3.0	LOQ	ug/L	J	TR, DU1
POTASSIUM	790	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	4.3	J	3.0	LOD	5.0	LOQ	ug/L	UJ	BLT/BLU, DU1
ZINC	2.6	J	8.0	LOD	10	LOQ	ug/L	J	TR, DU1

10/2/2024 12:10:00

Sample ID:FDUP03-102024 Collected: PM Analysis Type: Initial/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	26	J	30	LOD	200	LOQ	ug/L	U	BLL/BLM, ICB/ CCB
ARSENIC	0.77	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
CHROMIUM	0.50	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
COBALT	0.60	J	0.90	LOD	1.0	LOQ	ug/L	J	TR
COPPER	1.6	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
IRON	270		40	LOD	200	LOQ	ug/L	J	DU1

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

4	Λ	n	n	വാഗ	12:	1 N • N	n

Sample ID:FDUP03-102024	Collec	0.00 A	nalysis 1	<i>ype:</i> Initia	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NICKEL	1.5	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	610	J	76	LOD	1000	LOQ	ug/L	J	TR

8.0 10/2/2024 12:10:00

3.0

LOD

LOD

5.0

10

Sample ID:FDUP03-102024

VANADIUM

ZINC

Collected: PM

J

1.3

3.3

Analysis Type: Initial/TOT

LOQ

LOQ

ug/L

ug/L

J

U

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Dilution: 1

TR

BLL/BLM

		I IVI) [
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	370		30	LOD	200	LOQ	ug/L	J	DU1	
ARSENIC	0.77	J	2.0	LOD	5.0	LOQ	ug/L	J	TR, DU1	
CALCIUM	130000		100	LOD	200	LOQ	ug/L	J	DU1	
CHROMIUM	5.5		1.8	LOD	3.0	LOQ	ug/L	J	DU1	
COBALT	0.85	J	0.90	LOD	1.0	LOQ	ug/L	J	TR, DU1	
MAGNESIUM	53000		15	LOD	200	LOQ	ug/L	J	DU1	
MANGANESE	380		1.8	LOD	3.0	LOQ	ug/L	J	DU1	
NICKEL	3.7		1.9	LOD	3.0	LOQ	ug/L	J	DU1	
POTASSIUM	660	J	76	LOD	1000	LOQ	ug/L	J	TR	
VANADIUM	1.8	J	3.0	LOD	5.0	LOQ	ug/L	UJ	BLT/BLU, DU1	
ZINC	6.1	J	8.0	LOD	10	LOQ	ug/L	J	TR, DU1	
10/1/2024 9:45:00										

Sample ID:MW02102024

Collected: AM

Analysis Type: Initial/DIS

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER	1.1	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
POTASSIUM	380	J	76	LOD	1000	LOQ	ug/L	U	ICB/CCB
SELENIUM	3.2	J	4.0	LOD	5.0	LOQ	ug/L	J	TR
VANADIUM	2.1	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	22		8.0	LOD	10	LOQ	ug/L	J+	BLL/BLM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: METALS

10/1/2024 9:45:00

Sample ID:MW02102024	Collec	.00 A	nalysis ī	Type: Initia	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

Analyte	Result	Qual	DL	Type	RL	Type	Units	Review Qual	Code
ANTIMONY	0.80	J	1.0	LOD	2.0	LOQ	ug/L	J	TR
ARSENIC	1.6	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
SELENIUM	3.3	J	4.0	LOD	5.0	LOQ	ug/L	J	TR

10/2/2024 9:40:00

Sample ID:MW29102024 Collected: AM Analysis Type: Initial/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	1.9	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
CADMIUM	0.19	J	0.75	LOD	1.0	LOQ	ug/L	J	TR
CHROMIUM	0.60	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
NICKEL	1.5	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	500	J	76	LOD	1000	LOQ	ug/L	J	TR
SILVER	0.068	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB
VANADIUM	4.1	J	3.0	LOD	5.0	LOQ	ug/L	J	TR

10/2/2024 9:40:00

Sample ID:MW29102024 Collected: Am Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	1.0	J	1.0	LOD	2.0	LOQ	ug/L	J	TR
ARSENIC	3.5	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
CADMIUM	0.49	J	0.75	LOD	1.0	LOQ	ug/L	J	TR
SILVER	0.14	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB
THALLIUM	0.92	J	0.75	LOD	1.0	LOQ	ug/L	J	TR
ZINC	9.9	J	8.0	LOD	10	LOQ	ug/L	J	TR

10/2/2024 2:00:00

Sample ID:QC02102024EB Collected: PM Analysis Type: Initial/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	86	J	30	LOD	200	LOQ	ug/L	J	TR
CALCIUM	60	J	100	LOD	200	LOQ	ug/L	J	TR
MAGNESIUM	8.6	J	15	LOD	200	LOQ	ug/L	J	TR
POTASSIUM	59	J	76	LOD	1000	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Project Name and Number: Fort Wingate Depot Activity Northern Area - USACE Project: USACE Project: NM6213820974

SODIUM

Data Qualifier Summary

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

•	_	_		_	_	•	_	_	_	_	_
1	u/		17	и	–	4	2.	u	и.	u	u

Sample ID:QC02102024EB	Collec	Collected: PM				<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	610	J	150	LOD	1000	LOQ	ug/L	J	TR
ZINC	5.9	J	8.0	LOD	10	LOQ	ug/L	J	TR

10/2/2024 2:00:00

Collected: PM Sample ID:QC02102024EB Analysis Type: Initial/TOT Data DL RL Review Lab Lab Reason Analyte Result Qual DL Type RL **Type Units** Qual Code CALCIUM 50 LOD J 100 200 LOQ J ug/L TR MAGNESIUM 10 J 15 LOD 200 LOQ ug/L J TR POTASSIUM 76 LOD 1000 LOQ ug/L TR

10/2/2024 8:50:00

150

LOD

1000

LOQ

ug/L

Collected: AM Sample ID:SMW01102024 Analysis Type: Initial/DIS Dilution: 1

770

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	13	J	30	LOD	200	LOQ	ug/L	U	BLL/BLM
ARSENIC	2.7	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
IRON	11	J	40	LOD	200	LOQ	ug/L	U	BLT/BLU
NICKEL	2.2	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	180	J	76	LOD	1000	LOQ	ug/L	U	BLL/BLM, ICB/ CCB

10/2/2024 8:50:00

Collected: AM Sample ID:SMW01102024 Analysis Type: Initial/TOT Dilution: 1

	AlVI				ypc			Dilation
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2.4	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
0.50	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
0.59	J	0.90	LOD	1.0	LOQ	ug/L	J	TR
180	J	40	LOD	200	LOQ	ug/L	J	TR
2.5	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
200	J	76	LOD	1000	LOQ	ug/L	U	BLL/BLM
0.079	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB
7.2		3.0	LOD	5.0	LOQ	ug/L	J+	BLT/BLU
2.0	J	8.0	LOD	10	LOQ	ug/L	J	TR
	Lab Result 2.4 0.50 0.59 180 2.5 200 0.079 7.2	Lab Result Lab Qual 2.4 J 0.50 J 0.59 J 180 J 2.5 J 200 J 0.079 J 7.2 J	Lab Result Lab Qual DL 2.4 J 2.0 0.50 J 1.8 0.59 J 0.90 180 J 40 2.5 J 1.9 200 J 76 0.079 J 0.15 7.2 3.0	Lab Result Lab Qual DL Type 2.4 J 2.0 LOD 0.50 J 1.8 LOD 0.59 J 0.90 LOD 180 J 40 LOD 2.5 J 1.9 LOD 200 J 76 LOD 0.079 J 0.15 LOD 7.2 3.0 LOD	Lab Result Lab Qual DL DL DL Type RL 2.4 J 2.0 LOD 5.0 0.50 J 1.8 LOD 3.0 0.59 J 0.90 LOD 1.0 180 J 40 LOD 200 2.5 J 1.9 LOD 3.0 200 J 76 LOD 1000 0.079 J 0.15 LOD 1.0 7.2 3.0 LOD 5.0	Lab Result Lab Qual DL Type RL Type RL Type 2.4 J 2.0 LOD 5.0 LOQ 0.50 J 1.8 LOD 3.0 LOQ 0.59 J 0.90 LOD 1.0 LOQ 180 J 40 LOD 200 LOQ 2.5 J 1.9 LOD 3.0 LOQ 200 J 76 LOD 1000 LOQ 0.079 J 0.15 LOD 1.0 LOQ 7.2 3.0 LOD 5.0 LOQ	Lab Result Lab Qual DL Type RL Type RL Type Units 2.4 J 2.0 LOD 5.0 LOQ ug/L 0.50 J 1.8 LOD 3.0 LOQ ug/L 0.59 J 0.90 LOD 1.0 LOQ ug/L 180 J 40 LOD 200 LOQ ug/L 2.5 J 1.9 LOD 3.0 LOQ ug/L 200 J 76 LOD 1000 LOQ ug/L 0.079 J 0.15 LOD 1.0 LOQ ug/L 7.2 3.0 LOD 5.0 LOQ ug/L	Lab Result Lab Qual DL Type RL Type RL Type Units Data Review Qual 2.4 J 2.0 LOD 5.0 LOQ ug/L J 0.50 J 1.8 LOD 3.0 LOQ ug/L J 0.59 J 0.90 LOD 1.0 LOQ ug/L J 180 J 40 LOD 200 LOQ ug/L J 2.5 J 1.9 LOD 3.0 LOQ ug/L J 200 J 76 LOD 1000 LOQ ug/L U 0.079 J 0.15 LOD 1.0 LOQ ug/L U 7.2 3.0 LOD 5.0 LOQ ug/L J+

^{*} denotes a non-reportable result

Project Name and Number: Fort Wingate Depot Activity Northern Area - USACE Project: USACE Project: NM6213820974

Dilution: 1

TR

J

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

10/2/2024 10:30:00

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Sample ID:TMW26102024 Collected: AM Analysis Type: Initial/DIS Dilui	lution: 1

Sample ID:TMW26102024	Colle	Collected: AM			nalysis 1	<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	1.6	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
COPPER	1.7	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
NICKEL	1.9	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	290	J	76	LOD	1000	LOQ	ug/L	U	BLL/BLM
VANADIUM	3.6	J	3.0	LOD	5.0	LOQ	ug/L	J	TR

10/2/2024 10:30:00

Collected: AM Sample ID:TMW26102024 Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	1.6	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
BERYLLIUM	0.62	J	0.60	LOD	1.0	LOQ	ug/L	J	TR
CHROMIUM	1.0	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
COBALT	0.61	J	0.90	LOD	1.0	LOQ	ug/L	J	TR
LEAD	0.26	J	0.70	LOD	1.0	LOQ	ug/L	J	TR
NICKEL	2.3	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	360	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	5.3		3.0	LOD	5.0	LOQ	ug/L	J+	BLT/BLU

10/2/2024 8:05:00 Collected: AM Sample ID:TMW31S102024 Analysis Type: Initial/DIS Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	0.62	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
CHROMIUM	1.0	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
IRON	19	J	40	LOD	200	LOQ	ug/L	J	TR
NICKEL	0.88	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	390	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	2.3	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	3.2	J	8.0	LOD	10	LOQ	ug/L	U	BLL/BLM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

10/2/2024 8:05:00	
Collected: AM	Analysis Type: Initial/TOT

Sample ID:TMW31S102024	Colle	cted: AM	024 6:05		nalysis 1	<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	0.52	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
COBALT	0.52	J	0.90	LOD	1.0	LOQ	ug/L	J	TR
COPPER	0.91	J	1.8	LOD	2.0	LOQ	ug/L	J	TR
LEAD	0.55	J	0.70	LOD	1.0	LOQ	ug/L	J	TR
POTASSIUM	580	J	76	LOD	1000	LOQ	ug/L	J	TR
VANADIUM	5.4		3.0	LOD	5.0	LOQ	ug/L	J+	BLT/BLU
ZINC	5.7	J	8.0	LOD	10	LOQ	ug/L	J	TR

10/2/2024 12:00:00 Sample ID:TMW39D102024 Analysis Type: Initial/DIS Dilution: 1 Collected: PM

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ZINC	11		8.0	LOD	10	LOQ	ug/L	J+	BLL/BLM

10/2/2024 12:00:00 Sample ID:TMW39D102024 Collected: PM Analysis Type: Initial/TOT

		I IVI			,)			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	0.50	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
SELENIUM	1.6	J	4.0	LOD	5.0	LOQ	ug/L	J	TR
VANADIUM	2.2	J	3.0	LOD	5.0	LOQ	ug/L	U	BLT/BLU
ZINC	4.1	J	8.0	LOD	10	LOQ	ug/L	J	TR

10/2/2024 1:55:00 Sample ID:TMW40D102024 Collected: PM Dilution: 1 Analysis Type: Initial/DIS

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	22	J	30	LOD	200	LOQ	ug/L	U	BLL/BLM, ICB/ CCB
ARSENIC	0.50	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
POTASSIUM	970	J	76	LOD	1000	LOQ	ug/L	J	TR
SELENIUM	2.2	J	4.0	LOD	5.0	LOQ	ug/L	J	TR
VANADIUM	3.1	J	3.0	LOD	5.0	LOQ	ug/L	J	TR
ZINC	2.4	J	8.0	LOD	10	LOQ	ug/L	U	BLL/BLM

^{*} denotes a non-reportable result

Dilution: 1

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

10/2/2024 1:55:00

Sample ID:TMW40D102024	Collected: PM	Analysis Type: Initial/TOT	Dilution: 1
------------------------	---------------	----------------------------	-------------

Sample ID:TMW40D102024	Collec	Collected: PM Analysis Type: Initial/TOT					1	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ALUMINUM	110	J	30	LOD	200	LOQ	ug/L	J	TR	
ARSENIC	0.69	J	2.0	LOD	5.0	LOQ	ug/L	J	TR	
CADMIUM	0.33	J	0.75	LOD	1.0	LOQ	ug/L	J	TR	
CHROMIUM	0.55	J	1.8	LOD	3.0	LOQ	ug/L	J	TR	
IRON	28	J	40	LOD	200	LOQ	ug/L	U	BLT/BLU	
POTASSIUM	940	J	76	LOD	1000	LOQ	ug/L	J	TR	
SELENIUM	2.8	J	4.0	LOD	5.0	LOQ	ug/L	J	TR	
SILVER	0.050	J	0.15	LOD	1.0	LOQ	ug/L	U	ICB/CCB	
VANADIUM	4.1	J	3.0	LOD	5.0	LOQ	ug/L	U	BLT/BLU	
ZINC	3.2	J	8.0	LOD	10	LOQ	ug/L	J	TR	

10/2/2024 12:45:00

Collected: PM Dilution: 1 Sample ID:TMW63102024 Analysis Type: Initial/DIS

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	0.58	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
IRON	12	J	40	LOD	200	LOQ	ug/L	J	TR, MD2
MAGNESIUM	980		15	LOD	200	LOQ	ug/L	J	MD1, MD5
MANGANESE	25		1.8	LOD	3.0	LOQ	ug/L	J+	MD1
POTASSIUM	720	J	76	LOD	1000	LOQ	ug/L	J	TR, MD1

10/2/2024 12:45:00 Collected: PM Analysis Type: Initial/TOT Dilution: 1 Sample ID:TMW63102024

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	530	J1	30	LOD	200	LOQ	ug/L	J	MD1, MD5
ARSENIC	0.51	J	2.0	LOD	5.0	LOQ	ug/L	J	TR
CHROMIUM	1.5	J	1.8	LOD	3.0	LOQ	ug/L	J	TR
IRON	350	J1	40	LOD	200	LOQ	ug/L	J-	MD2
MAGNESIUM	1100	J1	15	LOD	200	LOQ	ug/L	J	MD1, MD5
MANGANESE	31	J1	1.8	LOD	3.0	LOQ	ug/L	J+	MD1
NICKEL	0.90	J	1.9	LOD	3.0	LOQ	ug/L	J	TR
POTASSIUM	750	J J1	76	LOD	1000	LOQ	ug/L	J	TR, MD1
VANADIUM	2.0	J	3.0	LOD	5.0	LOQ	ug/L	U	BLT/BLU

^{*} denotes a non-reportable result

Project Name and Number: Fort Wingate Depot Activity Northern Area - USACE Project: USACE Project: NM6213820974

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: METALS

Method Category: METALS											
Welliou Calegory. METALS											
Sample ID:BGMW11102024	Collec	10/2/2 ted:pm	2024 12:0		nalveie 1	Гуре: Initia	al/DIS		Dilution: 1		
Sample 1D. DOMIN 11102024	Conec	PM			lialysis i	ype.iiiii		Data	Dilution. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code		
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
Sample ID:FDUP03-102024	10/2/2024 12:10:00 Collected: PM Analysis Type: Initial/DIS Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.080	UH	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
WENCON		10/1/2	2024 9:45		0.20	LOQ	ug/L	00	301		
Sample ID:MW02102024	Collec	Collected: AM Analysis Type: Initial/DIS Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
Sample ID:MW29102024	Collec	10/2/2 ted: AM	024 9:40	:00	nalveie 1	' Гуре: Initia	al/DIS	•	Dilution: 1		
54mple 15.mvv2010202-4		AIVI			larysis i			Data			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code		
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
Sample ID:QC02102024EB	Collec	10/2/2 ted: PM	024 2:00	:00 <i>A</i>	nalysis 1	Гуре: Initia	al/DIS	•	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
Sample ID:SMW01102024	Collec	10/2/2 ted: AM	024 8:50		nalysis 1	<i>Type:</i> Initia	al/DIS		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1		
	-	•		•	-	•	•				

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename:

280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: **METALS**

Sample ID:TMW26102024	Collec	10/2/2 ted: AM	024 10:3	0:00 <i>A</i>	nalysis 1	Гуре: Initia	al/DIS	E	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1
Sample ID:TMW31S102024	Collec	10/2/2 ted: AM	024 8:05	nalysis 1	Гуре: Initia	al/DIS	E	ilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1
Sample ID:TMW39D102024	Collec	10/2/2024 12:00:00 Collected: pM Analysis Type: Initial/DIS L							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1
Sample ID:TMW40D102024	Collec	10/2/2 ted:pM	024 1:55		nalysis 1	΄ Γ <i>ype:</i> Initia	al/DIS	E	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.080	UН	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1
Sample ID:TMW63102024	Collec	10/2/2 ted: _{РМ}	024 12:4		nalysis 1	Гуре: Initia	al/DIS	C	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.080	υн	0.080	LOD	0.20	LOQ	ug/L	UJ	SC1

wetnoa	Categ	ory:	SVUA

10/1/2024 9:45:00 Collected: AM Sample ID:MW02102024 Analysis Type: Initial/TOT Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Type RL Type **Units** Qual Code Diesel Range Organics (DRO) C10-C28 65 LOD LOQ ug/L J 130 270 J TR 140 Oil Range Organics (ORO) C20-C38 140 LOD LOQ ug/L TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: SVOA

10	ワロフ	024	9:40	0:00

Sample ID:MW29102024	Collec	Collected: AM			nalysis 1	<i>ype:</i> Initia	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Oil Range Organics (ORO) C20-C38	300	J	630	LOD	2500	LOQ	ug/L	J	TR

Method Category: **SVOA**

10/2/2024 2:00:00

Sample ID:QC02102024EB	Collec	ctea: PM Analysis Type: Initial/101				Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.63	UQ	0.63	LOD	1.1	LOQ	ug/L	UJ	CV2
AROCLOR 1260	0.32	UQ	0.32	LOD	1.1	LOQ	ug/L	UJ	CV2

Method Category: **SVOA**

10/1/2024 9:45:00

Sample ID:MW02102024	Collec	Collected: AM			Analysis Type: Initial/TOT-ACID					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	29	UMQ	29	LOD	49	LOQ	ug/L	UJ	CV2	
PENTACHLOROPHENOL	47	UQ	47	LOD	49	LOQ	ug/L	UJ	CV2	

10/1/2024 9:45:00 Initial/TOT-BASE/ Analysis Type: NEUTRAL Collected: AM Sample ID:MW02102024 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,2'-OXYBIS (1-CHLOROPROPANE)	7.8	UQ	7.8	LOD	9.8	LOQ	ug/L	UJ	CV2
3-NITROANILINE	7.8	UMQ	7.8	LOD	9.8	LOQ	ug/L	UJ	CV2

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: SVOA

10/2	/2024	12:0	เดะดด

Sample ID:BGMW11102024	Collec	10/2/2 ted:PM	024 12:0		nalysis 1	ype: Initia	al/TOT	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3,5-TRINITROBENZENE	0.21	UQM	0.21	LOD	0.22	LOQ	ug/L	UJ	SU2
1,3-DINITROBENZENE	0.10	UQM	0.10	LOD	0.12	LOQ	ug/L	UJ	SU2
2,4,6-TRINITROTOLUENE	0.10	UQ	0.10	LOD	0.12	LOQ	ug/L	UJ	SU2
2,4-DINITROTOLUENE	0.084	UQ	0.084	LOD	0.10	LOQ	ug/L	UJ	SU2
2,6-DINITROTOLUENE	0.084	UQ	0.084	LOD	0.10	LOQ	ug/L	UJ	SU2
2-AMINO-4,6-DINITROTOLUENE	0.10	UQ	0.10	LOD	0.12	LOQ	ug/L	UJ	SU2
4-AMINO-2,6-DINITROTOLUENE	0.13	UQ	0.13	LOD	0.16	LOQ	ug/L	UJ	SU2
Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX)	0.21	UQ	0.21	LOD	0.22	LOQ	ug/L	UJ	SU2
m-Nitrotoluene	0.37	UQ	0.37	LOD	0.42	LOQ	ug/L	UJ	SU2
NITROBENZENE	0.21	UQ	0.21	LOD	0.22	LOQ	ug/L	UJ	SU2
Nitroglycerin	2.1	UQ	2.1	LOD	2.2	LOQ	ug/L	UJ	SU2
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.21	UQ	0.21	LOD	0.22	LOQ	ug/L	UJ	SU2
o-Nitrotoluene	0.21	UQ	0.21	LOD	0.22	LOQ	ug/L	UJ	SU2
Pentaerythritol tetranitrate (PETN)	1.0	UQ	1.0	LOD	1.2	LOQ	ug/L	UJ	SU2
p-Nitrotoluene	0.42	UQ	0.42	LOD	0.43	LOQ	ug/L	UJ	SU2
Trinitrophenylmethylnitramine (Tetryl)	0.10	UQ	0.10	LOD	0.12	LOQ	ug/L	UJ	SU2

10/2/2024 8:05:00

Sample ID:TMW31S102024 Collected: AM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3-DINITROBENZENE	0.11	U M	0.11	LOD	0.12	LOQ	ug/L	J	PJ
2,4-DINITROTOLUENE	0.088	U	0.088	LOD	0.11	LOQ	ug/L	J	PJ
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.17	J J1 M	0.22	LOD	0.23	LOQ	ug/L	J	TR, PJ

10/2/2024 12:45:00

Sample ID:TMW63102024 Collected: PM Analysis Type: Initial/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,3-DINITROBENZENE	0.11	UQ	0.11	LOD	0.12	LOQ	ug/L	UJ	SU2

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 **Laboratory: TAL DEN**

EDD Filename: eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

280-197491-1_52_2a_ParsonsFtWingate_rev_rev

Method Category: VOA

40	เวเว	2024	12.	nn.	·nn

Sample ID:BGMW11102024	Collec	ted:pM		Α	nalysis 1	<i>ype:</i> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CHLOROMETHANE	0.45	J	1.0	LOD	2.0	LOQ	ug/L	J	TR	

10/2/2024 2:00:00 Collected: DM

Sample ID:QC02102024EB	Collected: PM A			nalysis 1	<i>ype:</i> Initia	al/TOT	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BROMODICHLOROMETHANE	0.86	J	0.50	LOD	1.0	LOQ	ug/L	J	TR
DIBROMOCHLOROMETHANE	0.66	J	0.50	LOD	1.0	LOQ	ug/L	J	TR

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 280-197491-1 Laboratory: TAL DEN

EDD Filename: 280-197491-1_52_2a_ParsonsFtWingate_rev_rev

eQAPP Name: Fort_Wingate_rev2_hexchrom_AQ HT_24hr

Reason Code Legend

Reason Code	Description
BLL/BLM	Equipment Blank Contamination
BLT/BLU	Method Blank Contamination
CV2	Continuing Calibration Verification Percent Recovery Upper Estimation
DU1	Field Duplicate Precision
ICB/CCB	Calibration Blank Contamination
MD1	Matrix Spike Upper Estimation
MD2	Matrix Spike Lower Estimation
MD5	Matrix Spike Precision
PJ	Professional Judgment
SC1	Sampling to Analysis Estimation
SU2	Surrogate/Tracer Recovery Lower Estimation
TR	Reporting Limit Trace Value

^{*} denotes a non-reportable result