Administrative Record

FORT WINGATE DEPOT ACTIVITY, GALLUP, NEW MEXICO

Document No. 94-2

Fort Wingate Depot Activity, Gallup, New Mexico, Resource Conservation and Recovery Act, Modification to Final Interim Status Closure Plan

Environmental Resources Management

May 1994

INQUIRIES REGARDING THIS DOCUMENT AND/OR THE ADMINISTRATIVE RECORD FOR FORT WINGATE DEPOT ACTIVITY SHOULD BE MADE TO: COMMANDER, TOOELE ARMY DEPOT, TOOELE, UTAH 84074

FORT WINGATE DEPOT ACTIVITY RESOURCE CONSERVATION AND RECOVERY ACT

Modification to Final Interim Status Closure Plan

Submitted to:

State of New Mexico Environment Department Santa Fe, New Mexico

Prepared for:

U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND 21010

Prepared by:

ENVIRONMENTAL RESOURCES MANAGEMENT, INC. 855 Springdale Drive Exton, PA 19341

Distribution limited to U. S. Government Agencies only for protection of privileged information evaluating another command

Requests for this document must be referred to: Commander, U. S. Army Environmental Center, Aberdeen Proving Ground, MD 21010; or Commander, Tooele Army Depot, UT

23 May 1994

-

Job No.: 00306.50

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

-

-

÷

1

ĩ

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial products. This report may not be cited for purposes of advertisement.

 \sim \sim \sim $\overline{}$ $\overline{}$ \sim $\overline{}$ \sim \sim $\overline{}$ \sim \sim \smile \smile \sim \sim $\overline{}$ $\overline{}$ \smile \sim \sim \sim \sim \sim \sim \sim \sim $\overline{}$ \sim \sim $\overline{}$

)))

1.0	INTRODUCTION	1-1
1.1	BACKGROUND	1 -1
2.0	PROPOSED FIELD SCREENING ACTIVITIES	2-1
2.1	UNEXPLODED ORDNANCE SURVEY	2-2
2.1.1	Methodology	2-2
2.1.2	Results	2-3
2.2	FIELD SCREENING SAMPLES	2-4
2.2.1	Surface Soil	2-4
2.2.1.1	OBDA Grid Quadrants	2-4
2.2.1.2	Burning Ground Area	2-4
2.2.1.3	Detonation Craters -	2-4
2.2.1.4	Blow-In-Place (Bip) Items	2-4
2.2.1.5	Residue/Debris Areas	2-5
2.2.1.6	Arroyo	2-5
2.2.2	Surface Water	2-5
2.2.3	Shallow Subsurface Water	2-5
3.0	FIELD SCREENING EVALUATION APPROACH	3-1
3.1	Identification of Constituents for Screening	3-1 3-2
3.2	Identification of Screening Levels	3-2 3-3
3.2.1	Background	
3.2.2	Regulatory Criteria	3-3
3.2.3	Screening Levels Providing Protection of Human Health	3-4
3.2.4	Secondary Factors	3-4 3-4
3.2.5	Selection of Screening Levels	
3.3	Potentially Applicable or Relevant and Appropriate Requirements	3-5
3.4	Risk-Based Screening Levels	3-5
3.4.1	Identification of Potential Exposure Pathways for the Screening Assessment	3-9 3-9
3.4.2	Risk-Based Screening Level Calculations	3-10
3.4.2.1	Screening Level Calculations for Soil and Sediment	3-10
3.4.2.2	Screening Level Calculations for Water	3-11
3.4.3	Risk-Based Screening Level Values	3-12 3-13
3.4.4	Uptake Biokinetic Modeling for Lead	3-13 3-14
4.0	RESULTS OF FIELD SCREENING	4-1
4.1	SURFACE SOIL RESULTS	4-1
4.1.1	OBDA Grid Quadrants	4-1 4-1

i

4.1.2	Burning Ground Area	4-1	-
4.1.3	Detonation Craters	4-1	-
4.1.4	Blow-In-Place Items	4-2	_
4.1.5	Residue/Debris Areas	4-2	
4.1.6	Arroyo	4-2	-
4.1.7	Downgradient of OBDA	4-2	,
4.2	SURFACE WATER RESULTS	4-3	-
4.3	SHALLOW SUBSURFACE WATER RESULTS	4-3	-
4.3.1	Cistern	4-3	-
4.3.2	Well Point	4-3	-
4.4	AREA REQUIRING CORRECTIVE MEASURES	4-4	-
5.0	PROPOSED CORRECTIVE MEASURE APPROACHES	5-1	-
5.1	PRELIMINARY CLEANUP LEVEL GENERATION	5-1	-
5.1.1	Future Land Use Evaluation	5-1	-
5.1.2	Media Pathways Analysis	5-1	
5.1.3	Development of Risk-Based Preliminary cleanup levels	5-2	
6.0	CLOSURE IMPLEMENTATION	6-1	-
6.1	CONDITIONS FOR CLOSURE	6-1	
6.2	IDENTIFIED AREAS REQUIRING CLOSURE	6-2	
6.3	PRE-CLOSURE SAMPLING	6-2	
6.3.1	Surface Water and Sediment	6-2	
6.3.2	Confirmatory Sampling	6-3	
6.4	PERFORMANCE OF CLOSURE	6-3	
6.5	CONFIRMATORY CLOSURE SAMPLING	6-3	
7.0	SCHEDULE	7-1	

This Closure Plan Modification presents proposed changes, based upon the results of field screening activities, to the Final Fort Wingate Depot Activity (FWDA) Resource Conservation and Recovery Act (RCRA) Interim Status Closure Plan, dated 1 March 1993.

Closure performance standards have been established for this site based on the current and potential future use of this site. Clean closure of this site would allow unrestricted future use of the site. Standards for soil and water clean up will be developed for potential clean closure. In addition, due to the current UXO conditions on the site that may prevent future unrestricted use of the site, preliminary cleanup goals will also be established for probable future restricted land use. Closure performance standards for restricted future use would not qualify for clean closure of the site.

The Final Closure Plan details the activities to be performed for closure of the RCRA Interim Status regulated unit at FWDA, located in Gallup, New Mexico. Specifically, the Final Closure Plan addresses the closure of the FWDA Open Burning and Demolition Area (OBDA).

BACKGROUND

The Final Closure Plan was approved in a correspondence, dated 20 January 1994 from Ms. Kathleen M. Sisneros, Director, Water and Waste Management Division, State of New Mexico Environment Department (NMED).

The Final Closure Plan as approved included the following documents:

- Final Fort Wingate Depot Activity Resource Conservation and Recovery Act Interim Status Closure Plan, dated 1 March 1993;
- Attachment-1, Proposed Interim Status Closure Field Screening ٠ Approach, dated 20 October 1993;
- RCRA Interim Status Closure Schedule of Activities, dated November 1993; and
- Conditions of Closure Plan Approval, dated 20 January 1994.

The Conditions of Closure Plan Approval described additional requirements to be performed including quarterly progress reports, completion of a survey plat, evaluation of ecological risks posed by site conditions remaining after completion of the closure activities, and submittal of a closure plan modification based on the results of the field screening activities. A copy of the Conditions of Closure Plan Approval is included as Appendix A to this Closure Plan Modification.

-

_

_

_

-

-

-

The field screening activities were completed in November of 1993 and the findings and results are presented and summarized in this Closure Plan Modification.

Open burning and open detonation (OB/OD) operations were conducted at FWDA to dispose of munitions and munitions-related materials. Since 1955, the OB/OD operations were conducted at separate locations within the OBDA in an area encompassing approximately 125 acres. The OB/OD operations in this area were permitted under RCRA Interim Status and will undergo closure.

In planning the implementation of closure, the exact boundaries of the "regulated" OB/OD operations were undefined. Open detonation of high explosives was performed at various locations on the ground within the general OB/OD area, which had over time resulted in wide-spread surface soil disposition and disturbance (see Figure 2-1). Open burning of waste propellants and pyrotechnics was performed both in burning trays or on the ground within the delineated Burning Ground Area. The identifiable areas of impact from treatment operations included the visually observable detonation craters and the Burning Ground Area.

Limited sampling and analysis of surface soils had been previously performed within the OBDA, and not to an extent that would provide any identification or delineation of previous OB/OD operations. Field screening was therefore proposed to establish the absence/presence of residual contaminants within areas identified as being potentially impacted from the historic treatment operations and to define the areas for which closure is to be performed.

Additionally, the demilitarization/treatment operations at the OBDA, through detonation of accumulated munitions, ammunition, etc. had over time resulted in the areal expulsion or "kick-out" of dirt and debris and potentially un-treated unexploded ordnance (UXO). The UXO kick-out consisted of:

- randomly located, surficially deposited (primarily 0-6 inch depth) metal debris and ordnance fragments ("non-live" ordnance);
- "live ordnance" that was determined to be safe to remove, and
- items that were visually identified as non-movable, due to safety concerns (i.e., sensitive or motion detection fusing).

Field screening was also proposed to confirm the absence of residual contaminants in the outlying areas beyond the directly impacted OB/OD area so these areas could be excluded from closure.

The non-movable items were identified as "blow-in-place items" (BIPs), requiring detonation in-place to be rendered safe. The potential environmental impact from these in-place detonation operations (i.e., residual explosives, metals) was also established as an objective of the field screening program. In addition, the cistern and observed areas of potential surface water within the arroyo were to be investigated.

The planned areas of investigation under the field screening program included:

- Established quadrants within the OBDA
- The visible detonation craters
- The arroyo and observed residue/debris areas within the arroyo
- The Burning Ground Area
- Identified BIP locations
- Sediment and surface water and ground water conditions within the arroyo.

Table 2-1 summarizes the proposed field screening and ground water and surface water sampling.

2.1 UNEXPLODED ORDNANCE SURVEY

Surface and subsurface surveys of selected areas of potential UXO concern and UXO safety escorts were performed at the FWDA by UXB International, Inc. (UXB) of Chantilly, VA. A surface and subsurface (0-6 inch depth) UXO survey was performed of the OB/OD area (established as the inner-fenced portion of the OBDA). Identified "live" and "non-live" ordnance items were removed from the survey areas and separately staged at established locations within the OB/OD area. The live items were then detonated by Army EOD units using three of the existing detonation craters. The non-live items were to be confirmed by the Army EOD for final Army disposition. Identified ordnance items determined to be too sensitive to move were marked for destruction in place as BIPs by the Army EOD units.

2.1.1 Methodology

USAEC requires that two distinct methods of geophysical survey be conducted. The Foerster Ferex Ordnance Locator was used, in conjunction with the White's commercial metal detector, for all subsurface geophysical surveys.

Table 2-1 Summary of Proposed Interim Status Closure Field Screening/Ground Water Sampling

-

-

-

-

-

Location	No. of Field Screening Samples	Field Duplicate Samples at 10%	Field Blanks (1 in 20)
Surface Soil Samples			
Identified BIP Locations	12	2	1
OBDA Quadrants	68	7	3
Observed Residue/Debris Areas	24	2	1
Аттоуо	6	1	1
Burning Ground Area	8	1	1
Craters	22	2	1
	140	15	8
		Total =	163
Groundwater/Surface Water Samples			
Groundwater Wells	4	1	1
Аттоуо	2		
	6	1	1
		Total =	8

Volatile Organic Compounds (VOC) Screening

VOC Screening performed using field instrumentation at the same eight (8) Burning Ground Area sampling locations selected for explosives field screening

NOTE: Trip Blanks generated based upon the frequency of sample shipment.

The Foerster Ferex Ordnance Locator is the most recent military approved locator and is in use by the U.S. Military EOD forces, designated the MK 26 Ordnance Locator, for detecting subsurface ordnance items. The locator is a hand-held unit and uses 2 fluxgate magnetometers, aligned and mounted a fixed distance apart to detect changes in the earth's ambient magnetic field caused by ferrous metal or disturbances associated with soil conditions. Both an audio and metered signal are provided to the operator. The metered signal indicates whether the disturbance is geodetic or metal-related. The detection capability of the Foerster Ferex is dependent on the size of the item versus its depth. Although the instrument can detect disturbances caused by changes in soil conditions, its ability to detect metallic items is not affected by local soil conditions because the instrument is set to zero (nulled) over local soil free of metallic items, thus removing the effects of the local soil conditions.

White's Eagle II Metal Detector is a portable, microprocessor controlled metal detector with a Liquid Crystal Display and a keypad user interface. This metal detector operates on the induction principle whereby a transmitter coil induces eddy currents within buried metal objects and these induced eddy currents are received by a receiver unit. The advantage of this detector is that it can detect both ferrous and nonferrous metals.

2.1.2 Results

In the performance of the UXO survey activities within the defined OB/OD area, approximately 10, 223 ordnance items were identified and recovered (live and non-live) and approximately 874 BIP items were marked for destruction in-place. Appendix B provides the UXB summary sheets of identified, marked, and stockpiled ordnance items resulting from the installation survey activities. Army EOD support for the UXO items identified and recovered from the entire installation survey program was provided by the 52D Ordnance Group, Fort Gillem, GA over four (4) separate mobilizations occurring from May through December 1993.

In addition, the ground coverage resulting from the visual UXO survey identified residue/refuse areas along the length of the arroyo. These areas were marked on figures generated of the OB/OD area and incorporated into the field screening program.

For potential future land use/transfer considerations, the areal boundary within which BIP items were identified was also located, based on observations resulting from the visual - surface/0-6 inch UXO surveys. This boundary was established as a "worst-case scenario" by visually approximating as a discrete point the furthest identified BIP location radially from the boundary of the existing OBDA.

2.2 FIELD SCREENING SAMPLES

Three hundred by three hundred (300 x 300) foot sampling grids were established within the defined boundary of the OBDA. This grid encompasses the delineated active OB/OD area, including the Burning Ground Area and the detonation craters. Surface soil, surface water, and ground water samples were collected from within this grid area to evaluate the areal extent of impacts within the OBDA. Surface soil samples were also collected from within the arroyo downgradient of the OBDA to evaluate potential transport of constituents of concern.

2.2.1 Surface Soil

Specific conditions and past activities conducted in designated areas within the defined boundary of the OBDA allowed six categories of samples to be established. Grab surface soil samples (0 to 6 inch depth) were collected from locations in each of these six categories described below and analyzed for target compound list (TCL) explosives and target analyte list (TAL) metals. The sample locations are presented in Figure 2-2.

Three surface soil samples were also collected within the arroyo downgradient of the OBDA. These samples were analyzed for TCL explosives, TAL metals, total phosphorus, and nitrate/nitrite.

2.2.1.1 OBDA Grid Quadrants

To assess the impact of historical OB/OD operations to surface soils, approximately 68 quadrants were delineated. A surface soil sample was collected from each quadrant. The samples were collected either in the approximate center of the quadrant or at an area of visually observed potential significance (i.e., surface staining, stressed vegetation, etc.), if present. A total of 68 surface soil samples were collected from grid quadrants.

2.2.1.2 Burning Ground Area

To evaluate the impact of historical OB/OD operations to surface soils within the Burning Ground Area, eight surface soil samples were collected from locations throughout the Burning Ground Area.

2.2.1.3 Detonation Craters

To evaluate the level of residual contamination within the detonation craters, surface soil samples were collected from two locations at each of the existing 11 detonation craters. One sample was collected from the

center of each crater and a second sample was collected from a side-wall. A total of 22 surface soil samples were collected from 11 craters.

2.2.1.4 Blow-In-Place (Bip) Items

To confirm the absence of environmental impact resulting from the detonation of identified BIPs, the locations of 12 BIPs within the OBDA were marked prior to detonation. Random and equal locations were marked for three types of BIP items that had been typically identified within the OBDA. Following detonation, a surface soil sample was collected from the center of the detonation location at each of the marked BIPs. A total of 12 surface soil samples were collected from BIP locations.

2.2.1.5 Residue/Debris Areas

One to four locations (depending on size) were sampled in each of the residue/debris areas identified along the length of the arroyo. A total of 24 samples were collected.

2.2.1.6 Arroyo

Surface soil samples were collected from several locations along the floor of the arroyo to establish whether compounds of concern are being transported into and along the arroyo. A total of six surface soil samples were collected from the arroyo.

2.2.2 Surface Water

An area of ponded water was observed within the OBDA during the 5 May 1993 sampling event. A surface water sample (BTSW03) was collected from the ponded water (See Figure 2-2) and analyzed for TCL volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL explosives, TAL metals, total phosphorus, and nitrate/nitrite.

2.2.3 Shallow Subsurface Water

It was reported that a spring is located within the arroyo. ERM personnel observed what appeared to be a large corrugated metal culvert buried approximately six feet below ground surface within the arroyo. Two 55gallon drums placed on top of one another penetrated the culvert and extended to approximately six inches above the ground surface. The top of the drum protruding from the ground was covered by a metal plate. Water was observed in the buried culvert at a depth of approximately 10 feet below ground surface. These observations indicate that this is not

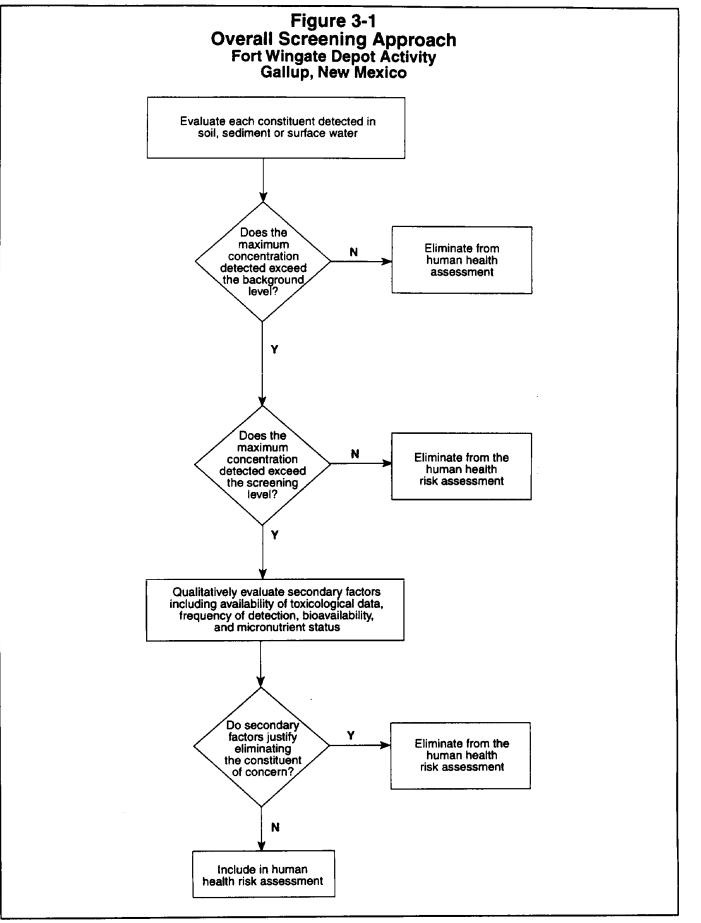
actually a spring, but can be considered a cistern which collects shallow subsurface water. The location of the cistern is shown on Figure 2-2.

This cistern indicates that the subsurface conditions in this area require evaluation for the presence of shallow subsurface water. A hole was hand-augured to the depth of refusal, approximately four feet below ground surface, within the arroyo, downgradient of the cistern. A twoinch diameter stainless-steel well point was installed in the augured hole (FW38).

Four ground water samples were collected from the cistern (BTSW02) during four sampling events: 7 December 1992, 5 May 1993, 27 May 1993, and 19 November 1993. One sample was collected from well FW38 during the 19 November 1993 sampling event. Samples collected during the first three sampling events were analyzed for TCL VOCs, TCL SVOCs, TCL explosives, TAL metals, total phosphorus, and nitrate/nitrite. Ground water samples collected during the most recent sampling event were analyzed for TCL explosives, TAL metals, and standard New Mexico water quality criteria including: total dissolved solids (TDS), nitrate/nitrite, major cations/ions, phosphorus, phosphate, and nitroaromatics.

Surface soil samples collected within the OBDA and ground water samples from the 19 November 1993 sampling event were sent to Environmental Science & Engineering, Inc. in Englewood Colorado for analysis. Downgradient surface soil, surface water, and all other ground water samples were sent to EA Science & Engineering, Inc. in Sparks, Maryland for analysis. -

_


_

The determination of whether constituents occur at concentrations which warrant remediation has been based on comparisons of constituent concentrations to established background and screening levels. Screening of analytical data is a means to identify constituents which do not require further evaluation. Screening levels used to eliminate constituents from further consideration are derived from:

- Background data;
- Regulatory criteria;
- Criteria providing protection of human health and the environment; and
- Secondary factors which are site and constituent specific.

Thus, the screening levels identify constituent concentrations that do not pose unacceptable risks to the potentially exposed populations at the FWDA. Constituent concentrations exceeding screening levels were included for corrective measures and more detailed evaluation. The screening assessment as described below was only used to eliminate constituents from the human health risk assessment. The overall screening approach for the human health and ecological risk assessments is shown in Figure 3-1.

Section 3.1 presents the selection of constituents for which screening levels were derived. Section 3.2 describes the process used for identifying and selecting screening levels. More detail is provided on the identification of regulatory criteria and the calculation of human health based screening criteria in Section 3.3 and 3.4, respectively. Section 4.0 then discusses the nature and extent of contamination and compares the analytical results for soil, sediment, and surface water to the appropriate background and screening levels for each constituent (derived in this section). The comparisons presented in Section 4.0 form the basis for selecting areas of concern and constituents of concern for further evaluation.

ERM, INC.

PM306.51/MSS/2.23.94

Three USEPA guidance documents served as the primary reference sources for the screening approach presented in this section:

- Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual. Part A - Baseline Risk Assessment (USEPA, 1989);
- Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual. Part B - Preliminary Remediation Goals (USEPA, 1991); and
- Risk Assessment Guidance for Superfund: Volume II, Ecological Evaluation Manual. (USEPA, 1991).

These guidance manuals are referred to herein as RAGS Part A, RAGS Part B, and RAGS Volume II, respectively.

These guidance documents have been selected preferentially to the RCRA proposed Subpart S (Corrective Action for Solid Waste Management Units) because they represent more recent guidance than the proposed rule. The Subpart S cleanup rule was proposed in 1990 and has not yet been promulgated. In addition, the Subpart S rule considers only limited exposure scenarios which do not include any of the exposure scenarios pertinent to this site. Therefore, due to the more recent Superfund guidance documents and the greater applicability of exposure scenarios suggested by those documents, the RCRA Subpart S guidance will not be considered while evaluating cleanup goals for this site.

3.1 Identification of Constituents for Screening

This section presents the approach used to eliminate certain constituents from further evaluation and presents the list of constituents which were evaluated in the remainder of the Report. The starting point for this analysis included all constituents analyzed for in the FWDA EI Program. Section 4.0 presented the number and type of samples, and the constituents for analysis. The complete analytical data set generated for the OBDA is presented in Appendix C.

Constituents which were not positively identified in any sample taken during the FWDA EI Program were eliminated from further consideration. All remaining constituents positively identified in one or more samples taken at the FWDA were evaluated in the remainder of the Closure Plan Addendum. Table 3-1 lists the constituents that were detected at the OBDA, the number of samples analyzed for each constituent, and the number of samples each constituent was detected in. Table 3-1 forms the basis for the development of screening levels

Table 3-1 Compounds Detected Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

-

-

	S	oil	Surfac	e Water	Shallow Subsurface Water		
	Number	Number	Number	Number	Number	Number	
	of	of	of	of	of	of	
Compound Name	Samples	Detections	Samples	Detections	Samples	Detections	
EXPLOSIVE COMPOUNDS							
Cyclotetramethylenetetranitramine (HMX)	140	21	1	0	5	1 1	
Cyclonite/Hexahydro-1,3,4-triazine (RDX)	140	22	1	0	5	2	
1,3,5-Trinitrobenzene (1,3,5-TNB)	140	15	1	o	5	Ō	
1,3-Dinitrobenzene (1,3-DNB)	140	8	1	0	5		
Nitrobenzene (NB)	140	2	1	0	5		
N-Methyl-N,2,4,6-tetranitroaniline (Tetryl)	140	1	1	0 0	5	0	
2,4,6-Trinitrotoluene (2,4,6-TNT)	140	18	1	0	5	1	
2,6-Dinitrotoluene (2,6-DNT)	140	3	1	0	5	0	
2,4-Dinitrotoluene (2,4-DNT)	140	6	-	-		_	
		4	1	0	5 r	0	
2-Nitrotoluene (2-NT)	140	0	1	0	5	0	
4-Nitotoluene (4-NT)	140	0	1	0	5	0	
3-Nitrotoluene (3-NT)	140	0	1	0	5	0	
2-Amino-4,6-DNT	140	28	1	0	5	0	
4-Amino-2,6-DNT	140	24	1	0	5	1	
INORGANICS							
Aluminum (Al)	140	0	1	1	5	3	
Antimony (Sb)	140	149	1	0	5	0	
Arsenic (As)	140	0	1	0	5	3	
Barium (Ba)	140	2	1	1	5	4	
Beryllium (Be)	140	0	1	1	5	1	
Cadmium (Cd)	140	40	1	0	5	1	
Calcium (Ca)	140	0	1	1	5	5	
Chromium (Cr)	140	3	1	0	5	2	
Cobolt (Co)	140	0	1	0	5		
Copper (Cu)	140	25	1	0	5	4	
Iron (Fe)			-	_	5	-	
	140	2	1	1		5	
Lead (Pb) Magnerium (Mg)	140	9		0	5	1	
Magnesium (Mg)	140	0	1		5	5	
Manganese (Mn)	140	0	1	1	5	5	
Mercury (Hg)	140	35	1	0	5	0	
Nickel (Ni)	140	1	1	0	5	3	
Potassium (K)	140	0	1	1	5	3	
Selenium (Se)	140	0	1	0	5	1	
Silver (Ag)	140	12	1	0	5	0	
Sodium (Na)	140	0	1	1	5	4	
Thallium (TI)	140	0	1	0	5	0	
Vanadium (V)	140	0	1	0	5	2	
Zinc (Zn)	140	0	1	0	5	5	
VOLATILE ORGANIC COMPOUNDS							
Chloromethane (CH3CL)	NS	NS	1	0	3	1	
	113		l '			¦ '	

NS = Not Sampled

presented in the remainder of this section. Discussion of the constituents detected, their respective concentrations in each environmental medium, and the comparison of those concentrations to the background and screening levels for the constituent is presented in Section 4.0. In Section 4.0, only compounds detected at concentrations above the respective background levels were discussed. The reader should note that all constituents for analysis which are not discussed in Section 4.0 were eliminated based on the criteria discussed above (i.e., they were either identified as laboratory contaminants, they were not detected anywhere on the installation, or they were not detected above the background level anywhere on the installation).

3.2 Identification of Screening Levels

Screening levels were derived from four sources. These levels are described in the following sections.

3.2.1 Background

The primary screening levels for inorganic constituents detected at the OBDA are the concentrations of the constituents in background soils, sediments, and surface waters.

Eight total soil borings were installed as part of the FWDA site background sampling; two (2) each at the following locations: West of Lake McFerren, East of the Hogback, North of Santa Fe Springs, and West of Igloo Block C. Subsurface soil samples were collected from each of the borings at depths of 0 to 1 feet, 3 to 5 feet and 8 to 10 feet and analyzed for nitrate/nitrite, total phosphorus, and TAL metals.

Surface water and sediment samples were collected as part of the site background sampling at four (4) locations within the Southern Property; the observed influent and effluent to Lake McFerren as well as Lake McFerren and a pond identified during the visual survey located in the vicinity of the BMT Site. Sediment samples were additionally collected from Bread Springs Wash at four locations and from Milk Ranch Canyon. The sediment and surface water samples were all analyzed for nitrate/nitrite, total phosphorus, and TAL metals.

The background soil and water concentrations are presented in Tables 3-2 and 3-3, respectively.

Background values were only measured for inorganic constituents, since most of the organics and explosives evaluated at the OBDA do not occur naturally in soils or water. In addition, mercury was excluded from the background analysis since it is not expected to occur naturally in soils at

THE ERM GROUP.

3-3

Table 3-2

Soil Background Screening Levels Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

-

-

.

Constituent	Synonym	Backgound Screening Level mg/kg
Silver	(AG)	0.803
Aluminum	(AL)	247,000
Arsenic	(AS)	81
Barium	(BA)	3,660
Beryllium	(BE)	18.10
Calcium	(CA)	600,000
Cadmium	(CD)	1.750
Cobalt	(CO)	142
Chromium	(CR)	168
Copper	(CU)	289
Iron	(FE)	215,000
Mercury	(HG)	0.050
Potassium	(K)	34,800
Magnesium	(MG)	300,000
Manganese	(MN)	18,000
Sodium	(NA)	21,200
Nickel	(NI)	435
Nitrite, Nitrate	(NIT)	90
Phosphorus	(P4)	3,570
Lead	(PB)	81
Antimony	(SB)	19.60
Selenium	(SE)	0.449
Thallium	(TL)	34.30
Vanadium	(V)	384
Zinc	(ZN)	444

Table 3-3 Water Background Screening Levels Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

Constituent	Synonym	Backgound Screening Level
		mg/l
Silver	(AG)	15.3
Aluminum	(AL)	210,000
Arsenic	(AS)	32.7
Barium	(BA)	3,330
Beryllium	(BE)	10.7
Calcium	(CA)	510,000
Cadmium	(CD)	35.1
Cobalt	(CO)	201
Chromium	(CR)	179
Copper	(CU)	157
Iron	(FE)	249,000
Mercury	(HG)	0.409
Potassium	(K)	43,800
Magnesium	(MG)	108,000
Manganese	(MN)	147,000
Sodium	(NA)	17,600
Nickel	(NI)	173
Nitrite, Nitrate	(NIT)	4,500
Phosphorus	(P4)	3,180
Lead	(PB)	194
Antimony	(SB)	220
Selenium	(SE)	1.75
Thallium	(TL)	3.97
Vanadium	(V)	438
Zinc	(ZN)	801

)

)

the site. Constituents that were not detected in background samples were not assigned a background value. Following USEPA guidance, the screening criteria based on background concentrations were set equal to three times the maximum concentration detected in any background sample (USEPA, 1992). This approach is appropriate in lieu of a more statistically rigorous approach where sufficient background samples are not available to fully represent the background population. In addition, the high degree of variability in the reported concentrations for background suggests that the use of three times the maximum concentration is a valid approach. It is important to emphasize that the constituents for which a background value was assigned are naturally occurring minerals in soils and that the use of three times the maximum concentration as a background screening value is reasonably conservative for the inorganic constituents evaluated. Background data, including the background screening levels selected for each constituent, are presented in Appendix F.

3.2.2 Regulatory Criteria

The secondary source of screening levels includes promulgated mediaspecific standards such as Federal Maximum Contaminant Levels (MCLs) for shallow subsurface water, and Federal Ambient Water Quality Criteria (AWQC) for surface water. These standards are derived from a compilation of Potentially Applicable or Relevant and Appropriate Requirements (PARARs). A compilation of PARARs is presented in Section 3.4.

3.2.3 Screening Levels Providing Protection of Human Health

Where a promulgated media-specific standard was not available for a given constituent in a specific medium, a risk-based screening level (Preliminary Remediation Goal or PRG) was derived based on a residential exposure scenario at the site. Risk-based screening levels are derived in Section 3.4. These risk-based concentrations formed the third primary source for screening levels.

3.2.4 Secondary Factors

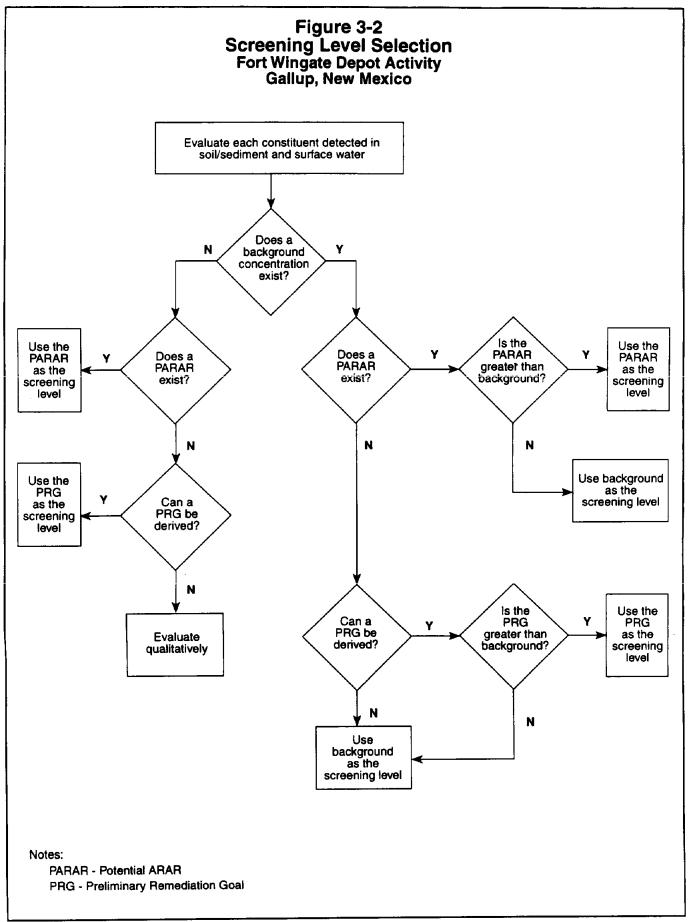
Secondary factors are constituent specific factors which may result in the exclusion of a constituent from the risk assessment, even if it exceeded one or more of the preceding three screening levels. Examples of these factors include low frequency of detection, and spatial location that precludes contact. It is important to note that while this is the fourth part of the screening process, secondary factors are not considered in establishing site-wide screening levels.

THE ERM GROUP.

3.2.5 Selection of Screening Levels

The selection process for determining which of the three values (background, PARAR, and PRG) should serve as the screening level is shown in Figure 3-2. The selection logic supplements the background screening step indicated in Figure 3-1. If a background screening level was not available, or if the constituent concentrations exceeded the background screening level, then PARARs and PRGs were considered for that constituent.

The PARAR searches and the development of risk-based screening levels presented in Sections 3.3 and 3.4 were implemented for all constituents identified as having been detected in one or more of the areas listed on Table 3-1.


3.3

Potentially Applicable or Relevant and Appropriate Requirements

Cleanup standards for remedial actions must attain a general standard of cleanup that assures protection of human health and the environment, is cost-effective, and uses permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. In addition, SARA requires that any hazardous substance or pollutant remaining on site meet the level or standard of control established by ARAR standards, requirements, criteria, or limitations established under any federal environmental law, or any more stringent standards, requirements, criteria, or limitations promulgated in accordance with a state environmental statute. For the purposes of screening, data were compared to all standards which could have been considered potential ARARs (PARARs).

A requirement may be either applicable or relevant and appropriate to remedial activities at a site, but not necessarily both. "Applicable" requirements are standards and other substantive environmental protection requirements promulgated under Federal or State law that specifically address a circumstance of a site such as a hazardous substance, pollutant, contaminant, remedial action, or location. "Applicability" implies that the circumstances at the site satisfy all of the jurisdictional prerequisites of a requirement.

"Relevant and appropriate" requirements are standards and other substantive environmental protection requirements promulgated under Federal or State law that address situations sufficiently similar to a specific CERCLA site to be of use. "Relevance" infers that the requirement regulates or addresses situations sufficiently similar to those found at the CERCLA site. "Appropriateness" assumes that the circumstances of the release or threatened release are such that use of the standard is

PM306.51/MS5/2.23.94

_

-

-

appropriate. A requirement must be both relevant and appropriate in order to apply to a site; if it is relevant but not appropriate then it will not apply.

"To be considered" materials (TBCs) are non-promulgated advisories or guidances that are not legally binding. TBCs do not have the status of ARARs.

Three types of ARARs are evaluated in the RI process: chemical-specific, location-specific, and action-specific. Chemical-specific ARARs are usually health- or risk-based numerical values or methodologies. These values establish the acceptable amount or concentration of a chemical that may be left in or discharged to the ambient environment. Location-specific ARARs are restrictions placed on the concentration of hazardous substances or the conduct of activities solely because they are in a specific location. Action-specific ARARs are usually technology- or activity-based requirements or limitations on actions taken with respect to hazardous wastes. These requirements are activated by the particular remedial activities selected for a site.

Safe Drinking Water Act (SDWA) Standards

Primary drinking water regulations include Maximum Contaminant Levels (MCLs) for specific contaminants. CERCLA guidance states that Primary MCLs are applicable for sites whose shallow subsurface water or surface water is used to supply drinking water to 25 or more people or 15 or more service connections. If the MCLs are applicable, they are applied at the tap. Further, the MCLs are considered relevant and appropriate as in situ cleanup standards where either shallow subsurface water or surface water is or has the potential to be used for drinking. If standards are not applicable or relevant and appropriate, they are identified as TBCs until remedial actions are presented which render them PARARs or remove them from consideration. When no promulgated standard exists for a given contaminant, proposed MCLs are given greatest consideration among the TBCs.

Secondary drinking water regulations consist of Secondary Maximum Concentrations Limits (SMCLs) for specific contaminants. SMCLs are levels that are established for aesthetic or other non-health based purposes. The SMCLs are non-enforceable limits intended as guidelines for use by states in monitoring water supplies. As non-enforceable limits, they can only be TBCs.

Maximum Contaminant Level Goals (MCLGs) are health-based goals for drinking water. As non-enforceable limits, they can only be TBCs.

Federal and State Ambient Water Quality Criteria

CERCLA requires that sites attain federal national water quality criteria for the protection of human health where they are relevant and appropriate. Whether a criteria is relevant and appropriate is based upon the State's designated or potential use of the surface water and whether the criteria are protection of that use. In waters designated as public water supply, a water quality criterion is protective of that use. In waters designated as public water supply, water quality criteria indicating drinking water and fish consumption are relevant and appropriate. Waters designated for recreation typically have criteria for fish consumption alone as relevant and appropriate.

National water quality criteria for the protection of aquatic life may be relevant and appropriate based upon the specified use of the water. In surface or shallow subsurface waters with a potential for discharge to surface waters that are designated for the protection of freshwater aquatic life, the standard reflecting freshwater acute/chronic impact is identified as relevant and appropriate. For surface or shallow subsurface waters with a potential for discharge to surface waters that are designated for the protection of marine aquatic life, the standards reflecting marine acute/chronic impact are identified as relevant and appropriate.

New Mexico State Standards

State water quality standards were evaluated as being potentially applicable, relevant, and appropriate requirements. PARARs for New Mexico were chosen from two regulatory sources: the state Water Supply Regulations ("Regulations Governing Water Supplies, as amended through April 16, 1991") and the Water Quality Control Commission Regulations ("New Mexico Water Quality Control Commission Regulations as amended through August 18,1991). Water supply regulations are health based and apply to all public water supply systems, regardless of size, in the state of New Mexico; in addition, portions of this regulation apply to the siting of private well water supplies. State maximum contaminant levels apply as follows:

- The MCL for nitrate applies to all systems,
- All other MCLs for inorganics apply to community systems only,
- Insecticide and herbicide MCLs apply to community systems only,
- The MCL for trihalomethanes applies to community water systems that add a disinfectant and that serve 10,000 or more individuals,
- VOC MCLs apply to all community and non-community water systems.

The water quality control regulations are intended to protect the quality of shallow subsurface water in the state of New Mexico. These regulations are aimed at providing guidance for water discharged to either the earth's surface or subsurface where the present or future use of the shallow subsurface water is as a domestic or agricultural water supply. These standards have been set to protect the quality of the shallow subsurface water and should not be confused with discharge standards; standards set by this regulation apply to ambient conditions in the shallow subsurface water at the location of a wastewater discharge. Human health based standards are numbers that represent the maximum concentrations of constituents that may be detected in shallow subsurface water which will still allow for the present and future use of the shallow subsurface water. All state standards were compared to federal standards with the most stringent standards being selected for screening purposes.

Table 3-4 shows the availability of PARARs and TBCs by chemical for shallow subsurface water. Table 3-5 shows the availability of PARARs and TBCs by chemical for surface water.

No chemical-specific PARARs were identified for soil with the exception of PCBs and lead. Section 7.0 of the Toxic Substances Control Act (TSCA) lists soil criteria for polychlorinated biphenyls (PCBs) (40 CFR Part 761). TSCA lists two primary concentrations of interest for soils. The first is a disposal restriction which states that "Any non-liquid PCBs at concentrations of <u>50 ppm or greater</u> in the form of contaminated soil, rags, or other debris shall be disposed of in a TSCA-approved incinerator or in a TSCA-approved chemical waste landfill...". With regard to cleanup of spills, TSCA requires removal of contaminated material and backfilling with "clean soil". The regulation defines "clean soil" as having less than 1 ppm total PCBs.

The proposed RCRA Subpart S regulation contains a risk-based methodology for deriving soil action levels. The RCRA Subpart S methodology, however, is similar in nature to the RAGS Part B approach used in Section 3.4 to derive risk-based soil screening levels. Since the RAGS Part B approach reflects more recent USEPA guidance than the RCRA Subpart S approach, the RAGS Part B methodology was selected in lieu of RCRA Subpart S.

No toxicological indices are currently available for lead in USEPA's toxicity databases; therefore, quantitative risk assessment of lead cannot be performed utilizing the standard USEPA methods described in RAGS Part A. Evaluation of exposure to lead concentrations can be made for specific populations (e.g., children, nursing mothers) using biokinetic models to predict blood lead levels, but considerable controversy surrounds identification of acceptable blood lead levels. Availability of

Table 3-4 Ground Water PARARS/TBCS Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

I.

I.

i.

	National Drinking Water Standards (ug/l)			New Mexico State Water Quality Standards (d) (ug/l)			rds (d)
CONSTITUENTS	SDWA MCL (Primary) (a)	SDWA MCL (Secondary) (b)	SDWA MCLG (c)	NM Commercial Water Supply Systems	Human Health	Other Standards For Domestic Water Supply	Irrigation Use
EXPLOSIVE COMPOUNDS Cyclotetramethylenetetranitramine (HMX) Cyclonite / Hexahydro-1,3,4-triazine (RDX) 1,3,5-Trinitrobenzene (1,3,5-TNB) 1,3-Dinitrobenzene (1,3,5-TNB) Nitrobenzene (NB) N-Methyl-N,2,4,6-tetranitroaniline (Tetryl) 2,4,6-Trinitrotoluene /alpha-Trinitrotoluene (2,4,6-TNT) 2,6-Dinitrotoluene (2,6-DNT) 2,6-Dinitrotoluene (2,6-DNT) 2,4-Dinitrotoluene (2,4-DNT) 2-Nitrotoluene (2,4-DNT) 2-Nitrotoluene (2-NT) 4-Nitotoluene (3-NT) 2-Amino-4,6-DNT 4-Amino-2,6-DNT							
INORGANICS Aluminum (Al) Antimony (Sb) Arsenic (As) Barium (Ba) Beryllium (Be) Boron (Bo) Cadmium (Cd) Cakium (Ca) Chromium (Cr)	6 (e) 50 2,000 4 (e) 5 100	50 to 200	6 (e) 2,000 4 (e) 5 100	50 100 10 50	100 1,000 10 50		5,000 100 1,000 750 10 50
Cobelt (Co) Copper (Cu) Iron (Fe)		1,000 300	1,300			1,000 1,000	50 1,000 1,000

Table 3-4 Ground Water PARARS/TBCS Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

	National Drinking Water Standards			New Mexico State Water Quality Standards (d)			
•	L	(ug/l)		(ug/l)			
		[NM		Other	
]		Commercial		Standards For	
	SDWA MCL	SDWA MCL	SDWA MCLG	Water Supply		Domestic	
CONSTITUENTS	(Primary)(a)	(Secondary)(b)	(c)	Systems	Human Health	Water Supply	Irrigation Use
Lead (Pb)	50/15•		0	50	50		50
Magnesium (Mg)							50
Manganese (Mn)	ĺ	50	200			200	200
Mercury (Hg) (f)	2	2	2	2	2	200	200
Nickel (Ni)	100 (e)	_	100 (e)	-	-		200
Nitrate	10,000		10,000	10,000	10,000		
Nitrite	1,000		1,000	10,000	10,000		10,000
Phosphorus	.,		1,000				
Potassium (K)							
Selenium (Se)	50	50	50	10	50		50
Silver (Ag)	50	100		50	50		50 50
Sodium (Na)					50		50
Thallium (TI)	2 (e)		0.5 (e)				
Total Phosphates	- (•)		0.0 (e)				
Vanadium (V)							
Zinc (Zn)		5,000				10,000	10,000

•56 FR 26460, 6/7/91, effective 12/7/93; action levels in no more than 10% of tap samples

(a) 40 CFR Parts 141, 142, 143

(b) 40 CFR Part 143,3

(c) 40 CFR Part 141

1

T T

> (d) New Mexico Water Quality Control Commision, New Mexico Water Quality Regulations, Part 3, Section 3-103, 11/16/1967, amended through August 1991 (e) USEPA Drinking Water; National Primary Drinking Water Regulations Synthetics Organic Chemicals and Inorganic Chemicals; National Primary

Drinking Water Regulations Implementation 57 FR 31776;17 July 1992

(f) Value is that for inorganic mercury

If no values are shown for a potential contaminant, there are no standards at this time

Table 3-5 Surface Water PARARS/TBCS Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

T.

| | |

1

.

	Federal AWQC+ for Protection of Human Health (a) (µg/l)		Federal AWQC Freshwater (a) (µg/1)		State of New Mexico (b) (µg/l)	
	Fish	Fish & Water			State	State
CONSTITUENTS	Consumption	Consumption	Acute	Chronic	Irrigation	Watering
EXPLOSIVE COMPOUNDS						
Cyclotetramethylenetetranitramine (HMX)						
Cyclonite / Hexahydro-1,3,4-triazine (RDX)						
1,3,5-Trinitrobenzene (1,3,5-TNB)						
1,3-Dinitrobenzene (1,3-DNB)						
Nitrobenzene (NB)						
N-Methyl-N,2,4,6-tetranitroaniline (Tetryl)						
2,4,6-Trinitrotoluene/alpha-Trinitrotoluene (2,4,6-TNT)						
2,6-Dinitrotoluene (2,6-DNT)	1					
2,4-Dinitrotoluene (2,4-DNT)	9.1 (c)	0.11 (c)				
2-Nitrotoluene (2-NT)						1
4-Nitotoluene (4-NT)						
3-Nitrotoluene (3-NT)						
2-Amino-4,6-DNT						
4-Amino-2,6-DNT						
INORGANICS						
Aluminum (Al)			750	87	5,000	5,000
Antimony (Sb)	4,300 (d)	14 (d)				
Arsenic (As)	0.14 (c,d,e)	0.018 (c,d,e)	360 (f)	190 (f)	100	20
Barium (Ba)		2,000 (g)				
Beryllium (Be)	(h)	(h)				
Boron (Bo)				750 (i)	750	5,000
Cadmium (Cd)	(h)	(h)	3.9 (f,j)	1.1 (£j)	10	50
Calcium (Ca)			-			
Chromium III (Cr+3)	(h)	(h)	1,700 (f,j)	210 (£,j)		
Chromium VI (Cr+6)	(h)	(h)	16 (I)	11 (f)		
Cobalt (Co)		1			50	1,000
Copper (Cu)			18 (f,j)	12 (f,j)	200	500
Iron (Fe)		300 (g)		1,000		
Lead (Pb)	(h)	(h)	82 (f,j)	3.2 (f,j)	5,000	100
Magnesium (Mg)				·		
Manganese (Mn)		30 (g)				

Table 3-5 Surface Water PARARS/TBCS Open Burning and Detonation Area Fort Wingate Depot Activity Gallup, New Mexico

	of Human (ju	(µg/l)		Federal AWQC Freshwater (a) (µg/1)		w Mexico (b) g/l)
CONSTITUENTS	Fish Consumption	Fish & Water Consumption	Acute	Chronic	State Irrigation	State Watering
Mercury (Hg)	0.15	0.14	2.4 (f)	0.012 (k)		
Nickel (Ni)	600 (d)	610 (d)	1,400 (f,j)	160 (f,j)		
Nitrate		10,000 (g)		100 (1,)		
Nitrite						
Phosphorus						
Potassium (K)						
Selenium (Se)	(h)	(h)	20	5		
Silver (Ag)	(,	(11)		5	130/250 (l)	50
odium (Na)			4.1 (Ej)			
Thallium (TI)	6.3 (d)	1.7 (d)	1.400 (~)			
Total Phosphates	0.5 (a)	1.7 (0)	1,400 (m)	40 (m)		
Vanadium (V)	1	ſ				
Zinc (Zn)			120 (6.8)	110 (())	100	100
	<u></u>		120 (ť,j)	110 (f,j)	2,000	25,000

Notes:

(a) 57 FR 60848-60923 Water Quality Standards; 40 CFR Part 131, 22 Dec. 1992, unless otherwise stated

(b) Water Quality Standards for Interstate and Intrastate Streams in New Mexico; amended 5/22/91; New Mexico Water Quality Control Commission effective 29 June 1991

(c) The criteria is based on carcinogenicity (1x10^-6 risk)

(d) Criteria revised to reflect current agency RfD, as contained in IRIS; BCF for fish tissue from 1980 criteria documents was retained in all cases

(e) The criteria refers to the inorganic form only

(f) Criteria for these metals are expressed as a function of the water effect ratio (WER) as defined in 40 CFR 131.36(c)

(g) Value is that for the maximum contaminant level (MCL)

(h) The EPA is not promulgating human health criteria for this contaminant. Permit authorities should address this contaminant in NJDES permit actions using the state's existing narrative criteria for toxics

(i) Criterion based on long term irrigation of sensitive crops (minimum standard)

(j) Freshwater aquatic criteria for these metals are expressed as a function of total hardness and as a function of the pollutants water effect ratio (WER). Values correspond to a total hardness of 100 mg/l and WER of 1.0

(k) If the criteria continuous concentration (CCC) for total mercury exceeds 0.012 µg/l more than once in a 3-year period in the ambient water, the edible portion of the aquatic species of concern must be analyzed to determine whether the concentration of methyl mercury exceeds the FDA action level of 1.0 mg/kg

(1) Criteria not developed; value presented is the lowest observable effects level (LOEL)

(m) Criteria not developed; value presented is the lowest observable effects level (LOEL)

If no values are shown for a potential contaminant, there are no standards at this time

the USEPA Uptake/Biokinetic Model (UBK) for lead exposure is restricted at the time of this writing to a preliminary draft (Version 0.5). Application of Version 0.5 of the UBK is presented in Section 3.4.4.

Office of Solid Waste and Emergency Response (OSWER) Directive 9355.04-02 (USEPA 1989) provides a range of acceptable lead concentrations in soil for residential and industrial land uses, respectively, of 500 to 1000 mg/kg. As a screening tool, concentrations of lead in the FWDA soils and sediments were compared against the more conservative 500 mg/kg guideline.

3.4 Risk-Based Screening Levels

Risk-based screening levels were calculated for soil, surface water, and shallow subsurface water at the OBDA based on equations presented in RAGS Part B. The screening level calculations were based on a residential land use scenario which evaluates potential exposure of adult and child residents. The residential land use scenario was selected for this site to represent the most conservative exposure scenario. Due to ongoing UXO concerns, this site is not suitable for current or future residential use; however, to identify all potential constituents of concern for remediation, this exposure scenario was employed. Section 3.4.1 discusses the selection of exposure scenarios and exposure routes for the screening assessment. Section 3.4.2 shows the specific screening level equations used for soil and water, and presents a sample calculation for a soil PRG. Section 3.4.3 presents the derived risk-based screening level values for soils/sediments and surface/subsurface water for all chemicals of concern, and discusses those chemicals for which risk-based screening levels could not be generated. Section 3.4.4 discusses the results of the UBK model for lead in soils at the FWDA.

3.4.1 Identification of Potential Exposure Pathways for the Screening Assessment

The types of exposures that were assessed in the screening assessment were determined based on current and future potential land use scenarios. The exposures selected may take into account site-specific factors such as land use restrictions and other institutional remedial actions. During the screening step, however, the intent was to derive media-specific concentrations which were protective of human health under the most conservative exposure setting. This step ensured that areas that were eliminated during the screening evaluation would not have required remediation.

Residential land use generally yields the highest degree of exposure to soil and shallow subsurface water and therefore the lowest health-based

THE ERM CROUP.	3-9	FWDAJMOD CLOSURE PLAN-00306.90-May 5, 1994
----------------	-----	--

screening levels. The development of risk-based screening levels described in Section 3.4.2 used conservative residential exposure assumptions at all areas of concern to derive conservative media-specific screening levels for constituents detected at the facility.

Having selected a residential exposure setting as the most conservative approach for deriving screening levels, the next step was to select appropriate exposure routes for the media of concern. Exposure routes which may be considered under a residential scenario included soil ingestion, water ingestion, dermal contact with water (showering, swimming), inhalation of dust and volatile chemicals, and others. USEPA has indicated (in RAGS Part B) that the most appropriate exposure routes for use in deriving screening levels are those which contribute the most to the dose received by the exposed population (adults and children). In addition, the USEPA recommends that the potential for soil contaminants to leach into shallow subsurface water should be evaluated if the potential exists for this type of migration to occur.

Following this approach described in RAGS Part B, ingestion of soil was selected as the exposure route for developing screening levels for soils and sediment. Screening levels for water were derived assuming ingestion of water as the sole domestic supply as well as inhalation of chemicals volatilizing from the water under normal domestic use conditions (e.g., showering, dishwashing). Leaching to ground water is not a significant migration pathway for the OBDA, and was therefore not considered in deriving screening levels. Due to the extensive earth moving that has occurred at OBDA, exposure to fugitive dust may be a significant exposure route. The impact of fugitive dust on the residential screening levels was evaluated and determined to have minimal impact on the riskbased screening level. Therefore, fugitive dust was not considered in deriving the screening levels. Dermal absorption of contaminants from soils and water is inconsequential compared to ingestion of soil and water (RAGS Part B); therefore, this exposure route was also eliminated from the screening assessment.

3.4.2 Risk-Based Screening Level Calculations

This section presents the calculation of screening levels for soil and water based on the exposure routes and assumptions described in Section 3.4.1. The equations used to derive the screening levels are presented in detail in RAGS Part B, pages 19 through 26. The screening level equations presented in RAGS Part B were derived from the standard risk and hazard index equations presented in RAGS Part A. These equations were rearranged to solve the chemical concentration in soil or water (screening level) which, based on the specified exposure assumptions, would result in the acceptable target risk level (i.e., 1x10⁻⁶) or target hazard index (i.e., 1.0). Using this approach, derived screening levels are protective of the defined exposure scenario.

3.4.2.1 Screening Level Calculations for Soil and Sediment

Risk-based screening levels for soil and sediment which are protective with respect to exposures to carcinogenic constituents were calculated using the following equation and exposure assumptions:

 $SL = \frac{TR * AT * 365 \text{ days / year}}{CSF_0 * 10^{-6} \text{ kg / mg * EF * IFsoil / adj}}$

where (default value in square brackets):

SL	=	Screening level (mg/kg)	[]
TR	=	Target excess individual lifetin	ne cancer risk [1 x 10 ⁻⁶]
		(Class A & B carcinogens; USE	PA 1991)
AT	=	Averaging time	[70 years]
CSFo		Oral cancer slope factor [che	mical-specific, (mg/kg-day) ⁻¹]
EF		Exposure frequency	[350 day/year]
IR _{soil/adj}	=	Age adjusted soil ingestion rat	e [114 mg-yr/kg-day]

The age-adjusted soil ingestion rate derivation is shown below. Similarly, risk-based screening levels for soil and sediment protective of exposures to non-carcinogenic constituents were calculated using the following equation and exposure assumptions:

$$SL = \frac{THI * AT * 365 \text{ days / year}}{\left[\frac{1}{RfD_o}\right] * 10^{-6} \text{ kg / mg * } EF * IF_{\text{soil / adj}}}$$

where (default value in square brackets):

SL	=	Screening level (mg/kg)	[]
THI	=	Target hazard index	[1.0]
AT	=	Averaging time	[30 years]
RfD _o	₹	Oral reference dose	[chemical-specific, mg/kg-day]
EF	=	Exposure frequency	[350 day/year]
IR _{soil/adj}	=	Age adjusted soil ingestion ra	ate [114 mg-yr/kg-day]

The age adjusted soil ingestion rate accounts for differing soil ingestion rates over the lifetime of a human from childhood to adulthood, and is derived as follows:

$$IF_{soil/adj} = \frac{IR_{soil/age\ 1-6} * ED_{age\ 1-6}}{BW_{age\ 1-6}} + \frac{IR_{soil/age\ 7-31} * ED_{age\ 7-31}}{BW_{age\ 7-31}}$$

THE ERM GROUP.

FWDA.MOD CLOSURE PLAN-00306.90-May 5, 1994

where (default value in square brackets):

IR _{soil/age 1-6}	= soil ingestion rate ages 1-6	[200 mg/day]
ED _{soil/age 1-6}	= exposure duration ages 1-6	[6 years]
BW _{soil/age 1-6}	= body weight ages 1-6	[15 kg]
IR _{soil/age 7-31}	= soil ingestion rate ages 7-31	[100 mg/day]
ED _{soil/age 7-31}	= exposure duration ages 7-31	[24 years]
BW _{soil/age 7-31}	= body weight ages 7-31	[70 kg]

As an example, the calculation of the screening level for HMX is shown below. The oral reference dose for HMX is given in IRIS as 0.05 mg/kgday. The screening level is therefore:

$$SL = \frac{THI * AT * 365 \text{ days / year}}{\left[\frac{1}{R_{f}D_{o}}\right] * 10^{-6} \text{ kg / mg * } EF * IF_{soil / adj}}$$
$$SL = \frac{1.0 * 30 * 365 \text{ days / year}}{\left[\frac{1}{0.05}\right] * 10^{-6} * 350 * 114}$$

SL = 13,721 mg/kg

The screening level has been rounded to 13,500 mg/kg to account for the number of significant figures used in the RAGS Part B reduced equations.

3.4.2.2 Screening Level Calculations for Water

Screening levels were also calculated for shallow subsurface water and surface water assuming residential use of the water as a domestic supply. Following procedures provided in RAGS Part B, the residential water use equations account for ingestion of the water, as well as inhalation of VOCs from general domestic use of the water (e.g., washing, showering). The equation for deriving a water screening level for carcinogenic effects is as follows:

$$SL = \frac{TR * BW * AT * 365 \text{ days / yr}}{EF * ED * \left[(CSF_i * K * IR_a) + (CSF_o * IR_w) \right]}$$

where (default value in square brackets):

SL	= Screening level (mg/l)	[]
TR	= Target excess individual lifetime cancer risk	[1 x 10 ⁻⁶]
	(Class A & B carcinogens; USEPA 1991)	-
BW	= Adult body weight	[70 kg]
AT	= Averaging time	[70 years]
EF	= Exposure frequency	[350 day/year]

THE ERM GROUP.

FWDA.MOD CLOSURE PLAN-00306.90-May 5, 1994

ED	= Exposure duration	[30 years]
CSF _i	 Inhalation cancer slope factor 	[chemical-specific, (mg/kg-day)-1]
K	= Volatilization factor	$[0.0005 * 1000 1/m^3]$
IRa	= Daily indoor inhalation a	rate [15 m ³ /day]
CSFo	= Oral cancer slope factor	[chemical-specific, (mg/kg-day)-1]
IRw	= Daily water ingestion rat	e [21/day]

Similarly, water screening levels for non-carcinogenic effects in water were calculated using the following equation:

$$SL = \frac{THI * BW * AT * 365 \text{ days / yr}}{EF * ED * \left[\left(\frac{1}{R_f D_i} * K * IR_a \right) + \left(\frac{1}{R_f D_o} * IR_w \right) \right]}$$

where (default value in square brackets):

SL	= Screening level (mg/l)	[]
THI	= Target hazard index	[1.0]
BW	= Adult body weight	[70 kg]
AT	= Averaging time	[30 years]
EF	= Exposure frequency	[350 day/year]
ED	= Exposure duration	[30 years]
RfD _i	= Inhalation reference dose	[chemical-specific, mg/kg-day]
K	= Volatilization factor	$[0.0005 * 1000 1/m^3]$
IRa	= Daily indoor inhalation rate	[15 m ³ /day]
RfDo	= Oral reference dose	[chemical-specific, mg/kg-day]
IR _w	= Daily water ingestion rate	[2 l/day]

The volatilization factor listed for deriving residential water-use screening levels is an upper-bound value derived from a study by Andelman (1990). The use of this upper bound estimate as a conservative screening tool is recommended by USEPA in RAGS Part B.

3.4.3 Risk-Based Screening Level Values

Carcinogenic risk-based screening levels were calculated for a constituent only when carcinogenicity information (i.e., a CSF) was available. Likewise, non-carcinogenic risk-based screening levels were calculated only where systemic toxicity information (i.e., an RfD) was available. Chemical-specific CSFs and RfDs were obtained from the USEPA Integrated Risk Information System (IRIS) and the Health Effects Assessment Summary Tables (HEAST) (USEPA, 1992). The available toxicity information for the constituents of concern are presented in Table 3-6. Calculated carcinogenic and non-carcinogenic risk-based screening levels are presented in Table 3-7. When both a carcinogenic and

Table 3-6 Toxicity Information for Constituents of Potential Concern Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Orai RfD	Inhaiatios RfD	1	Oral CSF		Inhalation CSF		Carcinogenic Classification
	······································	(mg/ kg/d)	(mg/kg/d)		(mg/kg/d)^	-1	(mg/kg/d)^-1		
Explosions									
1,3,5-Trinkrobenzene	135TNB	5.00E-05	•••						
1,3-Dinitrobenzene	13DNB	1.00E-04	NA		NA		NA	a	
24,6-Trialtrotobuene	246TNT	5.00E-04	NA		ND	a	ND		D
L4-Dinitrotoisene	24DNT	2.00E-03	NA	4	3.00E-02	a	ND		с
,6-Dinitrotokiene	26DNT		NA	•	6.80E-01	a 1	ND		
Cyclonite	RDX	NA 3.00E-03	NA		6.80E-01	al	NA		B2
yclotetramethylenetetranitramine	HMX	5.00E-02	NA	•	1.10E-01	a	ND		с
• •	1 1142	5.00E-02	ND	a	NA	a	NA	a	D
norgenics									
luminum	AL	2.90E+00	•••						
Intimony	58	2.90E+00 4.00E-04	NA		NA		NA		
Irsenic	AS	4.00E-04 3.00E-04	ND	•	ND	2	ND		
arium	BA		ND		1.75E+00	•	5.00E+01	a2	
eryilium	BE	7.00E-02 5.00E-03	1.40E-04	Ь	ND	8	ND		
oron	B		NA		4.30E+00		8.40E+00		B2
admium	CD	9.00E-02	5.70E-03	ь	ND	a	ND		
admium	e	5.00E-04 1.00E-03	ND	a	NA		6.10E+00	a	B 1
alcium	CA								
hromium	CR CR	NA 5.00E-03	NA		NA		NA	a	
obait	co C	SJUE-03 ND	ND		NA		4.10E+01	a 5	
opper	cu		ND		ND	a	ND	a	
DR.	FE	3.70E-02	ND		NA	a	NA	a	D
rad	PB	NA	NA		NA		NA		
agnesium	MG	ND	ND		NA		NA	a	B2
anganese	MN	NA	NA		NA		NA		
•	MIN	5.00E-03	1.145-04	a	NA	a	NA	a	D
ercury	HG	1.40E-01							
ickel	NI	3.00E-04	8.60E-05	ь	NA	a	NA	2	D
trate	NO3	2.00E-02	ND	a	NA	a	8.40E-01	a7	۸
trite	NIT	1.60E+00	ND	a	ND	a	ND		
osphorus	P4	1.00E-01	ND	a	ND	a	ND	4	
tansium	194 K	NA	NA		NA		NA		
lenkum.		NA	NA		NA		NA		
Ver	SE AC	5.00E-03	ND	a	ND	a	ND		D
dium	AG NA	5.00E-03	ND	a	NA	a	NA		D
altum	••••	NA	NA		NA		NA		-
tal Phosphates	TL TTC:	9.00E-05	ND		ND	a	ND		D
nadium	TPO4 V	NA	NA		NA		NA		-
ю.		7.00E-03							
-	ZN	3.00E-01	ND	a	ND	a	ND		D
a/Particides									_
	ALDRN	3 000 oc							
ha-Benzenehexach loride	ALDKN	3.00E-05	ND		1.70E+01	a	1.70E+01		B2
ha-Endosulfan	ABHC	ND	ND	a –	6.30E+00	a	6.30E+00		B2
	VENOL.	5.00E-05	ND	4	ND	2	ND		

Table 3-6 Toxicity Information for Constituents of Potential Concern Fort Wingate Depot Activity Gallup, New Mexico

1

1

1

1

1

A = -z

Const its ent	IRDMIS Syberym	Oral RfD	Inhalation R(D		Oral CSF		Inhalation CSF		Carcinogenic Classification
		(mg/kg/d)	(mg/kg/d)		(mg/kg/d)^-1		(mg/kg/d)^-1		
	BBHC	ND	ND		1.80E+00		1.80E+00	1	с
ieta-Benzenehexachloride	BENSLF	5.00E-05	ND	1	ND	-	ND		C.
ieta-Endosulfan	BRMCIL	NA	NA	•	NA	•	NA	-	
Iromacii	CLDAN	6.00E-05	ND		1.30E+00		1.30E+00		82
hlordane	PPDDD	ND	ND	-	2.405-01	-	ND	-	B2
DD	PPDDE	ND	ND	-	3.40E-01	-	ND		B2
DE		5.00E-04	ND	-	3.40E-01	-	3.40E-01		B2
TOC	PPDDT				ND		ND		B₄ D
)eka-Benzenehexachloride	DBHC	2.50E-03	ND	4	•				B2
Neldrin	DLDRN	5.00E-05	ND		1.60E+01		1.60E+01	*	D4
indonalian Sulfate	ESPSO4	5.00E-05	ND	8	ND	4	ND ND		D
indrin	ENDRN	3.00E-04	ND	•	ND				
leptachlor	HPCL	5.00E-04	ND		4.50E+00	•	4.50E+00	•	B2
ieptachlor epoxide	HPCLE	1.30E-05	ND		9.10E+00		9.10E+00	a	B2
eod rin	ISODR								
indane	LIN	3.00E-04	ND		1.30E+00	ъ	ND	8	
CB 1016	PCB016	7.00E-05	ND		7.70E+00	a	NA		B2
CB 1254	PCB254	ND	ND		7.70E+00	a	NA	8	B2
CB 1260	PCB260	ND	ND		7.70E+00	•	NA	•	B2
ie nivoletiles									_
S-Dimethylnapthalene	15DNAP	4.00E-02	ND		ND	a	ND	4	D
,8-Dimethylnapthalene	18DNAP	4.00E-02	ND		ND	8	ND	8	D
,3-Dimethylnapthalene	23DNAP	4.00E-02	ND		ND		ND	4	D
6,10,14-Tetramethylheptadecane	2TMIPD	NA	NA		NA		NA		
6,10,14-Tetramethylpentadecane	2TMPD	NA	NA		NA		NA		
-Methylnapthalene	ZMNAP	4.00E-02	ND		ND	a	ND	2	D
cenaphthene	ANAPNE	6.00E-02	ND		ND	a	ND	a	D
Anthracene	ANTRC	3.00E-01	ND		ND		ND	2	D
enzo(a)anthracene	BAANTR	ND	ND	4	1.06E+00	с	5.70E-01	¢	B2
lenzo(a)pyrene	BAPYR	ND	ND	2	7.30E+00	a	3.90E+00	a10	82
ienzo(b)fluoranthene	BBFANT	ND	ND	a	1.02E+00	c	5.50E-01	c	B2
lenzo(g, h, i)fluoranthene	BCHIPY	4.00E-02	ND		ND		ND		D
lenzo(k)fluoranthene	BKFANT	ND	ND	a	4.80E-01	c	2.60E-01	c	B2
lis(2-ethylhexyl)phthalate	B2EHP	2.00E-02	ND	a	1.40E-02	8	NA		B2
hrysene	CHIRY	ND	ND		3.21E-02	c	1.72E-02	с	B2
Nibenz(a,h)anthracene	DBAHA	ND	ND		8.10E+00	c	4.33E+00	c	B2
N-n-octylphthalate	DNOP	2.00E-02							
luoranthene	FANT	4.00E-02	ND		ND		ND		D
luorent	FLRENE	4.00E-02	ND		ND	4	ND		D
ndena[1,2,3-C,D]pyrene	CDPYR	ND	ND		1.69E+00	c	9.05E-01	c	B2
Japhthalene	NAP	4.00E-02	ND	-	ND		ND		D
Mand Grease	OILGR	NA	NA	-	NA	-	NA	-	
Thenanthrene	PHANTR	4.00E-02	ND		ND		ND		D
Pyrene	PYR	3.00E-02	ND	1	ND	ī	ND	2	D

Table 3-6 Toxicity Information for Constituents of Potential Concern Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synony s i	Oral RfD	Inhalation RfD	Oral CSF	Inheletion CSF	Carcinogen Classificatio
		(mg/kg/d)	(mg/kg/d)	(mg/lig/d)^-1	(mg/kg/d)^-1	
Volatiles 1-Ethyl-3-methylbenzene 2-Hexanone Acrytoni Irlle Chloromethane Ethylbenzene Methylbenzene Methylene Chloride Golaene	ET3MBZ MNBK ACET ACRYL0 CH3CL ETB CH2CL2 MEC6H5	NA 5.00E-02 1.00E-01 ND 1.00E-01 6.00E-02 2.00E-01	NA 4.765-03 ND 5.722-04 ND 2.866-01 8.608-01 1.408-00	NA ND 5.40E-01 a ND a NA b 7.50E-03 a ND	NA ND 2.40E-01 ND NA 1.65E-03	a D a Bi a D a B2 a D

Codes B2EHPH, C22, and PH were removed from the hits list due the lack of a matching

IRDMIS code, or irrelevancy to the risk assessment.

a - IRIS Database accessed 5/93

b - HEAST FY1992

c - Clement Associates, 1988

d- RfD was derived based on toxicity information from the ATSDR toxicity profile. See text for details.

e-USEPA, 1993, Region III RBC Table.

NA - Not Available

ND - No Data

al The CPF for this constituent is listed as the Dinitrotokuene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for the ingestion of water.

a4 This value is for food consumption.

a5 This value is for hexavalent chromium.

a6 This value is for soluble nickel salts.

a7 The CPF for nickel refinery dust was used.

a8 This value is based on nitrate data.

a9 This value has been withdrawn from IRIS.

a10 Derived from oral slope factor by ERM.

(i) Based on inhalation study.

(o) Based on oral study.

b1 This value has been withdrawn from HEAST.

b2 This RfD was calculated based on drinking water standard.

Table 3-7 Risk-Based Screening Levels Fort Wingate Depot Activity Gallup, New Mexico

1

Т

		Soil	PRGs	Ground Water PRGs			
Constituent	IRDMIS	Resi	dential	Residential D	-		
	Synonym	Carcinogenic	Noncarcinogenic	Carcinogenic	Noncarcinogenic		
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/l)	(mg/l)		
Explosives							
1,3,5-Trinitrobenzene	135TNB		1.35E+01		1.83E-03		
,3-Dinitrobenzene	13DNB		2.70E+01		3.65E-03		
2,4,6-Trinitrotoluene	246TNT	2.13E+01	1.35E+02	2.83E-03	1.83E-02		
2,4-Dinitrotoluene	24DNT	9.41E-01	5.40E+02	1.25E-04	7.30E-02		
2.6-Dinitrotoluene	26DNT	9.41E-01		1.25E-04			
Cyclonite	RDX	5.82E+00	8.10E+02	7.73E-04	1.10E-01		
Cyclotetramethylenetetranitramine	НМХ		1.35E+04		1.83E+00		
norganics							
Aluminum	AL		7.83E+05		1.06E+02		
Antimony	SB		1.08E+02		1.46E-02		
Arsenic	AS	3.66E-01	8.10E+01	4.49E-07	1.10E-02		
Barium	BA		1.89E+04		2.56E+00		
Beryllium	BE	1.49E-01	1.35E+03	2.37E-06	1.83E-01		
Boron	В		2.43E+04		3.29E+00		
Cadmium	CD				1.83E-02		
Cadmium			2.70E+02				
Calcium	CA						
Chromium	CR		1.35E+03		1.83E-01		
Cobalt	со						
Соррег	CU		9.99E+03		1.35E+00		
iron	FE						
Lead	PB						
Magnesium	MG						
Manganese	MN				1.83E-01		
·			3.78E+04				
Mercury	HG		8.10E+01		1.10E-02		
Nickel	NI		5.40E+03		7.30E-01		
Nitrate	NO3		4.32E+05		5.84E+01		
Nitrite	NIT		2.70E+04		3.65E+00		
Phosphorus	P4						
Potassium	ĸ						
Selenium	SE		1.35E+03		1.83E-01		
Silver	AG		1.35E+03		1.83E-01		

- (

t -

Table 3-7 Risk-Based Screening Levels Fort Wingate Depot Activity Gallup, New Mexico

.

Constituent	IRDMIS		PRGs		ater PRGs	
CONDUTRENT			dential Noncarcinogenic		rinking Water	
	Synonym	Synonym Carcinogenic		Carcinogenic	Noncarcinogenic	
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)	
Sodium	NA					
Thallium	п		2.43E+01		3.29E-03	
Total Phosphates	TPO4				J.27E-03	
Vanadium	v		1.89E+03		2.56E-01	
Zinc	ZN		8.10E+04		1.10E+01	
°CBs/Pesticides						
Aldrin	ALDRN	3.76E-02	8.10E+00	1.05E-06	1.10E-03	
Alpha-Benzenehexachloride	ABHC	1.02E-01	0.106100	2.84E-06	1.106-03	
Ipha-Endosulfan	AENSLF		1.35E+01	2.01E-00	1.83E-03	
leta-Benzenehexachloride	BBHC	3.56E-01	1002101	9.94E-06	1.831-03	
leta-Endosulfan	BENSLF		1.35E+01	J.J4L-00	1 025 02	
romacil	BRMCIL				1.83E-03	
Thiordane	CLDAN	4.92E-01	1.62E+01	1.38E-05	2 200 02	
DD	PPDDD	2.67E+00	THE TOT	3.54E-04	2.19E-03	
DDE	PPDDE	1.88E+00		2.50E-04		
DT	PPDDT	1.88E+00	1.35E+02	5.26E-05	1.83E-02	
Pelta-Benzenehexachloride	DBHC		6.75E+02	5-201-05	9.13E-02	
Vieldrin	DLDRN	4.00E-02	1.35E+01	1.12E-06	9.13E-02 1.83E-03	
ndosulfan Sulfate	ESFSO4		1.35E+01	1.121-00	1.83E-03	
ndrin	ENDRN		8.10E+01			
leptachlor	HPCL	1.42E-01	1.35E+02	3.98E-06	1.10E-02 1.83E-02	
leptachlor epoxide	HPCLE	7.03E-02	3.51E+00	1.97E-06	4.75E-04	
odrin	ISODR			1.27 6-00	1./ 3E-04	
indane	LIN	4.92E-01	8.10E+01	6.54E-05	1.10E-02	
CB 1016	PC8016	8.31E-02	1.89E+01	1.10E-05	2.56E-03	
CB 1254	PCB254	8.31E-02	1.0/2101	1.10E-05	2.302-03	
CB 1260	PCB260	8.31E-02		1.10E-05		
emivoletiles						
5-DimethyInapthalene	15DNAP		1.08E+04		1.445.00	
8-Dimethylnapthalene	18DNAP		1.08E+04		1.46E+00	
3-DimethyInapthalene	23DNAP		1.08E+04		1.46E+00	
6,10,14-Tetramethylheptadecane	2TMHPD		INULTUR		1.46E+00	
6,10,14-Tetramethylpentadecane	2TMPD					

-

Table 3-7 Risk-Based Screening Levels Fort Wingate Depot Activity Gallup, New Mexico

		Soil	PRGs	Ground W	ater PRGs
Constituent	IRDMIS	Resi	dential	Residential D	rinking Water
	Synonym	Carcinogenic	Noncarcinogenic	Carcinogenic	Noncarcinogenic
		(mg/kg)	(mg/kg)	(mg/l)	(mg/l)
2-Methylnapthalene	2MNAP		1.08E++04		1.46E+00
Acenaphthene	ANAPNE		1.62E++04		2.19E+00
Anthracene	ANTRC		8.10E++04		1.10E+01
Jenzola janthracene	BAANTR	6.04E-01		2.66E-05	
lenzola pyrene	BAPYR	8.77E-02		3.88E-06	
Benzo[b]fluoranthene	BBFANT	6.27E-01		2.76E-05	
Benzo(g,h,i)fluoranthene	BGHIPY		1.08E++04		1.46E+00
Senzo (k) fluoranthene	BKFANT	1.33E+00		5.84E-05	
Bis(2-ethylhexyl)phthalate	B2EHP	4.57E+01	5.40E++03	6.07E-03	7.30E-01
Chrysene	CHRY	1.99E+01		8.80E-04	
Dibenz (a.h.lanthracene	DBAHA	7.90E-02		3.49E-06	
Di-n-octylphthalate	DNOP		5.40E++03		7.30E-01
luoranthene	FANT		1.08E++04		1.46E+00
luorene	FLRENE		1.08E++04		1.46E+00
ndeno[1,2,3-C,D]pyrene	ICDPYR	3.78E-01		1.67E-05	
Naphthalene	NAP		1.08E++04		1.46E+00
Dit and Grease	OILGR				
'henanthrene	PHANTR		1.08E++04		1.46E+00
Pyrene	PYR		8.10E+03		1.10E+00
Volatiles					
-Ethyl-3-methylbenzene	ET3MBZ				
Hexanone	MNBK		1.35E+04		1.83E+00
Acetone	ACET		2.70E+04		3.65E+00
Acrylonitrile	ACRYLO	1.19E+00		5.90E-05	
hloromethane	CH3CL				
ithylbenzene	ETB		2.70E+04		3.65E+00
Methylene Chloride	CH2CL2	8.53E+01	1.62E+04	6.21E-03	2.19E+00
Foluene	MEC6H5		5.40E+04		7.30E+00

Codes B2EHPH, C22, and PH were removed from the hits list due the

lack of a matching IRDMIS code, or irrelevancy to the risk assessment.

1 I L

NA - Not Available

- i - i - i -

ND - No Data

1

i

ı I

1

1

1

1

4 1 1 1

non-carcinogenic risk-based screening level were calculated for a given constituent, the lower of the two values was selected for use in the screening evaluation.

For some constituents detected at the OBDA, toxicological indices were not available in the cited references.

Drinking water screening values were derived for several of the essential nutrient compounds at the site due to levels that appeared to be elevated above background in shallow subsurface water and surface water. Although these levels do not necessarily indicate a potential human health problem if they are exceeded, they provide a starting point for evaluating the relative risks associated with the concentrations detected at the OBDA. The water screening levels for calcium, iron, magnesium, phosphorus, and potassium were derived from dietary intake recommendations published by the National Academy of Sciences (NAS, 1980). Since the recommended dietary allowances (RDAs) and estimated safe intakes (ESIs) are provided on a age-dependent basis, the computation of an acceptable drinking water concentration for these constituents was also performed on an age group-specific basis. Average water ingestion rates, inclusive of water-based foods and beverages, were taken from USEPA's Exposure Factors Handbook (1989). The lowest computed acceptable concentration for any age group was then used as the screening level. The calculations are shown in Tables 3-8 and 3-9.

Uptake Biokinetic Modeling for Lead

As of the time of this writing, only the Version 0.5 (Preliminary Draft) version of USEPA's Uptake Biokinetic (UBK) Model (USEPA, 1991) was available. Therefore, the results of the UBK modeling presented herein are not based on an officially released version of the model and must be interpreted with appropriate reservation.

The UBK model was developed by the USEPA Environmental Criteria and Assessment Office (ECAO). The purpose of the model is to predict blood lead levels in children (ages 0 to 7 years) resulting from exposures to lead from various sources, including air, water, soil/dust, diet, paint, and maternal contribution (i.e., transfer of lead from the mother to the fetus which determines blood lead level at birth). The model relates the amount of lead taken up by the body to the amount of lead in the various exposure media using absorption factors. The biokinetic portion of the model then relates the distribution of lead in various organs to the lead uptake amounts. The biokinetic computations are based on transition times describing the amount of time taken for lead to transfer between various organs. It should be noted that the derivation of the absorption factors

THE ERM GROUP.

Table 3-8 Derivation of Drinking Water Screening Levels for Micronutrients From Recommended Daily Allowances Fort Wingate Depot Activity Gallup, New Mexico

<u> </u>			Mean Water	Acceptable GW
Chemical	Age	RDA (1)	Ingestion (2)	Concentration (3
	(yr)	(mg/day)	(1/day)	(mg/l
Calcium	Under 1	450		_
	1 to 4	450 800	0.307	1.47e+3
	5 to 9	800	0.743	1.08e+3
	10 to 14		0.861	9.29e+2
	15 to 19	1120 1120	1.025	1.0 9e +3
	20 to 24	800	1.241	9.02e+2
	25 to 29	800	1.484	5.39e+2
	30 to 39	800	1.531	5.23e+2
	40 to 59	800	1.642	4.87e+2
	60 and over	800	1.732	4.62e+2
	of and over	800	<u>1.547</u>	5.17e+2
			Minimum	4.62e+2
Magnesium	Under 1	65	0.307	2.12e+2
	1 to 4	162.5	0.743	2.19e+2
	5 to 9	230	0.861	2.67e+2
	10 to 14	330	1.025	3.22e+2
	15 to 19	390	1.241	3.14e+2
	20 to 24	350	1.484	2.36e+2
	25 to 29	350	1.531	2.29e+2
	30 to 39	350	1.642	2.1 3e+ 2
	40 to 59	350	1.732	2.02e+2
	60 and over	350	1.547	2.26e+2
			Minimum	2.02e+2
hosphorus	Under 1	220		
nospilorus	1 to 4	320	0.307	1.04e+3
	5 to 9	800 800	0.743	1.08e+3
	10 to 14		0.861	9.29e+2
	15 to 19	1120	1.025	1.09e+3
	20 to 24	1120	1.241	9.02e+2
		800	1.484	5.39e+2
	25 to 29	800	1.531	5.23e+2
	30 to 39	800	1.642	4.87e+2
	40 to 59	800	1.732	4.62e+2
	60 and over	800	1.547	5.17e+2
			Minimum	4.62e+2
ron	Under 1	12.5	0.307	4.07e+1
	1 to 4	13.75	0.743	1.85e+1
	5 to 9	10	0.861	1.16e+1
	10 to 14	16.4	1.025	1.60e+1
	15 to 19	. 16.4	1.241	
	20 to 24	10	1.484	1.32e+1
	25 to 29	10	1.531	6.74e+0
	30 to 39	10	1. 642	6.53e+0
	40 to 59	10		6.09e+0
	60 and over	10	1. 732 1. 547	5.77e+0
		····	Minimum	<u>6.46e+0</u> 5.77e+0

Notes:

(1) - RDA values time weighted averages from "Drinking Water and Health, Volume 3",

National Academy Press, Washington, D.C., 1980.

(2) - From "Exposure Factors Handbook", EPA/600/8-89/043, EPA, 1989. Water ingestion rate includes water-based drinks and foods.

(3) - Acceptable concentration is calculated as RDA divided by water ingestion rate. Minimum value for any age group is selected as potential screening level.

Table 3-9 Derivation of Drinking Water Screening Levels for Micronutrients From Estimated Safe Intakes Fort Wingate Depot Activity Gallup, New Mexico

Chemical	Age (yr)	Estimated Safe Intake (1) (mg/day)	Mean Water Ingestion (2) (1/day)	Acceptable GW Concentration (3) (mg/l)
Sodium	Under 1	547.5	0.307	1.78e+3
	1 to 4	1068.75	0.743	1.70e+c
	5 to 9	1620	0.861	1.88e+3
	10 to 14	2520	1.025	2.46e+3
	15 to 19	3300	1.241	2.66e+3
	20 to 24	3300	1.484	2.000 re 2.22e+3
	25 to 29	3300	1.531	2.16e+3
	30 to 39	3300	1.642	2.01e+3
	40 to 59	3300	1.732	1.91e+3
	60 and over	3300	1.547	2.13e+3
		-	Minimum	1.44e+3
Potassium	Under 1	1100	0.307	3.58e+3
	1 to 4	1825	0.743	2.46e+3
	5 to 9	2740	0.861	3.18e+3
	10 to 14	4260	1.025	4.16e+3
	15 to 19	5600	1.241	4.51e+3
	20 to 24	5600	1.484	4.510+5 3.77e+3
	25 to 29	5600	1.531	3.66e+3
	30 to 39	5600	1.642	3.41e+3
	40 to 59	5600	1.732	3.23e+3
	60 and over	5600	1.547	3.62e+3
			Minimum	

Notes:

(1) - ESI values time weighted averages from "Drinking Water and Health, Volume 3",

National Academy Press, Washington, D.C., 1980.

(2) - From "Exposure Factors Handbook", EPA/600/8-89/043, EPA, 1989. Water ingestion rate includes water-based drinks and foods.

(3) - Acceptable concentration is calculated as ESI divided by water ingestion rate. Minimum value for any age group is selected as potential screening level.

and transition times is not well documented in the Version 0.5 Users Guide.

The values for the input parameters for the UBK model were left at the default values provided in the model for the air, water, diet, paint, and maternal contribution pathways. For air, the model assumes as a default an ambient air concentration of 0.20 ug/m^3 . The model also assumes an indoor air lead concentration of 30% of the outdoor concentration. The primary ambient sources of atmospheric lead include industrial emissions and vehicular emissions. Since the FWDA is located in a remote, non-industrialized area, these concentrations of atmospheric lead may be unrealistically high.

The UBK model assumes as a default 4 ug/l of lead in water supplies. The shallow subsurface water and surface water at the OBDA (the most probable sources of drinking water at the site) were not found to contain detectable quantities of lead. In addition, future residential dwellings constructed at the OBDA would not use lead plumbing; residents would not be subjected to lead in their drinking water from that source. Therefore, this assumption of lead in drinking water may be unrealistic.

Dietary lead intakes in the UBK model default to a range of 5.88 ug/day to 7.48 ug/day. No site specific dietary lead content data exist by which to judge the validity of these default values for dietary intake of lead.

The default assumption in the UBK model is that paint does not contribute to lead intake. This is a valid assumption for newer dwellings wherein lead-based paints are not used, as would be the case for future dwellings constructed at the OBDA.

The maternal contribution default assumption in the UBK model is that the blood lead level in the mother is 7.5 ug/dL and that this results in a blood lead level in the infant at birth of 6.375 ug/dL. The validity of this assumption at the OBDA is unknown.

The output of the UBK model are the predicted blood lead levels in the exposed population. The blood lead levels may be expressed as the geometric mean of the predictions, or a full statistical distribution may be generated. Two substantive issues remain with regard to the interpretation of the model output:

- 1. What should the acceptable target blood lead level be; and
- 2. Should the geometric mean estimate be used, or should an upper confidence limit on the distribution of estimates be used. If an upper confidence limit is to be used, what percentile value should be selected (e.g., 95th, 99th).

THE FRM GROUP

. . .

FWDA.MOD CLOSURE PLAN-00306.90-May 5, 1994

These issues must be resolved by USEPA as a policy and guidance matter prior to widespread use of the UBK model for site remediation can be achieved. Current scientific literature indicates that a target blood lead level of 10 ug/dL may be sufficiently protective. However, considerable controversy surrounds the use of this value. As a point of departure for evaluating the UBK model results, the target value of 10 ug/dL was selected.

To account for the uncertainty associated with the selection of default intake parameters for media other than soil, and the selection of a statistical measure for the final model estimate, several model runs were made and the results presented as a comparison. Three runs were made for each of two scenarios. The first scenario included lead intake from soil/dust and from each of the other identified intake routes (air, water, diet, and maternal). The second scenario included only intake of lead from soil/dust and the maternal contribution. All other lead intake routes were set to zero in Scenario 2. The true lead intake for a residential land use at the FWDA most likely lies somewhere between Scenario 1 and Scenario 2. Thus, the results from the two scenarios should provide bounds on the true estimates for the site. For each scenario, three statistical measures were selected to represent the estimated acceptable soil lead level: the mean, the 95th percentile, and the 99th percentile.

The UBK model, as currently published by USEPA, contains utilities to solve iteratively for the mean soil concentration (holding all other intakes constant) which results in the specified target blood lead level. These utilities were used to derive soil lead concentrations which resulted in the target blood lead level of 10 ug/dL under the exposure conditions of Scenario 1 and Scenario 2.

The acceptable soil lead concentrations predicted by the model ranged from 340 mg/kg (99th percentile) to 994 mg/kg (geometric mean) for Scenario 1, and from 525 mg/kg (99th percentile) to 1174 mg/kg (geometric mean) for Scenario 2. The PARAR for lead of 500 mg/kg (selected in Section 5.2.3.1) falls within the lower portion of this range predicted by the UBK model. Given the uncertainties associated with the application of the UBK model, and the lack of policy or guidance on selecting the target blood lead level, a screening level for lead in soils of 500 mg/kg was selected as appropriate for use at the FWDA. This screening level is comparable to the 95th percentile soil lead level for Scenario 1 (480 mg/kg) which includes several external lead sources not likely to be present at the FWDA, and is lower than the 95th percentile soil lead level for Scenario 2 (660 mg/kg) which includes only soil/dust intake and maternal contribution. Therefore, 500 mg/kg was selected as the soil screening level for lead.

Table 3-10 Uptake/Biokinetic Model Results Fort Wingate Depot Activity Gallup, New Mexico

_

-

.

	Acceptable Soil Lead Concentration						
Measure	Scenario 1 (mg/kg)	Scenario 2 (mg/kg)					
Geometric Mean	994	11 74					
95th Percentile	480	660					
99th Percentile	340	525					

Notes:

The acceptable soil lead concentration is based on a target blood lead level of 10 ug/dL Scenario 1 included all other sources of lead intakes

Scenario 2 included only lead intakes from soil and maternal contribution

4.0 RESULTS OF FIELD SCREENING

Analytical results were compared to the screening levels described in Section 3 ("the screening level 1). The results which exceeded the screening levels are discussed below. A copy of the analytical data is presented in Appendix C.

4.1 SURFACE SOIL RESULTS

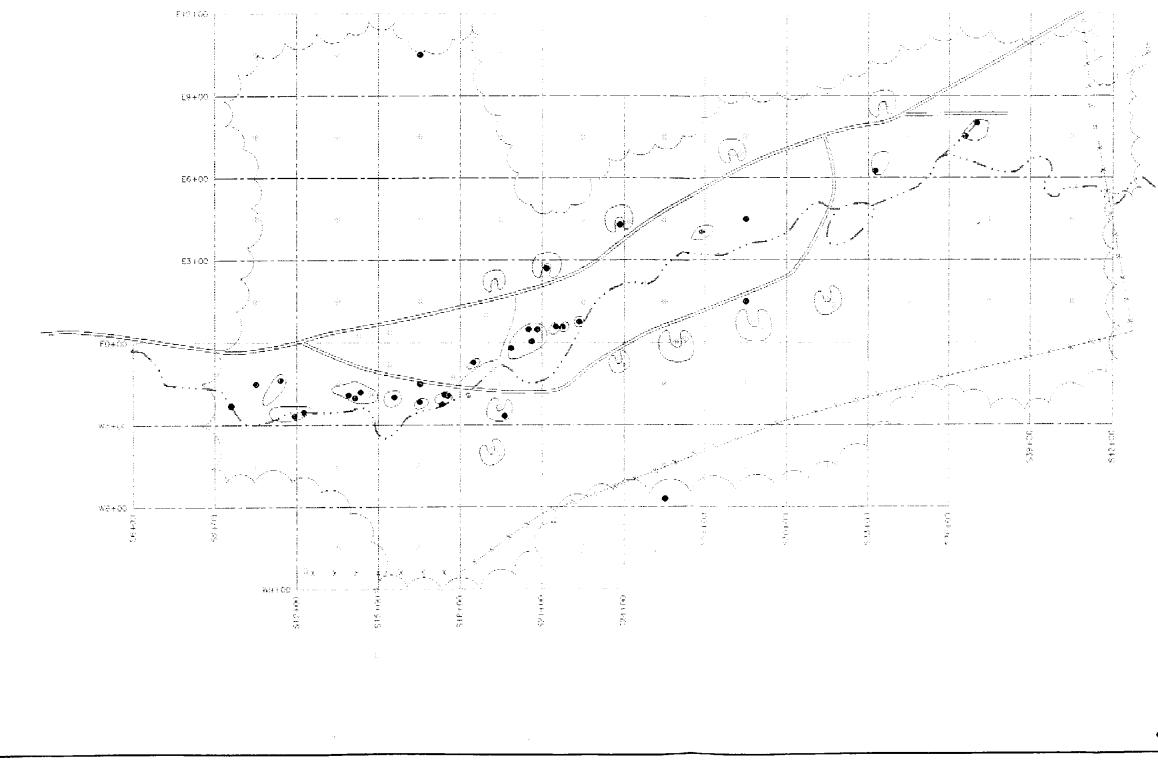
4.1.1 OBDA Grid Quadrants

Sixty eight surface soil samples were collected from grid quadrants established in the OBDA. Explosive compounds were detected in five samples, four of which were collected from quadrants where active detonation or refuse disposal had occurred (See Table 4-1 and Figure 4-1). Explosives were detected at concentrations above the screening levels in one sample (See Figure 4-2).

Metals were detected at concentrations above the background levels in several samples (See Table 4-1). Metals were detected at concentrations above the screening levels in one sample collected from a quadrant where active burning had occurred(See Figure 4-3).

4.1.2 Burning Ground Area

Eight surface soil samples were collected from within the Burning Ground Area. Explosive compounds were detected in two samples, however, the concentrations were below the screening levels (See Table 4-2 and Figure 4-1).


Metals were detected at concentrations above the background levels in several samples (See Table 4-2). One sample collected from within the Burning Ground Area contained metals at concentrations above the screening levels (See Figure 4-3).

4.1.3 Detonation Craters

A total of 22 surface soil samples were collected from 11 detonation craters currently located in the OBDA. Three of the samples contained detectable concentrations of explosives (See Table 4-3 and Figure 4-1). However, the concentrations detected were below the screening levels.

THE ERM GROUP.

. . .

THE ERM GROEP

1

)))

1

))

) }

)

}

÷

1

1

÷

)

)

)

J.

Figure 4-1 Samples with Explosives Detected RCRA Interim Status Closure Plan Fort Wingate Depot Activity Gallup, New Mexico

> LEGEND: RESIDUE PILE • DEMO BURNING AREA GRID 6 DEMOLITION CRATERS . BURNING GROUND AREAS BLOW IN-PLACE ARROYO 175 350 Scale in Feet DEVELOPED BY: M.J.S. CHECKED BY: DATE:

PM306.80.01/02.21.94-CMP/05.05.94-CMP/I204-2

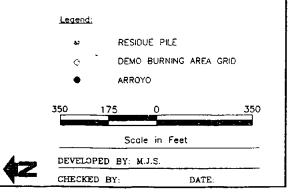
Z

) 1

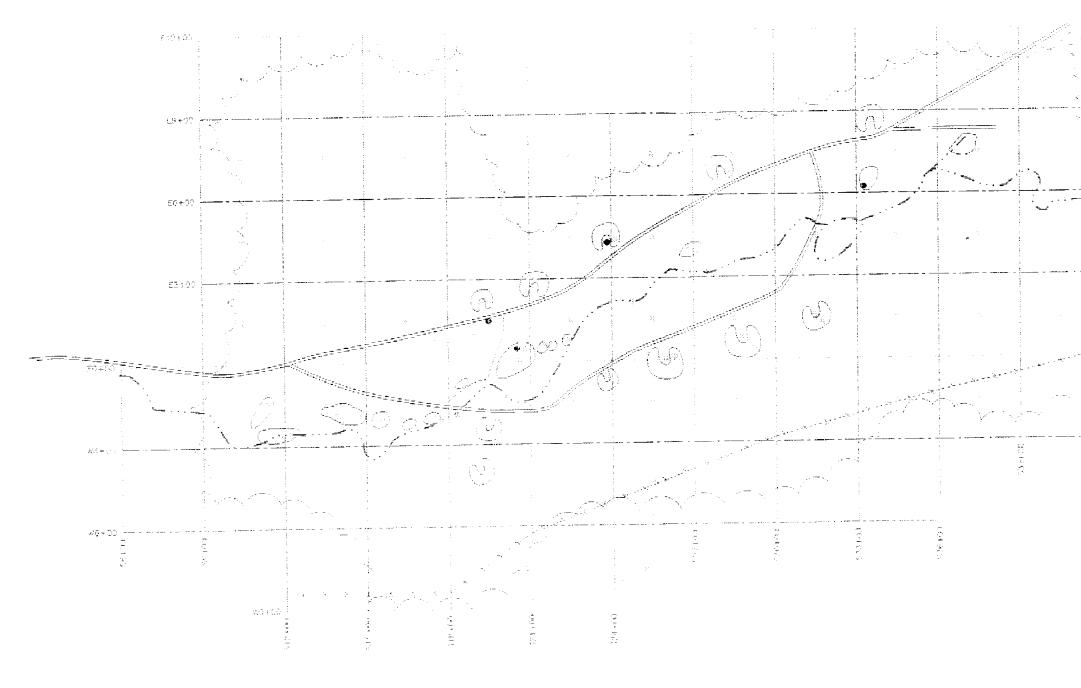
)

)

1


)

)


)

)

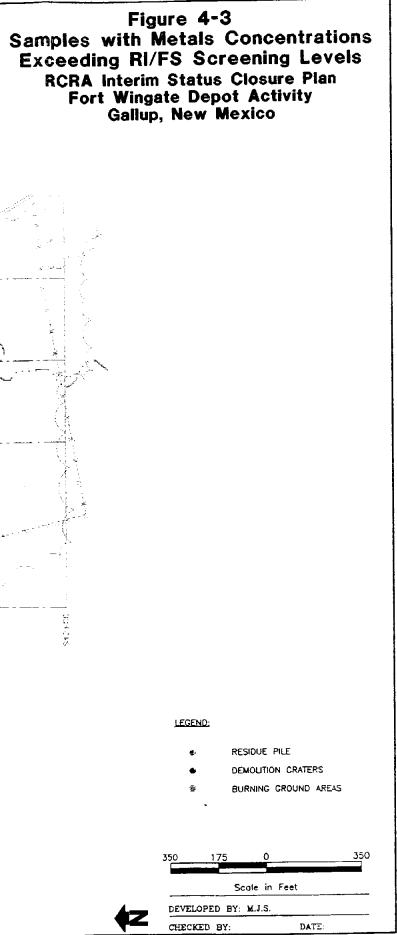
Figure 4-2 Samples with Explosives Concentrations Exceeding RI/FS Screening Levels RCRA Interim Status Closure Plan Fort Wingate Depot Activity Gallup, New Mexico

PM306.80.01/02.21.94-CMP/05.05.94-CMP/I204-3

) 1)

)

)))


))

)

)

))))

) 1

PM308.80.01/02.21.94-CMP/05.05.94-CMP/1204-1

TABLE 4-1 OPEN BURNING AND DETONATION AREA GRID QUADRANTS FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

			RI/FS	5 Background	RI/FS Screening		
Compound Name	Number of Samples	Certified Reporting Limit	RI/FS Background Value	Number of Detections Above Background Value	RI/FS Screening Value	Number of Detections Above Screening Value	
Compound Nume	Jaupres	Limut	Value	Dackground Value	VAIUE	Screening value	
EXPOSIVE COMPOUNDS					1		
HMX/Cyclotetramethylenetetranitramine	68	0.947	0.00	1	13500	0	
RDX/Cyclonite / Hexahydro-1,3,4-triazine	68	0.323	0.00	1	5.82	0	
1,3,5-Trinitrobenzene	68	0.961	0.00	0	13.50	0	
1,3-Dinitrobenzene	68	0.268	0.00	0	27	0	
Vitrobenzene	68	0.283	0.00	0	135	0	
N-Methyl-N,2,4,6-tetranitroaniline	68	1.79	0.00	0	NA	0	
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	68	1.2	0.00	2	21.30	1	
2,6-Dinitrotoluene	68	1.17	0.00	0	0.941	Ó	
2,4-Dinitrotoluene	68	1.09	0.00	0	0.941	0	
2-Nitrotoluene	68	1.69	0.00	0	NA	0	
l-Nitrotoluene	68	1.17	0.00	0	NA	0	
-Nitrotoluene	68	1.31	0.00	0	NA	0	
2-Amino-4,6-DNT	68	0.28	0.00	4	0.941	1	
-Amino-2,6-DNT	68	0.25	0.00	4	0.941	1	
						-	
NORGANICS				· · · · · · · · · · · · · · · · · · ·	1 1		
Aluminum	68	20	247000	0	NA	0	
Antimony	68	41.3	19.60	77	108	1	
Arsenic	68	3.6	81	0	NA	0	
Barium	68	0.962	3660	0	18900	0	
Beryllium	68	0.5	18.10	0	NA	0	
Cadmium	68	0.515	1.75	8	270	0	
Calcium	68	72	600000	0	NA	0	
Chromium	68	0.669	168	2	1350	0	
Cobolt	68	0.665	142	0	NA	0	
Copper	68	0.937	289	10	9990	0	
ron	68	11.3	215000	0	NA	0	
ead	68	2.95	81	0	500	0	
Magnesium	68	37.1	300000	0	NA	0	
Manganese	68	2	18000	0	37800	0	
Mercury	68	0.0269	0.05	12	81	0	
Nickel	68	1.54	435	0	5400	0	
Pottassium	68	119	34800	0	NA	0	
Selenium	68	7.44	0.449	0	1350	0	
Silver	68	0.521	0.803	3	1350	0	
odium	68	44.8	21200	0	NA	0	
Thallium	68	14.7	34.30	0	NA	0	
/anadium	68	1.77	384	0	1890	0	
Zinc	68	1.94	444	0	81000	0	

TABLE 4-2 OPEN BURNING AND DETONATION AREA BURNING GROUND AREA FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

			RI/FS	Background	RI/FS Screening		
Compound Name	Number of Samples	Certified Reporting Limit	R1/FS Background Value	Number of Detections Above Background Value	RI/FS Screening Value	Number of Detections Above Screening Value	
			1	Date Broand Value		Scicening value	
EXPOSIVE COMPOUNDS			1		1		
HMX/Cyclotetramethylenetetranitramine	8	0.947	0.00	0	13500	0	
RDX/Cyclonite / Hexahydro-1,3,4-triazine	8	0.323	0.00	0	5.82	0	
1,3,5-Trinitrobenzene	8	0.961	0.00	0	13.50	0	
1.3-Dinitrobenzene	8	0.268	0.00	0	27	0	
Nitrobenzene	8	0.283	0.00	1	135	0	
N-Methyl-N,2,4,6-tetranitroaniline	8	1.79	0.00	0	NA	0	
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	8	1.2	0.00	0	21.30	0	
2,6-Dinitrotoluene	8	1.17	0.00	0	0.941	0	
2,4-Dinitrotoluene	8	1.09	0.00	0	0.941	0	
2-Nitrotoluene	8	1.69	0.00	0	NA	0	
4-Nitrotoluene	8	1.17	0.00	0	NA	0	
3-Nitrotoluene	8	1.31	0.00	0	NA	0	
2-Amino-4,6-DNT	8	0.28	0.00	2	0.941	0	
4-Amino-2,6-DNT	8	0.25	0.00	2	0.941	0	
INORGANICS							
Aluminum		20	247000	0	NA	0	
Antimony	8	41.3	19.60	8	108		
Arsenic	8	3.6	81.00	0	NA		
Barium	8	0.962	3660	0	18900	0	
Beryllium	8	0.5	18.10	0	NA	0	
Cadmium	8	0.515	1.75	4	270	0	
Calcium	8	72	600000	0	NA	0	
Chromium	8	0.669	168	0	1350	0	
Cobolt	8	0.665	142	0	NA	0	
Copper	8	0.937	289	4	9990		
Iron	8	11.3	215000	1	NA		
Lead	8	2.95	81	0	500	0	
Magnesium	8	37.1	300000	0	NA		
Manganese	8	2	18000	0	37800	0	
Mercury	8	0.0269	0.05	7	81	0	
Nickel	8	1.54	435	0	5400	0	
Pottassium	8	119	34800	0	NA	0	
Selenium	8	7.44	0.449	0	1350	0	
Silver	8	0.521	0.803	2	1350	0	
Sodium	8	44.8	21200	0	NA	0	
Thallium	8	14.7	34.30	0	NA	0	
Vanadium	8	1.77	384	0	1890	0	
Zinc	8	1.94	444	0	81000	0	

1

TABLE 4-3 OPEN BURNING AND DETONATION AREA DETONATION CRATERS FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

	Number	0.001		Background	RI/FS Screening		
Compound Name	of Samples	Certified Reporting Limit	RI/FS Background Value	Number of Detections Above Background Value	RI/FS Screening Value	Number of Detections Above Screening Value	
EXPOSIVE COMPOUNDS						¥	
HMX/Cyclotetramethylenetetranitramine							
RDX/Cyclonite / Hexahydro-1,3,4-triazine	22	0.947	0.00	0	13500	0	
1.3,5-Trinitrobenzene	22	0.323	0.00	0	5.82	0	
1.3-Dinitrobenzene	22	0.961	0.00		13.50	0	
Nitrobenzene	22	0.268	0.00	00	27	0	
N-Methyl-N,2,4,6-tetranitroaniline	22	0.283	0.00	0	135	0	
	22	1.79	0.00	1	NA	0	
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene 2,6-Dinitrotoluene	22	1.2	0.00	0	21.30	0	
2,0-Dinitrololuene	22	1.17	0.00	0	0.941	0	
2.A-Dinitrotoluene	22	1.09	0.00	0	0.941	0	
-Nitrotoluene	22	1.69	0.00	0	NA	0	
-Nitrotoluene	22	1.17	0.00	00	NA	0	
	22	1.31	0.00	0	NA	0	
2-Amino-4,6-DNT	22	0.28	0.00	2	0.941	0	
l-Amino-2,6-DNT	22	0.25	0.00	3	0.941	0	
NORGANICS							
Aluminum	22	20	247000	0	NA		
Antimony	22	41.3	19.60	22	108	<u>2</u>	
Arsenic	22	3.6	81		NA	2	
Barium	22	0.962	3660	0	18900	0	
Beryllium	22	0.5	18.10	0	NA	0	
Cadmium	22	0.515	1.75	6	270	0	
Catcium	22	72	600000	0	NA	0	
Chromium	22	0.669	168		1350	0	
Cobolt	22	0.665	142	<u>_</u>	NA		
Copper	22	0.937	289		9990	0	
ron	22	11.3	215000	1	NA	0	
ead	22	2.95	81		NA 500	0	
Aagnesium	22	37.1	300000	0	 	<u>0</u>	
langanese	22	2	18000	0	37800		
Aercury	22	0.0269	0.05	2	81	0	
lickel	22	1.54	435		5400	0	
ottassium	22	119	34800		NA		
elenium	22	7.44	0.449	0	1350	0	
ilver	22	0.521	0.803	1	1350	0	
odium	22	44.8	21200	0	NA	0	
hallium	22	14.7	34.30	0		0	
anadium	22	1.77	384		1890		
inc	22	1.94	444	0	81000	0	

Metals were detected at concentrations above the background levels in several samples (See Table 4-3). Two samples contained concentrations of metals above the screening levels (See Figure 4-3).

4.1.4 Blow-In-Place Items

Explosive compounds were detected in one of the 12 surface soil samples collected near BIP locations (See Table 4-4 and Figure 4-1). The concentrations detected were below the screening levels.

Three metals were detected at concentrations above the background levels, however, none of the concentrations exceeded the screening levels (See Table 4-4).

4.1.5 Residue/Debris Areas

Twenty three of the 24 samples collected from residue/debris areas contained detectable concentrations of explosive compounds (See Table 4-5 and Figure 4-1). Seventeen of the samples contained concentrations of explosives that exceeded the screening levels (See Figure 4-2).

Metals were detected at concentrations above the background levels in several samples (See Table 4-5). The screening levels were exceeded in two of the samples (See Figure 4-3).

4.1.6 Arroyo

Explosive compounds were detected in one of the six surface soil samples collected within the arroyo (See Table 4-6 and Figure 4-1). Explosives concentrations were above the screening levels in this sample (See Figure 4-3).

Three metals were detected at concentrations above the background levels, however, none of the concentrations exceeded the screening levels (See Table 4-6).

4.1.7 Downgradient of OBDA

No explosive compounds were detected in the samples collected downgradient of the OBDA.

No metals, total phosphorus, or nitrate/nitrite were detected at concentrations that exceeded background levels downgradient of the OBDA.

THE ERM GROUP.

TABLE 4-4 OPEN BURNING AND DETONATION AREA BLOW IN-PLACE ITEMS FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

	N			Background		Screening	
	Number	Certified	RI/FS	Number of	RI/FS	Number of Detections Above Screening Value	
Compound Name	or Samples	Reporting Limit	Background Value	Detections Above Background Value	Screening Value		
EXPOSIVE COMPOUNDS			<u> </u>				
HMX/Cyclotetramethylenetetranitramine	12	0.947	0.00				
RDX/Cyclonite / Hexahydro-1,3,4-triazine	12	0.347	0.00	0	13500	0	
1,3,5-Trinitrobenzene	12	0.323		0	5.82		
1,3-Dinitrobenzene	12	0.961	0.00	0	13.50	0	
Nitrobenzene	12	0.283	0.00	0	27	0	
N-Methyl-N,2,4,6-tetranitroaniline	12	1.79	0.00	0	135	0	
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	12	1.79	0.00	0	NA	0	
2,6-Dinitrotoluene	12	1.17		0	21.30	0	
2,4-Dinitrotoluene	12	1.17	0.00	0	0.941	0	
2-Nitrotoluene	12	1.69	0.00	0	0.941	0	
I-Nitrotoluene	12		0.00	0	NA	ō	
-Nitrotoluene	12	1.17	0.00	0	NA	0	
2-Amino-4,6-DNT	12	1.31	0.00	0	NA	0	
-Amino-2,6-DNT		0.28	0.00	1	0.941	0	
	12	0.25	0.00	1	0.941	0	
NORGANICS							
Aluminum	12	20	247000	0	NA	0	
Antimony	12	41.3	19.60	12	108	0	
Arsenic	12	3.6	81	0	NA	0	
Barium	12	0.962	3660		18900	0	
Beryllium	12	0.5	18.10	0	NA	0	
admium	12	0.515	1.75	3	270	0	
Calcium	12	72	600000	0	NA	0	
Chromium	12	0.669	168		1350	0	
Cobolt	12	0.665	142	0	NA	0	
Copper	12	0.937	289	0	9990	0	
ron	12	11.3	215000	0	NA	0	
.ead	12	2.95	81	0	500	0	
Aagnesium	12	37.1	300000	0		0	
langanese	12	2	18000	0	37800	0	
Aercury	12	0.0269	0.05	1	81	0	
lickel	12	1.54	435	<u>-</u>	5400	0	
ottassium	12	119	34800	0	NA	0	
elenium	12	7.44	0.449		1350	o	
ilver	12	0.521	0.803	0	1350		
odium	12	44.8	21200		<u>NA</u>	0	
hallium	12	14.7	34.30			0	
anadium	12	1.77	384	0	1890	0	
inc	12	1.94	444	0	81000		
	···••			······································	01000	0	

TABLE 4-5 OPEN BURNING AND DETONATION AREA RESIDUE PILES FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

			RI/FS	Background	RI/FS Screening		
	Number	Certified	RI/FS	Number of	RI/FS	Number of Detections Above	
	of	Reporting	Background	Detections Above	Screening		
Compound Name	Samples	Limit	Value	Background Value	Value	Screening Value	
						•	
EXPOSIVE COMPOUNDS							
HMX/Cyclotetramethylenetetranitramine	24	0.947	0.00	19	13500	0	
RDX/Cyclonite / Hexahydro-1,3,4-triazine	24	0.323	0.00	20	5.82	16	
1.3.5-Trinitrobenzene	24	0.961	0.00	15	13.50	6	
1.3-Dinitrobenzene	24	0.268	0.00	8	27	0	
Nitrobenzene	24	0.283	0.00	1	135	0	
N-Methyl-N,2,4,6-tetranitroaniline	24	1.79	0.00	0	NA	0	
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	24	1.2	0.00	15	21.30	8	
2,6-Dinitrotoluene	24	1.17	0.00	3	0.941	2	
2.4-Dinitrotoluene	24	1.09	0.00	6	0.941	6	
2-Nitrotoluene	24	1.69	0.00	0	NA	0	
4-Nitrotoluene	24	1.17	0.00	0	NA	0	
3-Nitrotoluene	24	1.31	0.00	0	NA	0	
2-Amino-4,6-DNT	24	0.28	0.00	18	NA	14	
4-Amino-2,6-DNT	24	0.25	0.00	13	NA	8	
			11				
INORGANICS							
Aluminum	24	20	247000	0	NA	0	
Antimony	24	41.3	19.60	24	108	0	
Arsenic	24	3.6	81.00	0	NA	0	
Barium	24	0.962	3660	2	18900	1	
Beryllium	24	0.5	18.10	0	NA	0	
Cadmium	24	0.515	1.75	19	270	0	
Calcium	24	72	600000	0	NA	0	
Chromium	24	0.669	168	0	1350	0	
Cobolt	24	0.665	142	0	NA	0	
Copper	24	0.937	289	8	9990	1	
Iron	24	11.3	215000	0	NA	0	
Lead	24	2.95	81	9	500	0	
Magnesium	24	37.1	300000	0	NA	0	
Manganese	24	2	18000	0	37800	0	
Mercury	24	0.0269	0.05	10	81	0	
Nickel	24	1.54	435	0	5400	0	
Pottassium	24	119	34800	0	NA	0	
Selenium	24	7.44	0.449	0	1350	0	
Silver	24	0.521	0.803	5	1350	0	
Sodium	24	44.8	21200	0	NA	0	
Thallium	24	14.7	34.30	0	NA	0	
Vanadium	24	1.77	384	0	1890	0	
Zinc	24	1.94	444	3	81000	0	

1 - 1 - 1

1

ļ

1

i

TABLE 4-6 OPEN BURNING AND DETONATION AREA ARROYO FORT WINGATE DEPOT ACTIVITY GALLUP, NEW MEXICO

				Background	RI/FS	I/FS Screening		
	Number	Certified	RI/FS	Number of	RI/FS	Number of		
6 111	of	Reporting	Background	Detections Above	Screening			
Compound Name	Samples	Limit	Value	Background Value	Value	Screening Value		
EXPOSIVE COMPOUNDS	_							
HMX/Cyclotetramethylenetetranitramine				······································				
RDX/Cyclonite / Hexahydro-1,3,4-triazine	6	0.947	0.00	1	13500	0		
1.3.5-Trinitrobenzene	6	0.323	0.00	1	5.82	1		
1,3-Dinitrobenzene	6	0.961	0.00	0	13.50	0		
Nitrobenzene	6	0.268	0.00	0	27	0		
	6	0.283	0.00	0	135	0		
N-Methyl-N,2,4,6-tetranitroaniline	6	1.79	0.00	0	NA	0		
2,4,6-Trinitrotoluene / alpha-Trinitrotoluene	6	1.2	0.00	1	21.30	0		
2,6-Dinitrotoluene	6	1.17	0.00	0	0.941	0		
2,4-Dinitrotoluene	6	1.09	0.00	0	0.941	0		
2-Nitrotoluene	6	1.69	0.00	0	NA	0		
4-Nitrotoluene	6	1.17	0.00	0	NA	0		
3-Nitrotoluene	6	1.31	0.00	0	NA			
2-Amino-4,6-DNT	6	0.28	0.00	1	0.941	1		
4-Amino-2,6-DNT	6	0.25	0.00	1	0.941			
INORGANICS								
Aluminum	6	20	247000					
Antimony	6	41.3		0	NA	0		
Arsenic	6	3.6	<u>19.60</u> 81	6	108	0		
Barium	6	0.962	3660	0	NA	0		
Beryllium	6	0.962		0	18900	0		
Cadmium	6	0.5	18.10	0	NA	0		
Calcium	6		1.75	0	270	0		
Chromium		72	600000	0	NA	0		
Cobolt	6	0.669	168	00	1350	0		
Copper	6	0.665	142	0	NA	0		
ron	6	0.937	289	0	9990	0		
	- 6	11.3	215000	0	NA	0		
Magnesium	6	2.95	81	0	500	0		
Manganese	6	37.1	300000	0	NA	0		
Mercury	6	2	18000	0	37800	0		
Vickel	6	0.0269	0.05	3	81	0		
Pottassium	6	1.54	435	0	5400	0		
elenium	6	119	34800	0	NA	0		
	6	7.44	0.449	0	1350	0		
ilver	6	0.521	0.803	1	1350	0		
odium	6	44.8	21200	0	NA	0		
hallium	6	14.7	34.30	0	NA	0		
/anadium	6	1.77	384	0	1890	0		
inc	6	1.94	444	0	81000	<u>0</u>		

ļ

4.2 SURFACE WATER RESULTS

No explosive compounds, VOCs, or SVOCs were detected in the surface water sample collected from the area of ponded water located in the OBDA.

One metal was detected at a concentration that exceeded the background level, however, the concentration was below the screening level.

Total phosphorus and nitrate/nitrite were not detected in the surface water sample at concentrations above background levels.

4.3 SHALLOW SUBSURFACE WATER RESULTS

Four shallow subsurface water samples were collected from the cistern during four sampling events: 7 December 1992, 5 May 1993, 27 May 1993, and 19 November 1993. One sample was collected from well FW38 during the 19 November 1993 sampling event. Insufficient water was present in the well located north of the OBDA fence for a sample to be collected. The analytical results obtained for the samples collected are presented below.

4.3.1 Cistern

No explosives were detected in the sample collected from the cistern during the 7 December 1992 sampling event. Two explosives were detected, one of which exceeded the screening level in the 5 May 1993 sample. One explosive exceeded the screening level in the 27 May 1993 sample. No explosives were detected in the sample collected during the 19 November 1993 sampling event.

Five metals were detected at concentrations above background levels, however, none of the concentrations exceeded the screening levels.

The cistern samples exceed the New Mexico standards for several cations and anions, and TDS. The concentrations of these parameters detected is not unexpected for unfiltered shallow subsurface water samples collected in a semi-arid environment, and therefore does not indicate contamination.

4.3.2 Well Point

Three explosives were detected in the shallow subsurface water sample collected from the well point. The concentration of one of the explosives was above the screening level.

THE ERM GROUP.

Two metals were detected at concentrations above background levels, however, none of the concentrations exceeded the screening levels.

The well point samples exceed the New Mexico standards for several cations and anions, and TDS. The concentrations of these parameters detected is not unexpected for unfiltered shallow subsurface water samples collected in a semi-arid environment, and therefore does not indicate contamination.

4.4 AREA REQUIRING CORRECTIVE MEASURES

The areas potentially requiring corrective measures are considered to be those areas that have concentrations of constituents exceeding screening levels. These areas are summarized below:

One OBDA grid quadrant sample contained concentrations of explosives and one sample contained concentrations of metals that exceeded the screening levels.

One sample collected from within the Burning Ground Area contained metals at concentrations above the screening levels.

Two samples collected from detonation craters contained concentrations of metals above the screening levels.

Seventeen of the samples collected from the residue/debris piles contained concentrations of explosives that exceeded the screening levels and two samples contained concentrations of metals exceeding the screening levels.

Explosives concentrations were above the screening levels in one arroyo sample.

Samples of shallow subsurface water collected from the cistern and well point contained concentrations of explosive compounds in excess of the screening levels.

PROPOSED CORRECTIVE MEASURE APPROACHES

5.1 PRELIMINARY CLEANUP LEVEL GENERATION

Preliminary cleanup levels were derived to be protective of human health under realistic site-specific future land use scenarios. For this closure plan, future land uses for this site have been considered and preliminary cleanup levels have been established based on potential exposure to soils on the site. Final cleanup levels will be established during remedial design and will reflect the specific design details.

5.1.1 Future Land Use Evaluation

The OBDA area is not expected to be developed in any way in the future. The future land use of the site was considered in the RI/FS report which considers other portions of the FWDA (ERM,1994). The results of the future land use study for the entire facility indicate that the OBDA will remain a limited access area with no anticipated human use. If the area would be removed from limited access status it would be a recreational area. Realistic exposure scenarios associated with the limited access future land uses for OBDA are a construction worker remediating the site for a short period of time and potential wind blown dust exposure to offsite recreational users.

Although a fence is currently in place to control access to this area, an onsite recreational exposure scenario was also evaluated. On-site recreational exposure is not a realistic potential future land use; however, it would be the most likely future land use if site access was not restricted. Thus, preliminary cleanup levels derived for on-site recreational use may be considered as the constituent levels that are protective of human health with no administrative controls placed on the site.

5.1.2 Media Pathways Analysis

Based on the field screening efforts there are four media of potential concern: soil, sediment, surface water, and shallow subsurface water. Preliminary cleanup levels were only developed for those media that potential receptors could contact. An individual comes into contact with a medium through a migration/release pathway. If the migration/release pathway is not complete (i.e., some aspect of the pathway does not exist on the site), then exposure via that pathway is not possible. Migration or release pathways for each of the media will be discussed in the following paragraphs.

THE ERM GROUP.

5.0

Soil represents the medium of greatest areal extent on the site. Migration/release pathways that are appropriate for soil are direct contact, and migration of windblown dust. Workers and on-site recreational users are expected to directly contact the soil during remedial or recreational activities. Dust may be contacted by workers and both onand off-site recreational users. Therefore, preliminary cleanup levels will be developed for this soils to reflect direct contact and dust inhalation.

Sediment is found only in small areas of the arroyo where there is perennial or frequently flooded conditions. These areas will not be included in the remedial activities; therefore direct contact by workers is not possible. Migration of sediments via wind erosion is not expected due to the wet nature of sediment. Recreational users of the site are also not expected to contact the sediment. Therefore, the pathway that a receptor could be exposed to sediment is not complete. Sediment is also a concern for ecological receptors. Because direct contact is possible for ecological receptors additional sampling will be undertaken during the Corrective Measures Study to evaluate the significance of this pathway.

Surface water, like sediment, has only one exposure pathway for human receptors (direct contact). Similar to the sediment, workers and on-and off-site recreational users are not expected to come into significant direct contact with the water due to the sparse and ephemeral nature of surface water in the OBDA. Therefore, additional sampling will be undertaken to determine the significance of ecological contact with water in the wet areas of the arroyo, but preliminary cleanup levels will not be established for protection of human health.

Shallow subsurface water is the water that exists in the subsurface soils in the arroyo. Migration and release pathways for this water are very limited. Due to its shallow, discontinuous nature it is not expected to have sufficient yield to support human uses, thus no direct contact with this water will be considered. This water may migrate to the limited surface water on the site. Because additional sampling of surface water is being undertaken to evaluate the potential surface water impact on ecological receptors, the quality of shallow subsurface water will also be evaluated through the surface water study. No human health evaluation will be undertaken for the subsurface water because there is no potential exposure to the subsurface water.

5.1.3

Development of Risk-Based Preliminary cleanup levels

Preliminary cleanup levels for this site have been established to be protective of human health based on the site-specific exposure assumptions listed above. Three different sets of preliminary cleanup levels have been established; one for each of the worker, on-site

THE ERM GROUP.

5-2

FWDA.MOD CLOSURE PLAN-00306.90-May 5, 1994

recreational, and off-site recreational exposure scenarios. The most stringent level was selected for each constituent.

Preliminary cleanup levels have been derived to be protective of each of the exposure scenarios that could potentially occur as a result of the migration or release pathways described above. For workers and on-site recreational users, three exposure points may exist: incidental ingestion of soil, dermal contact with soil, and inhalation of fugitive dust. Off-site recreational users will not contact the soil directly, thus, their only exposure point is inhalation of fugitive dust. Specific intake assumptions for each receptor group are presented on Table 5-1.

Preliminary cleanup levels have been calculated based on standard intake and toxicity assumptions. The equations derived to calculate the preliminary cleanup levels are based on USEPA guidance for developing preliminary remediation goals (1989). The equations have been modified to incorporate the dermal exposure point and to account for site-specific dust generation conditions. These site specific equations are presented below.

On-Site Exposure for Carcinogenic Effects:

PRG:	TRxBWxATx 365 days/
soil	$= \frac{TRxBWxATx365^{days}/year}{EFxED\left[\left(CPF_{o}xSAxABSxCFxAF\right) + \left(CPF_{i}xIR_{air}x\left(\frac{E_{i}xLxCF}{uxH}\right)\right) + \left(CPF_{o}x1E^{-6}\frac{kg}{mg}xIR_{soil}\right)\right]}$
Where:	
PRG _{soil}	= Concentration of constituent in soil (mg/kg)
TR	= Target Risk (unitless, 1E-6)
AT	= Averaging Time (70 years)
BW	= Body weight of an adult (70 kg)
EF	= Exposure Frequency (days/year)
ED	= Exposure Duration (year)
CPFo	= Oral CPF ((mg/kg-day) ⁻¹)
CPF _i	= Inhalation CPF $((mg/kg-day)^{-1})$
SA	= Surface Area (cm^2)
ABS	= Absorption Factor (0.001 for inorganics (USEPA, 1992), 0.2
	for explosives)
CF	= Conversion Factor (1E ⁻⁶ kg/mg)
AF	= Adherence Factor (1.45 mg/cm ² -day (USEPA, 1989))
IR _{air}	= Inhalation rate (m^3/day)
Ei	= Dust Emission Rate for the OBDA $(1 \times 10^{-9} \text{mg/m}^2/\text{sec})$
L	= Length of the Contaminated Site Perpendicular to the
	Wind (71.1 m, based on the area of the refuse piles)
u	= Mean Annual Wind Speed (4 m/sec (Ruffner, 1985))
н	= Height of Human Inhalation (1.5 m)

THE ERM GROUP.

Table 5-1 Exposure Scenario Assumptions Fort Wingate Depot Activity Gallup, New Mexico

		Worker	On-Site Recreation	Off-Site Recreation
EF	Exposure Frequency (days/year) (1,2)	39.6	5	5
ED	Exposure Duration (years)	1	30	30
SA	Surface Area (cm^2) (3)	820	820	NA
[Rsoi]	Ingestion Rate for Soil (mg/day)	480	100	NA
IRair	Inhalation Rate for Air (m^3/day)	20	20	20

NA-Not applicable

ı.

T.

(1) The worker value represents 8 hours per day for 120 days.

(2) The recreational value represents 4 hours per day for 30 days.

(3) This value represents the 50th percentile area for the hands of an adult male (USEPA, 1989).

(4) Exposure Factors Handbook

Table 5-2 Cleanup Levels For Soil Worker Exposure Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1 		Inhalation CPF (mg/kg/d)^-1		Carcinogenic Classification	Noncarcinogenic Cleanup Leveł (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Worker Cleanup Level (mg/kg)
НМХ	НМХ	5.00E-02		5.00E-02	**	NA		NA			4.49E+04	NA	4.405.04
RDX	RDX	3.00E-03		3.00E-03	**	1.10E-01		1.10E-01	**	с	2.70E+03	5.72E+02	4.49E+04 5.72E+02
1,3,5-Trinitrobenzene	135TNB	5.00E-05	а	5.00E-05	**	NA	а	NA	**	C	4.49E+01	5.72E+02 NA	
1,3-Dinitrobenzene	13DNB	1.00E-04	a	1.00E-04	**	ND	a	ND	**	D	4.49E+01	NA	4.49E+01
Nitrobenzene	NB	5.00E-04	-	5.00E-04	**	NA	a	NA		D	4.49E+02		8.99E+01
N-methyl-N,2,4,6-tetranitroaniline		0.001 01		5.00L 01		MA		INA				NA	4.49E+02
2,4,6-Trinitrotoluene	246TNT	5.00E-04	а	5.00E-04	**	3.00E-02		3.00E-02	**	C	NA	NA	NA
2,4-Dinitrotoluene	24DNT	2.00E-03	a	2.00E-03	**	6.80E-01	a al	5.00E-02 6.80E-01	**	С	4.49E+02	2.10E+03	4.49E+02
2.6-Dinitrotoluene	26DNT	1.00E-03	b	1.00E-03	**	6.80E-01	al	6.80E-01	**	100	1.80E+03	9.25E+01	9.25E+01
2-Nitrotoluene	200111	1.00E-02	ь	1.00E-03	**	NA	aı			B2	8.99E+02	9.25E+01	9.25E+01
4-Nitrotoluene		1.00E-02	b	1.00E-02	++	NA		NA			8.99E+03	NA	8.99E+03
3-Nitrotoluene		1.00E-02	ь	1.00E-02				NA			8.99E+03	NA	8.99E+03
2-Amino-4,6-DNT			o			NA	-	NA			8.99E+03	NA	8.99E+03
4-Amino-2,6-DNT		NA NA		NA		6.80E-01	al	6.80E-01	**		NA	9.25E+01	9.25E+01
4 /uiuko-2,0-Divi		INA		NA		6.80E-01	a1	6.80E-01	**		NA	9.25E+01	9.25E+01
Aluminum	AL	NA		NA	**	NA		NA	**		NA	NA	NA
Antimony	SB	4.00E-04	а	4.00E-04	**	ND	а	ND	**		5.36E+02	NA	5.36E+02
Arsenic	AS	3.00E-04	а	3.00E-04	**	1.75E+00	а	1.50E+01	a2	Α	4.02E+02	5.34E+01	5.34E+01
Barium	BA	7.00E-02	а	1.40E-04	ь	ND	а	ND	a		7.53E+04	NA	7.53E+04
Beryllium	BE	5.00E-03	а	5.00E-03	**	4.30E+00	a	8.40E+00	a	B2	6.70E+03	2.18E+01	2.18E+01
Cadmium	CD	1.00E-03	a3	1.00E-03	**	NA	a	6.30E+00	a	B1	1.34E+03	3.02E+04	1.34E+03
Calcium	CA	NA	а	NA	**	NA	a	NA	a	21	NA	NA	NA
Chromium	CR	5.00E-03	a4	5.00E-03	**	NA	a	4.20E+01	a4	А	6.70E+03	4.54E+03	NA 4.54E+03
Cobalt	со	ND	а	ND	**	ND	a	ND	a	A	NA	4.54E+05 NA	4.54E+03 NA
Copper	CU	3.71E-02	bl	3.71E-02		NA	a	NA	a	D	4.97E+04		
Iron	FE	NA		NA	**	NA		NA	a	D	4.97E+04 NA	NA	4.97E+04
Lead	PB	ND	a	ND	**	NA	а	NA		B2		NA	NA
Magnesium	MG	NA	-	NA	**	NA	a	NA	а	DZ	NA	NA	NA
Manganese	MN	1.40E-01	a3	1.43E-05	а	NA		NA		D	NA	NA	NA
Mercury	HG	3.00E-04	b	8.60E-05	b	NA	a	NA NA	a	D	3.22E+04	NA	3.22E+04
Nickel	NI	2.00E-02	a5	2.00E-02	••	NA	a -		a	D	4.02E+02	NA	4.02E+02
Potassium	K	2.00E-02 NA	as	2.00E-02 NA	**		a	1.68E+00	a 6	A	2.68E+04	1.13E+05	2.68E+04
	r.	INA		NA		NA		NA			NA	NA	NA

Table 5-2 Cleanup Levels For Soil Worker Exposure Fort Wingate Depot Activity Gallup, New Mexico

c	Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1		Inhalation CPF (mg/kg/d)^-1		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Worker Cleanup Level (mg/kg)
Selenium		SE	5.00E-03	а	5.00E-03	**	ND	a	ND	a	D	6.70E+03	NA	6.70E+03
Silver		AG	5.00E-03	а	5.00E-03	**	NA	a	NA	а	D	6.70E+03	NA	6.70E+03
Sodium		NA	NA		NA	**	NA		NA			NA	NA	NA
Thallium		TL	9.00E-05	a	9.00E-05	**	ND	a	ND	а	D	1.21E+02	NA	1.21E+02
Vanadium		v	7.00E-03	ь	7.00E-03	**	NA		NA			9.38E+03	NA	9.38E+03
Zinc		ZN	3.00E-01	a	3.00E-01	**	ND	a	ND	а	D	4.02E+05	NA	4.02E+05

a - IRIS Database accessed 5/93

b - HEAST FY1992

NA - Not Available

ND - No Data

1

1

i

I.

ł

I.

al The CPF for this constituent is listed as the Dinitrotoluene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for food consumption.

a4 This value is for hexavalent chromium.

a5 This value is for soluble nickel salts.

a6 The CPF for nickel subsulfide was used.

(i) Study based on the inhalation study.

(o) Study based on oral study.

** This value is based the oral toxicity value for the same constituent.

b1 This value is based on a drinking water advisory of 1.3 mg/l $\,$

Table 5-3 Cleanup Levels for Soil On-Site Recreational Use of OBDA Fort Wingate Depot Activity Gallup, New Mexico

1

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1		Inhalation CPF (mg/kg/d)^-1		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	On-Site Recreational Cleanup Level (mg/kg)
НМХ	НМХ	5.00E-02		5.00E-02	**	NA		NA			7.56E+05	NA	
RDX	RDX	3.00E-03		3.00E-03	••	1.10E-01		1.10E-01	••	С	4.54E+04	INA 3.21E+02	7.56E+05
1,3,5-Trinitrobenzene	135TNB	5.00E-05	а	5.00E-05	**	NA	а	NA	**	C	4.54E+04 7.56E+02		3.21E-02
1,3-Dinitrobenzene	13DNB	1.00E-04	а	1.00E-04	**	ND	a	ND	**	D	1.51E+02	NA	7.56E+02
Nitrobenzene	NB	5.00E-04		5.00E-04	**	NA	a	NA		D		NA	1.51E+03
N-methyl-N,2,4,6-tetranitroaniline								- AA			7.56E+03	NA	7.56E+03
2,4,6-Trinitrotoluene	246TNT	5.00E-04	a	5.00E-04	**	3.00E-02	а	3.00E-02	**	с	NA	NA	NA
2,4-Dinitrotoluene	24DNT	2.00E-03	a	2.00E-03	**	6.80E-01	al	6.80E-01	**	L.	7.56E+03	1.18E+03	1.18E+03
2,6-Dinitrotoluene	26DNT	1.00E-03	a	1.00E-03		6.80E-01	al	6.80E-01	••	B2	3.03E+04	5.19E+01	5.19E+01
2-Nitrotoluene		1.00E-02	ь	1.00E-02	**	NA	aı	NA		D2	1.51E+04	5.19E+01	5.19E+01
4-Nitrotoluene		1.00E-02	ь	1.00E-02	**	NA		NA			1.51E+05	NA	1.51E+05
3-Nitrotoluene		1.00E-02	b	1.00E-02	**	NA		NA			1.51E+05	NA	1.51E+05
2-Amino-4,6-DNT		NA	÷	NA		6.80E-01		6.80E-01	**		1.51E+05	NA	1.51E+05
4-Amino-2,6-DNT		NA		NA		6.80E-01		6.80E-01	**		NA	5.19E+01	5.19E+01
						0.002-01		0.002-01			NA	5.19E+01	5.19E+01
Aluminum	AL	NA		NA	••	NA		NA	**			•••	
Antimony	SB	4.00E-04	а	4.00E-04	**	ND	а	ND	**		NA	NA	NA
Arsenic	AS	3.00E-04	a	3.00E-04	**	1.75E+00	a	1.50E+01			2.02E+04	NA	2.02E+04
Barium	BA	7.00E-02	a	1.40E-04	ь	ND	a	1.50E+01 ND	a2	Α	1.51E+04	6.73E+01	6.73E+01
Beryllium	BE	5.00E-03	а	5.00E-03	••	4.30E+00	a	8-40E+00	a	110	3.53E+06	NA	3.53E+06
Cadmium	ĊD	1.00E-03	a3	1.00E-03	**	NA	a	6.30E+00	a	B2	2.52E+05	2.74E+01	2.74E+01
Calcium	CA	NA	a	NA	**	NA	-	=	a	B1	5.05E+04	7.99E+09	5.05E+04
Chromium	CR	5.00E-03	a4	5.00E-03	**	NA	a a	NA	a		NA	NA	NA
Cobait	co	ND	a	ND	**	ND	-	4.20E+01 ND	a4	A	2.52E+05	1.20E+09	2.52E+05
Copper	ณ	3.71E-02	ь1		**	NA	a		a		NA	NA	NA
Iron	FE	NA		NA	**	NA	а	NA	a	D	1.87E+06	NA	1.87E+06
Lead	PB	ND	a		**			NA			NA	NA	NA
Magnesium	MG	NA	a		**	NA	a	NA	а	B2	NA	NA	NA
Manganese	MN	1.40E-01	a3	1.43E-05		NA		NA			NA	NA	NA
Mercury	HG	3.00E-04	a.s b		a L	NA	а	NA	а	D	7.07E+06	NA	7.07E+06
Nickel	NI	2.00E-04	a5		b	NA	a	NA	a	D	1.51E+04	NA	1.51E+04
Potassium	K	2.00E-02 NA	ao	1UL -02	**	NA	а		a6	Α	1.01E+06	2.99E+10	1.01E+06
Selenium	SE	NA 5.00E-03	_	1461	**	NA		NA			NA	NA	NA
Silver	AG		а	0.001.00		ND	a	ND	а	D	2.52E+05	NA	2.52E+05
	AG	5.00E-03	а	5.00E-03	**	NA	a	NA	a	D	2.52E+05	NA	2.52E+05

Table 5-3 Cleanup Levels for Soil On-Site Recreational Use of OBDA Fort Wingate Depot Activity Gallup, New Mexico

	Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1		Inhalation CPF (mg/kg/d)^-1		Carcinogenic Classification	Noncarcinogenic Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	On-Site Recreational Cleanup Level (mg/kg)
Sodium		NA	NA		NA	••	NA		NA			NA	NA	NA
Thallium		п	9.00E-05	а	9.00E-05	**	ND	a	ND	а	D	4.54E+03	NA	4.54E+03
T namum Vanadium		v	7.00E-03	b	7.00E-03	**			NA			3.53E+05	NA	3.53E+05
Zinc		ZN	3.00E-01	a	3.00E-01	**	ND	a	ND	a	D	1.51E+07	NA	1.51E+07

a - IRIS Database accessed 5/93

b - HEAST FY1992

i.

I.

1

T T

I.

I

NA - Not Available

ND - No Data

a1 The CPF for this constituent is listed as the Dinitrotoluene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for food consumption.

a4 This value is for hexavalent chromium.

a5 This value is for soluble nickel salts.

a6 The CPF for nickel subsulfide was used.

(i) Study based on the inhalation study.

(o) Study based on oral study.

** This value is based the oral toxicity value for the same constituent.

b1. This value is based on a drinking water advisory of 1.3 mg/l

Table 5-4 Off-Site Recreational User Cleanup Levels Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1		Inhalation CP (mg/kg/d)^-	-	Carcinogenic Classification	Noncarcinogeni c Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Off-Site Recreational Cleanup Level (mg/kg)
НМХ	НМХ	5.00E-02		5.00E-02	**	•••							
RDX	RDX	3.00E-03		3.00E-02	**	NA 1 105 ol		NA		_	1.08E+15	NA	1.08E+15
1,3,5-Trinitrobenzene	135TNB	5.00E-05		5.00E-03	••	1.10E-01		1.10E-01	**	С	6.47E+13	4.57E+11	4.57E+11
1,3-Dinitrobenzene	13DNB	1.00E-04	а		**	NA	а	NA	••		1.08E+12	NA	1.08E+12
Nitrobenzene	NB	1.00£-04 5.00E-04	а	1.00E-04	**	ND	а	ND	**	D	2.16E+12	NA	2.16E+12
N-methyl-N,2,4,6-tetranitroaniline	140			5.00E-04		NA		NA			1.08E+13	NA	1.08E+13
2,4,6-Trinitrotoluene	246TNT	NA E OSE AL		NA		NA		NA			NA	NA	NA
2.4-Dinitrotoluene	2461N1 24DNT	5.00E-04	а	5.00E-04	**	3.00E-02	a	3.00E-02	**	С	1.08E+13	1.68E+12	1.68E+12
2.6-Dinitrotoluene	24DN1 26DNT	2.00E-03	а	2.00E-03	**	6.80E-01	al	6.80E-01	**		4.31E+13	7.40E+10	7.40E+10
2-Nitrotoluene	20DN I	1.00E-03	a	1.00E-03	**	6.80E-01	al	6.80E-01	**	B2	2.16E+13	7.40E+10	7.40E+10
4-Nitrotoluene		1.00E-02	h	1.00E-02	**	NA		NA			2.16E+14	NA	2.16E+14
3-Nitrotoluene		1.00E-02	h	1.00E-02	**	NA		NA			2.16E+14	NA	2.16E+14
		1.00E-02	h	1.00E-02	**	NA		NA			2.16E+14	NA	2.16E+14
2-Amino-4,6-DNT		NA		NA		6.80E-01		6.80E-01	**		NA	7.40E+10	7.40E+10
4-Amino-2,6-DNT		NA		NA		6.80E-01		6.80E-01	++		NA	7.40E+10	7.40E+10
Aluminum	AL.	NA		NA	**	NA		NA	**		NA	NA	NA
Antimony	SB	4.00E-04	а	4.00E-04	**	ND	а	ND	**		8.62E+12	NA	8.62E+12
Arsenic	AS	3.00E-04	а	3.00E-04	**	1.75E+00	а	1.50E+01	a2	А	6.47E+12	3.35E+09	3.35E+09
Barium	BA	7.00E-02	а	1.40E-04	ь	ND	а	ND	a		3.02E+12	NA	3.02E+12
Beryllium	BE	5.00E-03	а	5.00E-03	**	4.30E+00	а	8.40E+00	a	B2	1.08E+14	5.99E+09	5.99E+09
Cadmium	CD	1.00E-03	a3	1.00E-03	**	NA	a	6.30E+00	a	B1	2.16E+13	7.99E+09	7.99E+09
Calcium	CA	NA	а	NA	**	NA	a	NA	a	51	NA	NA	NA
Chromium	CR	5.00E-03	a4	5.00E-03	**	NA	a	4.20E+01	a4	А	1.08E+14	1.20E+09	1.20E+09
Cobalt	со	ND	а	ND	**	ND	a	ND	a	л	NA	NA	NA
Copper	CU	3.71E-02	b 1	3.71E-02	**	NA	a	NA	a	D	8.00E+14	NA	NA 8.00E+14
Iron	FE	NA		NA	**	NA	-	NA	a	U	NA	NA	
Lead	PB	ND	а	ND	**	NA	а	NA	а	B 2			NA
Magnesium	MG	NA	-	NA	**	NA	4	NA	đ	D2	NA NA	NA	NA
Manganese	MN	1.40E-01	a3	1.43E-05	a	NA	а	NA	a	D	NA 3.08E+11	NA	NA
Mercury	HG	3.00E-04	b	8.60E-05	b	NA	a	NA		D		NA	3.08E+11
Nickel	NI	2.00E-02	a5	2.00E-02	**	NA	a	NA 1.68E+00	a	D	1.85E+12	NA	1.85E+12
Potassium	ĸ	NA		2.002-02 NA	++	NA	a		a 6	Α	4.31E+14	2.99E+10	2.99E+10
	n	116		11/2		INA		NA			NA	NA	NA

Table 5-4 Off-Site Recreational User Cleanup Levels Fort Wingate Depot Activity Gallup, New Mexico

Constituent	IRDMIS Synonym	Oral RfD (mg/kg/d)		Inhalation RfD (mg/kg/d)		Oral CPF (mg/kg/d)^-1		Inhalation CPF (mg/kg/d)^-1		Carcinogenic Classification	Noncarcinogeni c Cleanup Level (mg/kg)	Carcinogenic Cleanup Level (mg/kg)	Off-Site Recreational Cleanup Level (mg/kg)
Selenium	SE	5.00E-03	а	5.00E-03	**	ND	а	ND	а	D	1.08E+14	NA	1.08E+14
Silver	ÂĞ	5.00E-03	a	5.00E-03	44	NA	а	NA	а	D	1.08E+14	NA	1.08E+14
Sodium	NA	NA		NA		NA		NA			NA	NA	NA
Thallium	TL	9.00E-05	а	9.00E-05	44	ND	а	ND	а	D	1.94E+12	NA	1.94E+12
Vanadium	v	7.00E-03	b	7.00E-03	**	NA		NA			1.51E+14	NA	1.51E+14
Zinc	ZN	3.00E-01	а	3.00E-01	**	ND	a	ND	a	D	6.47E+15	NA	6.47E+15

a - IRIS Database accessed 5/93

b - HEAST FY1992

NA - Not Available ND - No Data

L

1

i

al The CPF for this constituent is listed as the Dinitrotoluene mixture 2,4-/2,6- on IRIS.

a2 An absorption factor of 30% is applicable.

a3 This value is for food consumption.

a4 This value is for hexavalent chromium.

a5 This value is for soluble nickel salts.

a6 The CPF for nickel subsulfide was used.

(i) Study based on the inhalation study.

(o) Study based on oral study.

** This value is based the oral toxicity value for the same constituent.

b1 This value is based on a drinking water advisory of 1.3 mg/l

Table 5-5 Soil Remediation Goals For OBDA Closure Fort Wingate Depot Activity Gallup, New Mexico

-

-

-

-

) L

 \sim

-

-

-

-

-

-

-

-

-

)

Constituent	Clean Closure Preliminary Cleanup Goal (mg/kg)	Restricted Access Preliminary Cleanup Level (mg/kg)
Нмх		
RDX	1.19E+04	4.49E+04
1,3,5-Trinitrobenzene	1.51E+02	5.72E+02
1,3-Dinitrobenzene	1.19E+01	4.49E+01
Nitrobenzene	2.37E+01	8.99E+01
N-methyl-N,2,4,6-tetranitroaniline	1.19E+02	4.49E+02
2,4,6-Trinitrotoluene	NA	NA
2,4-Dinitrotoluene	1.19E+02	4.49E+02
2,6-Dinitrotoluene	2.44E+01	9.25E+01
2-Nitrotoluene	2.44E+01	9.25E+01
4-Nitrotoluene	NA	NA
3-Nitrotoluene	NA	NA
2-Amino-4,6-DNT	NA	NA
4-Amino-2,6-DNT	2.44E+01	9.25E+01
+ Anno-2,0-1914 [2.44E+01	9.25E+01
Aluminum	NA	NA
Antimony	1.42E+02	5.36E+02
Arsenic	1.40E+01	5.29E+01
Barium	1.99E+04	7.53E+04
Beryllium	5.76E+00	2.18E+01
Cadmium	3.54E+02	1.34E+03
Calcium	NA	NA
Chromium	1.23E+03	1.23E+03
Cobalt	NA	NA
Copper	1.31E+04	4.97E+04
Iron	NA	
Lead	NA	NA NA
Magnesium	NA	
Manganese	3.09E+04	NA 8.19E+04
Mercury	1.06E+02	
Nickel	7.08E+03	4.02E+02 2.68E+04
Potassium	NA	
Selenium		NA 6 705 - 07
Silver	1.77E+03	6.70E+03
Sodium	1.77E+03	6.70E+03
Thallium	NA 2 185 - 01	NA
Vanadium	3.18E+01	1.21E+02
Zinc	2.48E+03	9.38E+03
	1.06E+05	4.02E+05

On-Site Soil Exposure for Noncarcinogenic Effects:

$$PRG_{soil} = \frac{THI \times BW \times AT \times 365 \frac{days}{year}}{EF \times ED\left[\left(\frac{1}{R_{fD_{o}} \times SA \times ABS \times CF \times AF}\right) + \left(\frac{1}{R_{fD_{i}} \times IR_{air} \times \left(\frac{E_{i} \times L \times CF}{u \times H}\right)\right) + \left(\frac{1}{R_{fD_{o}} \times 1E^{-6} \frac{kg}{mg} \times IR_{soil}\right)\right]}$$
Where:
THI = Target Hazard Index (unitless, 1)
AT = Averaging time (year, this is equal to the exposure duration)
ED = Exposure Duration (year)
RfD_{i} = Inhalation Reference Dose (mg/kg-day)
RfD_{o} = Oral Reference Dose (mg/kg-day)

Off-site Fugitive Dust Exposure for Carcinogenic Effects:

$$PRG_{soil} = \frac{TRxBWxATx365^{days}/_{year}}{EFxED\left[CPF_{i}xIR_{air}x\left(\frac{E_{i}xLxCF}{uxH}\right)\right]}$$

Off-site Fugitive Dust Exposure for Noncarcinogenic Effects:

$$PRG_{soil} = \frac{THI xBW xAT x 365 \frac{days}{year}}{EF xED \left[\frac{1}{R_f D_i} xIR_{air} x \left(\frac{E_i xL xCF}{uxH} \right) \right]}$$

Tables 5-2 through 5-4 present the constituent specific toxicity values used and the receptor specific preliminary cleanup levels. The cleanup values for each of the potential receptors have been compared and the most stringent level selected as the clean closure preliminary cleanup level for the OBDA. The restricted access preliminary cleanup level was derived by selecting the minimum value from on-site worker and off-site recreational exposure scenarios. The preliminary cleanup levels are presented on Table 5-5.

THE ERM GROUP.

6.0 CLOSURE IMPLEMENTATION

6.1 CONDITIONS FOR CLOSURE

The NMED established several Conditions for Closure Plan Approval that will be addressed during the performance of closure.

Quarterly Progress Reports

Quarterly Progress Reports will be submitted to the NMED summarizing all activities completed or in progress, the information collected, the schedule status and an explanation of any schedule delays, including problems encountered. The Quarterly Progress Reports will also include hard copies of the results of all analyses

The Quarterly Progress Reports will be initiated 90 days from the effective date of the closure plan and continue through the time of closure certification acceptance by the NMED.

Determination of Ecological Risk

The ecological risks associated with any contaminants left at the OB/OD Area after completion of final closure activities will be determined and documented in the Final Closure Report, as required in Section 4 of the Final Closure Plan.

Survey Plat

If the area(s) identified for closure can not be "clean closed", the area(s) will be closed as a landfill and a survey plat will be prepared and certified by a professional land surveyor, detailing the location and waste contents of the contaminated soils.

The survey plat will contain a metes and bounds description and will show the locations of the entire closed landfill area and the extent of any cover required in relation to permanently surveyed benchmarks. The survey plat will also contain a note stating the Army's obligation to restrict disturbance of the closed landfill area.

The survey plat will be submitted to the NMED - Water and Waste Management Division Director and to the official land file for incorporation into the property deed.

Notifications/Modifications To The Approved Closure Plan

The Closure Plan will be modified in accordance with HWMR-7, Part VI, Section 265.112 (c) if affected by changes to operating plans, the

THE ERM GROUP.

expected date of closure, the facility design or if there are any substantive modifications required due to unexpected events during closure.

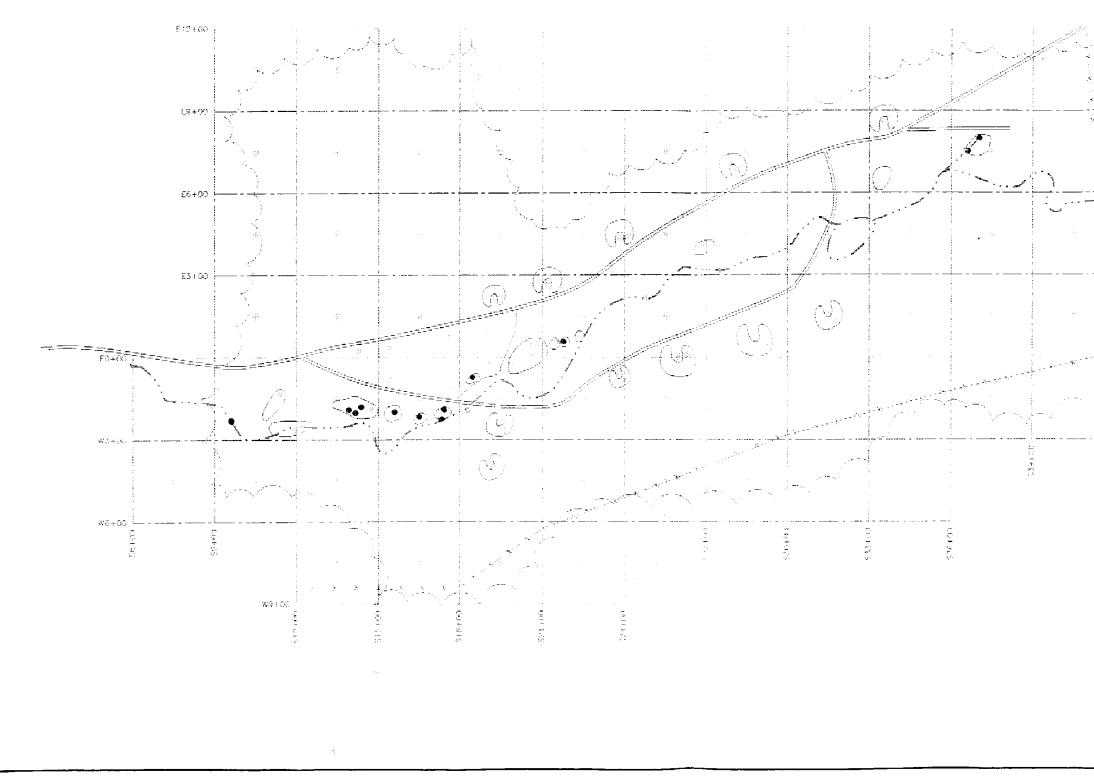
A revised Closure Plan will be submitted to the HRMB no later than 30 days after any unexpected event affects the Closure Plan. Written approval is to be received from the HRMB prior to implementing any activities.

The HRMB will be immediately notified of the anticipated impact and corrective actions, if at any time during closure, it becomes evident that closure activities will slip beyond the established closure date.

6.2 IDENTIFIED AREAS REQUIRING CLOSURE

The boundary of the area(s) requiring closure can be defined by comparing analytical results of the field screening samples to preliminary cleanup levels which were calculated based on potential exposure scenarios. The samples with concentrations of explosives compounds and metals that exceed the Clean Closure Preliminary Cleanup Levels are presented in Figures 6-1 and 6-2, respectively. The samples containing explosives in excess of the restricted access preliminary cleanup levels are presented in Figure 6-3.

The number of individual explosive compounds requiring corrective measures has decreased, however, the samples containing explosives requiring corrective measures has remained unchanged. Only one sample contains metals at concentrations that exceed the Restricted Access Preliminary Cleanup Levels (see Figure 6-4).


6.3 PRE-CLOSURE SAMPLING

6.3.1 Surface Water and Sediment

Thirteen surface water and sediment sampling locations in the arroyo have been identified and are shown on Figure 6-1. Surface water samples will be collected at each location where there is sufficient surface water to allow a sample to be taken. If the sediment is wet but there is insufficient surface water to get a sample, then only a sediment sample will be taken. Sediment samples will be analyzed for explosives and TAL metals. The surface water will be analyzed for total and dissolved TAL metals, and explosives.

THE ERM CROUP.

6-2

THE FRAM GRAP

1

ł

)

())

) | |

.

)

)

)

)

/==)

)

J

)

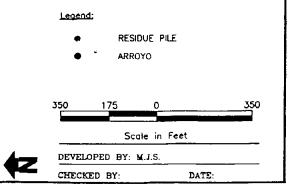
)

)

1

.

+


)

)

i.

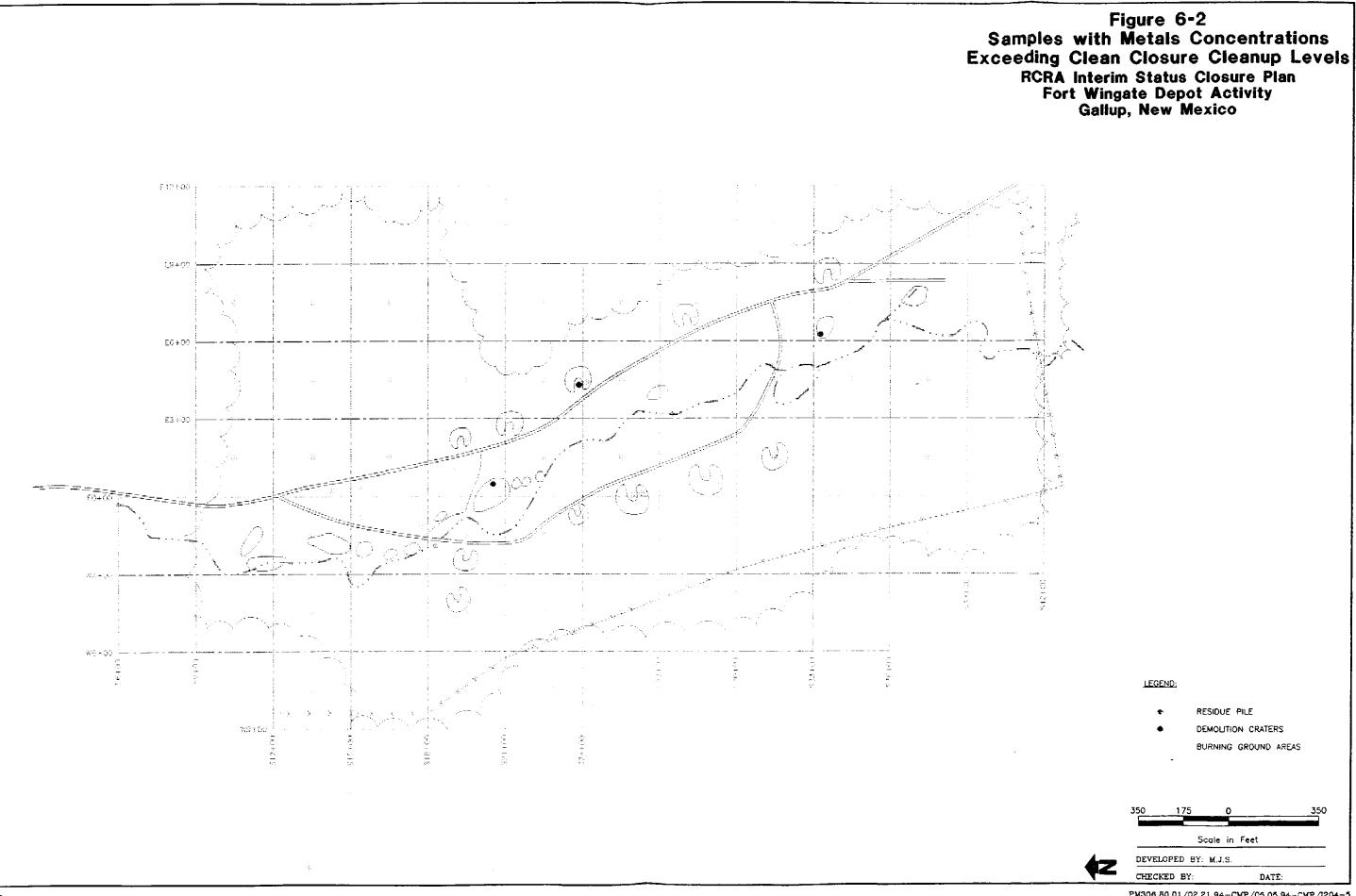

1

Figure 6-1 Samples with Explosives Concentrations Exceeding Clean Closure Cleanup Levels RCRA Interim Status Closure Plan Fort Wingate Depot Activity Gallup, New Mexico

÷

PM306.80.01/02.21.94-CMP/05.05.94-CMP/I204-4

THE ERM GROUP

١

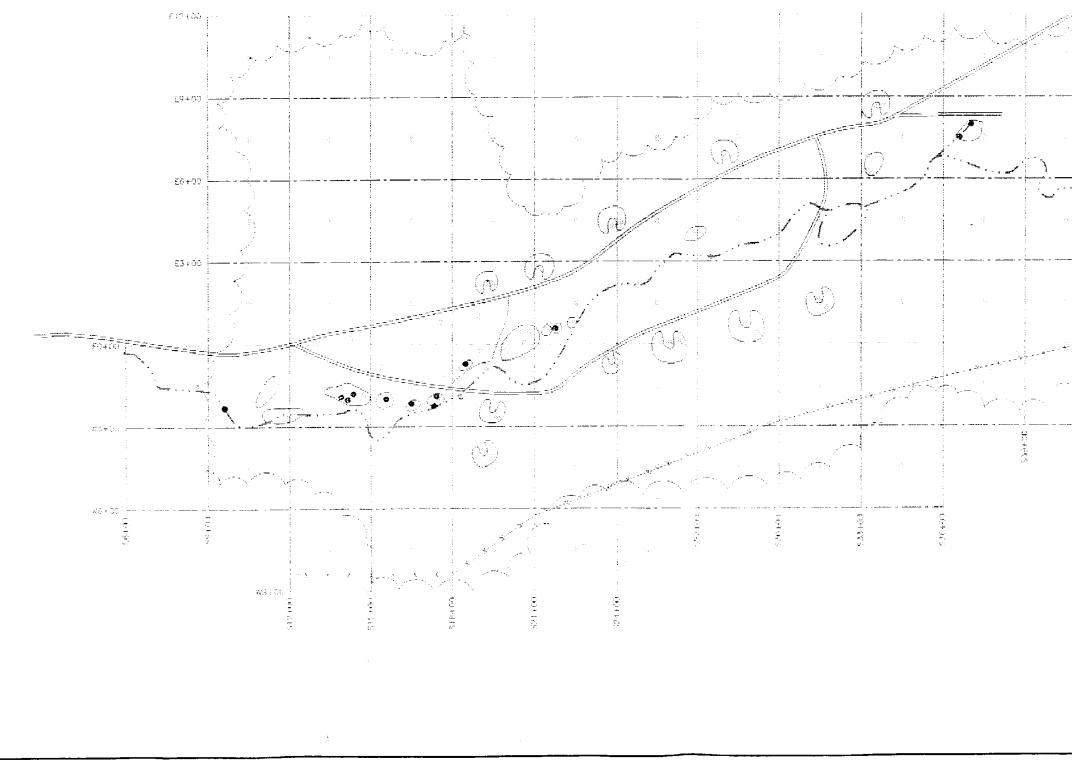
)

} ł) 1

1 ÷) ,

\$ 1

ł ÷


\$

)

18

1

PM306.80.01/02.21.94-CMP/05.05.94-CMP/1204-5

THE ERM GROUP

))

)))

))

)

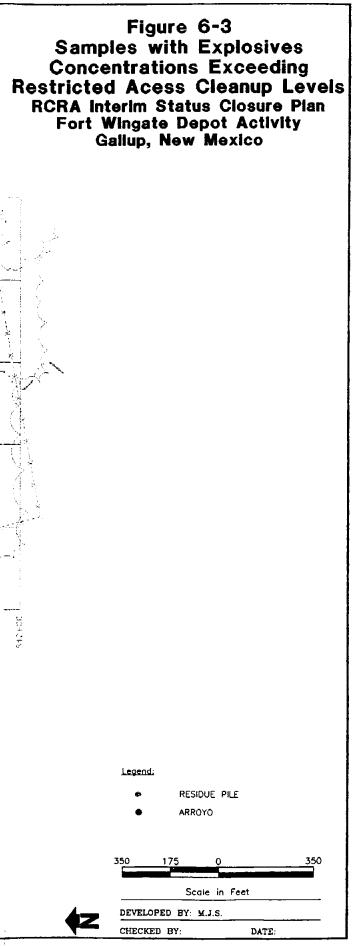
)

)

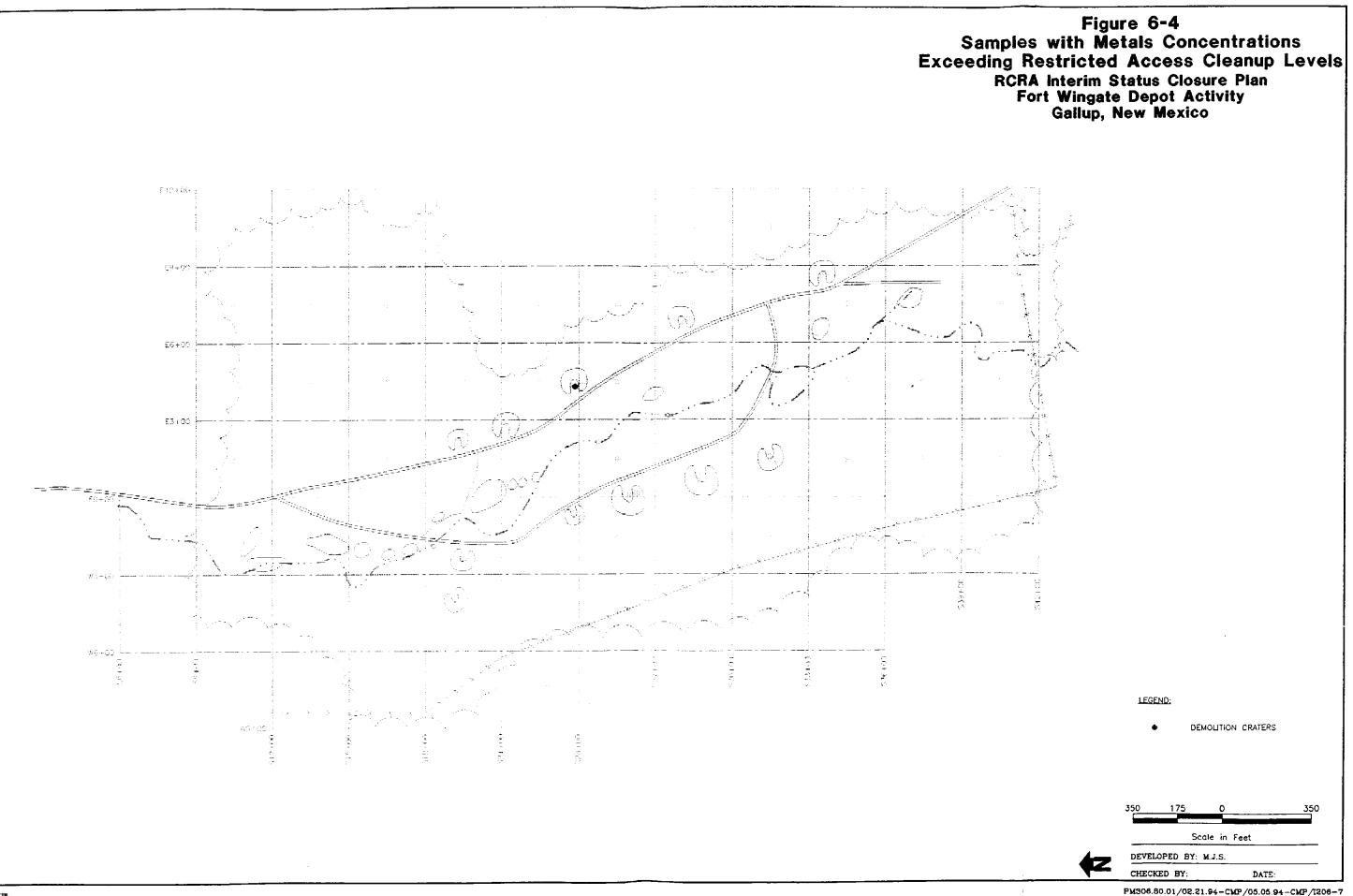
)

) ~~~ 1

1


, ,

1


÷

J.

÷

PM306.80.01/02.21.94-CMP/05.05.94-CMP/1204-6

THE ERM SCROUP

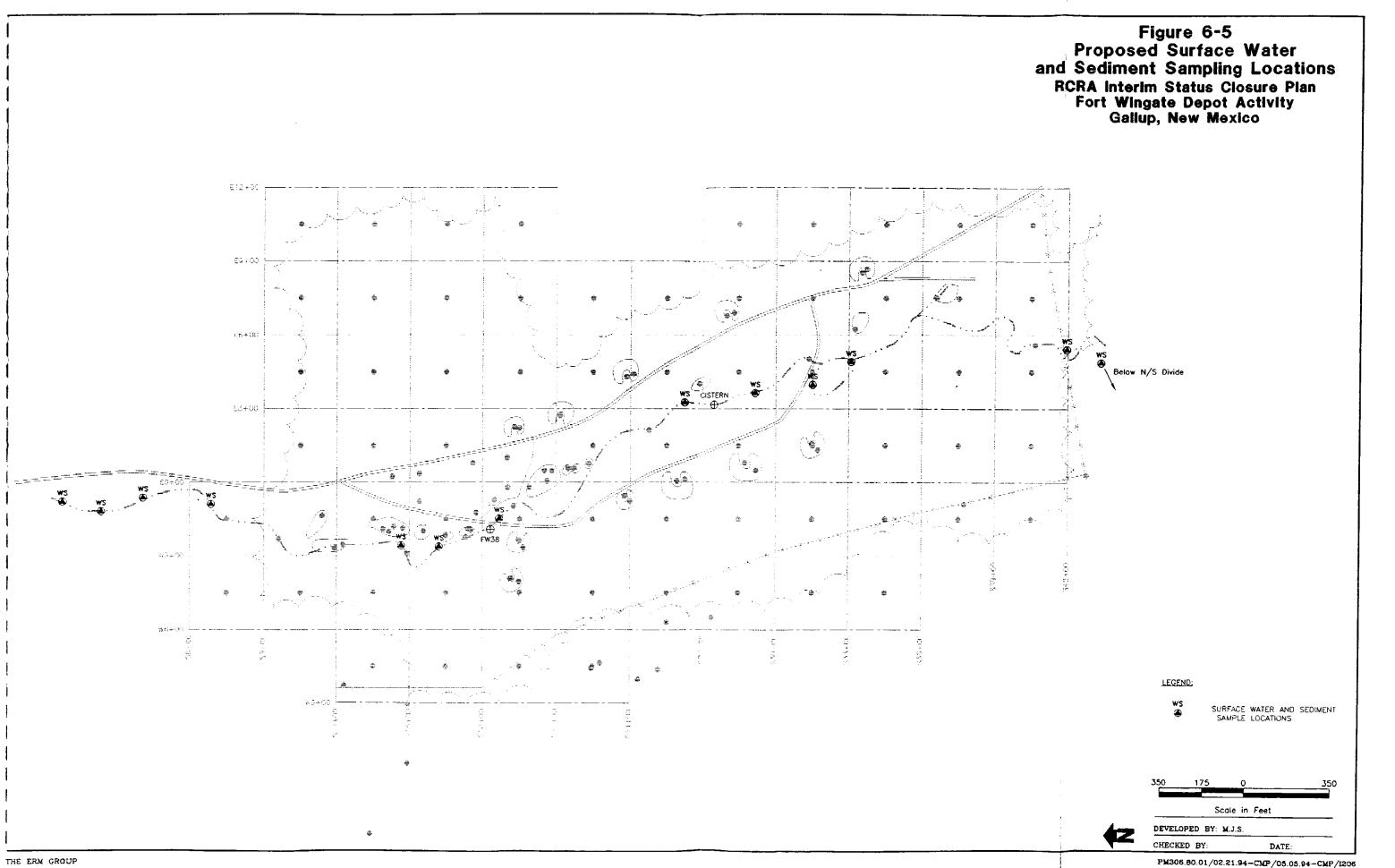
)) - 1 ì

ì)))

))

)) X

))


> >)

)

) 3

1)

ì

A literature search will be performed to identify published bioassay information for the constituents positively detected in surface water and sediment samples. Analytical results will be compared to these literature values to evaluate whether there is the potential to adversely impact aquatic life on the site. Surface water sampling will be conducted from the furthest downstream stations and proceed to upstream stations to minimize the potential for cross-contamination due to suspended material in the stream caused by the sampling activities. In addition, surface water samples will be collected at each location prior to collection of the stream sediments sample at that location to further minimize crosscontamination.

6.3.2 Confirmatory Sampling

Samples will be collected upon completion of closure activities to ensure that selected cleanup levels have been attained. The samples will be analyzed for explosives and TAL metals.

6.4 PERFORMANCE OF CLOSURE

6.5 CONFIRMATORY CLOSURE SAMPLING

CRITICAL ISSUES:

The following critical issues require resolution to allow the finalization of the Closure Plan Modification.

1. Army policy regarding closure of an OB/OD Area

It has been previously stated that the Army perceives minimal economic value relative to property transfer of the FWDA. Further, the Army's policy regarding the standard level of restoration of a former OB/OD Area has not been clearly delineated. Several points can be established at this time:

- The OB/OD Area will remain under restricted access and use due to the safety concern resulting from UXO/ordnance related debris.
- An accurate delineation/characterization of the residue pile areas, ground water/cistern, and wetlands has not been performed.

The potential closure scenarios include:

- Performance of closure (and site restoration) according to Army Policy for OB/OD Areas.
- Compliance with the respective (NMED) regulatory agency requirements.
- A level of negotiated closure and site restoration.

The principal issue being that the Army would assumably wish to maintain a consistent level of closure (and costs) relative to all OB/OD areas.

For example, a defensible position (of negotiation to the NMED) can be presented for several (example) scenarios regarding closure of the OB/OD Area:

- Closure in-place (removal of trash debris, maintenance of site controls, Post-Closure monitoring).
- Partial Restoration (removal of trash debris, hot spots of contamination or contamination to negotiated/accepted RCRA or RI/FS clean-up levels, possibly some manner of Post-Closure monitoring).
- Full Restoration (removal of trash debris, contamination to negotiated/accepted RCRA or RI/FS clean-up levels, remediation of ground water, as required, wetlands mitigation, site restoration)

Guidance is needed on the level of restoration that will maintain conformance with Army policy so that the proper site information can

THE ERM GROUP.

be obtained to allow the finalization of the Closure Plan Modification and the implementation of closure.

2. Identified Trash Within the Arroyo. Areas of ordnance related trash, debris and residue have been identified throughout the arroyo within the OB/OD Area.

The NMED in the Draft Comments to the RI/FS Report, dated 17 February 1993, referenced in regards to the Group C Disposal Area, N.M. Water Quality Control Commission (NMWQCC) regulations Section 2-201 which states "No person shall dispose of any refuse in a natural watercourse or in a location and manner where there is a reasonable probability that the refuse will be moved into a natural watercourse by leaching or otherwise...". The NMED further noted that the apparent findings within the Group C Disposal Area of no elevated levels of contamination did not relieve the Army of the obligation to conform to Section 2-201.

The NMED may require conformance to Section 2-201 within the OB/OD Area.

3. Ground water/wetlands.

The U.S. Department of the Interior, Fish and Wildlife Service, Albuquerque, NM in a correspondence to Ms. Barbara Hoditschek, RCRA Permits Program Manager - NMED, dated 9 December 1993 recommended consideration of sediment and/or water (collected from the wetland) toxicity tests using daphids or larval flathead minnows as test organisms.

Further, the hydrogeological aspects of the ground water/surface water/cistern identified within the arroyo have not been established. The potential wetland areas within the arroyo have also not been delineated. The potential scope of work previously discussed by the AEC (M. Gaborek) included:

- 1. Perform an ecological survey/visual inspection of the OBDA wetland area in the spring and identify and record plant species to establish pre-closure/baseline conditions. Toxicity analysis to include sampling for daphnia and flathead minnows.
- 2. Collect additional ground water and surface water samples at the spring and the shallow well installed within the arroyo.
- 3. Perform soil sampling within the wetland area to establish baseline conditions prior to closure.

The schedule of activities for closure of the OB/OD facilities is dependent on the review, finalization, and approval of this Closure Plan Modification. It is anticipated that the future schedule of activities will be as follows:

<u>Activity</u>

Estimated Schedule

Submittal of Modification to Final 23 May 1994 Closure Plan

NMED review and approval of Modification to Final Closure Plan

Preparation of Closure Implementation Design

Contractor Procurement/Contract Award

Implement RCRA Closure of OB/OD Area

Submission of Final Closure Documentation and Certification of Closure

4 weeks following the completion of closure and the receipt of closure confirmation analytical results

Closure activities will be completed in accordance with the Final Closure Plan as approved in the 20 January 1994 correspondence from Ms. Kathleen M. Sisneros, Director, Water and Waste Management Division, NMED to Major Paul E. Wojciechowski, Acting Chief, Base Closure Division, U.S. Army Environmental Center. Appendix A Conditions of Closure Plan Approval . عالياً كمكيد

_ *

CONDITIONS FOR CLOSURE PLAN APPROVAL Open Burning/Open Detonation Area Fort Wingate Depot Activity

M6213820974

The Closure Plan for the Open Burning/Open Detonation (OB/OD) Area as submitted by Fort Wingate Depot Activity (FWDA) dated March 1, 1993, and Attachment-1 entitled, "Proposed Interim Status Closure Field Screening Approach" dated October 20, 1993, and the following Conditions for Closure Plan Approval constitute the Approved Closure Plan. The Conditions for Closure Plan Approval take precedence over any conflicting or less stringent requirements found in the Closure Plan as submitted by FWDA.

1. QUARTERLY PROGRESS REPORTS

FWDA will submit quarterly progress reports summarizing all activities completed or in progress, the information collected, the schedule status and an explanation of any schedule delays including problems encountered. Hard copies of the results of all analyses will be included in the quarterly progress reports. Progress reports will be submitted each quarter beginning 90 days from the effective date of the closure plan and continuing through the time of closure certification acceptance by NMED.

2. DISPUTE RESOLUTION

A. The parties shall use their best efforts to informally and in good faith resolve all disputes of differences of opinion. If, however, disputes arise concerning the approved closure plan which the parties are unable to resolve informally, including but not limited to, disputes over the implementation of workplans, approval of documents, scheduling of any work, selection, performance, or completion of any closure actions, or other obligation assumed hereunder, FWDA shall submit a written notice of such dispute to the RRMB within ten business days of the receipt of the disapproval, decision, or directive. The notice shall set forth the specific points of the dispute, the position FWDA maintains should be adopted as consistent with closure requirements, the basis thereof, and any matters which it considers necessary for the HRMB's proper determination. The HRMB shall provide to FWDA a written statement of its decision on the pending dispute, which shall be incorporated into the closure plan unless FWDA requests 01/20/94 14:05 21 505 8274361 ERMB

an opportunity for a conference in accordance with paragraph B. The existence of a dispute defined herein, and the consideration of such matters which are placed into dispute shall not excuse, toll, or otherwise suspend any compliance obligations or deadlines while the dispute resolution process is pending.

B. If FWDA objects to any HRMB determination regarding any requirement by the HRMB that FWDA perform work, FWDA shall, within 10 days of its receipt of the HRMB's decision pursuant to paragraph A, notify the HRMB in writing of its objections, and request that the Division Director of the Water and Waste Management Division convene an informal conference. The Division Director shall state in writing the final decision regarding the factual issues in dispute. Such decision shall be the final resolution of the dispute and shall be implemented immediately by FWDA according to the schedule contained therein.

3. SURVEY PLAT

No later than the time of certification of closure if the unit is not clean closed and must be closed as a landfill, a survey plat will be prepared and certified by a professional land surveyor, dstailing the location and waste contents of the contaminated soils. The plat must contain a meets and bounds description and will show the locations of the entire landfill and the extent of any cover required in relation to permanently surveyed benchmarks. The plat will contain a note stating FWDA's obligation to restrict disturbance of the site. The survey plat will be submitted to the Water and Waste Management Division Director and to the official land file for incorporation into the property deed.

4. MODIFICATIONS TO THE APPROVED CLOSURE PLAN

The closure plan will be modified in accordance with BWMR-7, Part VI, Section 265.112(c) if affected by changes to operating plans, expected closure date, facility design or if there are any substantive modifications required due to unexpected events during closure. The plan will also be modified as needed to fulfill the requirements of closure. FWDA will submit a revised closure plan to the HRMB no later than 30 days after any unexpected event affects the closure plan. FWDA will receive the HRMB's written approval before implementing activities which constitute a revised closure plan submittal. If, at any time during closure, it becomes evident that closure activities will slip beyond the closure date as specified in Condition for Closure Plan Approval #4.B., FWDA will immediately notify the HRMB of the anticipated impact and what corrective options FWDA will pursue. Any amendments will be submitted in writing to the ERMB. A copy of the amended closure plan shall accompany the written request. The HRMS must approve any substantive modifications to this plan. The HRMB will provide a verbal response followed by a written response for requested modifications.

B. FWDA shall complete the field screening activities described

in the Attachment-1 of the approved closure plan and submit a closure plan modification request to the HRMB by March 25, 1994. The closure plan modification request shall detail the requirements outlined in Section 3.3 and 3.4 of the approved closure plan and shall be prepared in conformance with HWMR-7, Part VI, Section 265 Subpart G. The closure plan modification request shall include a detailed schedule including milestone dates for completing remaining closure activities.

5. ECOLOGICAL BISK

PWDA shall determine the ecological risks associated with any contaminants left at the OB/OD Area after completion of final closure activities. This information shall be documented in the Pinal Closure Report required by Section 4 of the approved closure plan. Information on ecological risk may include toxicity tests on organisms present at the site or published data applicable to the site specific conditions.

_

6. CLEAN CLOSURE DETERMINATION

Approved closure activities shall determine that hazardous wastes and hazardous constituents in the OB/OD Area are protective of human health and the environment in order for NMED to grant clean closure of the site and to terminate interim status for the unit. Appendix B UXB Summary Sheets of Identified, Marked, and Stockpiled Ordnance Items

~

))

onal, Inc
Piled Piled
oiled
piled
cp;lea
e Pile
Pilea
Pile
Piles
Piled
<u>cfile</u>
Pileo
Pileo

..

The undersigned acknowledges receipt of the items listed above.

Government Agency:

Government Representative:

Signature:

LOCE Form 1.0015

roject: <u>Feetwurgule</u> <u>N. M.</u> contract No. <u>Degels-91-D-0011</u> ete: <u>5-27-93</u> UXB Superviser: <u>Robert Dielemann</u> me: <u>Oqob</u> signature: <u>Janut Pwichmann</u> he ordnance items / explosive materials listed below were located by UXB Internation nd on this date were turned over to the U.S. Government for final disposal. DeAreb/ Emovieo Rom <u>DB</u> <u>2000 m</u> <u>51</u> <u>57 mm</u> <u>52 70 mm</u> <u>54</u> <u>57 mm</u> <u>56</u> <u>57 mm</u> <u>57 mm</u> <u>56</u> <u>57 mm</u> <u>57 mm</u> <u>56</u> <u>57 mm</u> <u>57 mm</u> <u>56</u> <u>57 mm</u> <u>57 mm</u>	ete: 5-27-93 UXB Superviser: Bent Dielemanne ime: 0900 Signature: Janut Puliebrance he ordnance items / explosive materials listed below were located by UXB Internation: Internation: nd on this date were turned over to the U.S. Government for final disposal. Oceantreb/ Quantity centreb/ UXO Nomenclature Quantity ITEM Tage centreb/ UXO Nomenclature Quantity ITEM Tage centreb/ UXO Nomenclature Quantity ITEM Tage centreb/ UXO Nomenclature Quantity Stock Pare centreb/ Stock Pare 51 Stock Pare centreb/ 249.5 51 Stock centreb/ 249.5 1 1 centreb/ 200mm 51 Stock centreb/ 200mm 37-40 Mm 349.5 dog mm 36 1 1 dog mm 36 1 1 dog mm 314 1 1	roject: <u>FORTWUNGULE M.M.</u> contract No. <u>Degals-91-D-0011</u> ate: <u>5-27-93</u> UXB Superviser: <u>Robert Dielemann</u> me: <u>0900</u> signature: <u>Janut Ruitmann</u> he ordnance items / explosive materiats listed below were located by UXB Internation nd on this date were turned over to the U.S. Government for final disposal. Deared UXO Nomenclature <u>Rom</u> <u>UXO Nomenclature</u> <u>Rom</u> <u>UXO Nomenclature</u> <u>Rom</u> <u>UXO Nomenclature</u> <u>Carch</u> <u>STock P</u> <u>Nack en</u> <u>Carch</u> <u>STock P</u> <u>Carch</u> <u>Contract No. <u>Deart Dielemann</u> <u>Deart P</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carch</u> <u>Carc</u></u>	Project: EDELUJUQULE N.M. Contract No. 2001/5-91-0-001/ Date: 5-27-93 UXB Supervisor: Bobart Dickmann Time: 0900 Signature: Janut Pulubman The ordnance items / explosive materials listed below were located by UXB Internation and on this date were turned over to the U.S. Government for final disposal. OCATED/ UXO Nomenclature Quantity ITEM T STOCK FROM 51 Stock 08:00 20mm 51 Stock 08:00 20mm 36 09:00 20mm 36 09:00 20mm 36 00:00 214 00:00 214 00:00 214 00:00 214 00:00 214 00:00 214 00:00 00 00 00:00 214 00:00 00 00:00 00 00:0
ete: <u>5-27-93</u> WXB Supervise: <u>Robert Dielemann</u> me: <u>Oq00</u> Signature: <u>Janut Pulichmann</u> he ordnance items / explosive materials listed below were located by UXB Internation nd on this date were turned over to the U.S. Government for final disposal. DEATED/ Emovieo Rom <u>UXO Nomenclature</u> <u>Quantity</u> <u>STock 1</u> <u>STock 1</u> <u>J37-40 MM</u> <u>J495</u> <u>J75-76 MM</u> <u>J66</u>	ete: 5-27-93 UXB Supervisor: Beast Dielemanne ime: 0900 Signature: Statut Publishmanne he ordnance items / explosive materials listed below were located by UXB Internation: Internation: nd on this date were turned over to the U.S. Government for final disposal. Internation: Define b/ UXO Nomenclature Quantity Item b/ Emovero Stock Print 08:00 20mm 51 57 Mm 36 60 Mm 2495 57 Mm 36 60 Mm 40 90 Mm 105 105 Mm 99	ete: <u>5-27-93</u> UXB Superviser: <u>Robert Dielemann</u> me: <u>Oqua</u> be ordnance items / explosive materials listed below were located by UXB Internation nd on this date were turned over to the U.S. Government for final disposal. Den reb/ Emoveo Rom <u>UXO Nomenclature</u> <u>Quantity</u> <u>STock P</u> <u>Mark en</u> <u>UXO Momenclature</u> <u>Quantity</u> <u>STock P</u> <u>Mark en</u> <u>2495</u> <u>57 mm</u> <u>36</u> <u>60 mm</u> <u>75-76 mm</u> <u>40</u> <u>99</u> <u>105 mm</u> <u>99</u>	Dete: 5-27-93 UXB Superviser Obert Dielemanne Time: OPOD Signature: Aut Publishment The ordnance items / explosive materials listed below were located by UXB Internationand on this date were turned over to the U.S. Government for final disposal. International disposal. Ocentres/ UXO Nomenclature Quantity Itematic streak investigation of the transformational disposal. Ocentres/ UXO Nomenclature Quantity Stock investigation of the transformational disposal. Ocentres/ UXO Nomenclature Quantity Stock investigation of the transformation of the tran
ime: 0900 Signature: Signature: <td< th=""><th>ime: <u>OPD</u> Signature: <u>Janut Publichmann</u> the ordnance items / explosive materials listed below were located by UXB Internations and on this date were turned over to the U.S. Government for final disposal. DEATED/ EMOVIED UXO Nomenclature Quantity STOCK PA THEM DA EMOVIED 2000 MM 51 Stock. 37-40 MM 3495 57 MM 36 105 MM 105</th><th>Ime: OPOD Signature: <td< th=""><th>Time: OPD Signature: Juit Publishing The ordnance items / explosive materials listed below were located by UXB Internationand on this data were turned over to the U.S. Government for final disposal. International disposal. OchTEB/ UXO Nomenclature Quantity ITEM T Stock. Removiero UXO Nomenclature Quantity ITEM T Stock. Stock 20mm 51 Stock. Stock 37-40 MM 2495 Stoce. S7 mm 36 166 144 15-716 MM 166 165 90 MM 105 105 MM 105</th></td<></th></td<>	ime: <u>OPD</u> Signature: <u>Janut Publichmann</u> the ordnance items / explosive materials listed below were located by UXB Internations and on this date were turned over to the U.S. Government for final disposal. DEATED/ EMOVIED UXO Nomenclature Quantity STOCK PA THEM DA EMOVIED 2000 MM 51 Stock. 37-40 MM 3495 57 MM 36 105 MM 105	Ime: OPOD Signature: Signature: <td< th=""><th>Time: OPD Signature: Juit Publishing The ordnance items / explosive materials listed below were located by UXB Internationand on this data were turned over to the U.S. Government for final disposal. International disposal. OchTEB/ UXO Nomenclature Quantity ITEM T Stock. Removiero UXO Nomenclature Quantity ITEM T Stock. Stock 20mm 51 Stock. Stock 37-40 MM 2495 Stoce. S7 mm 36 166 144 15-716 MM 166 165 90 MM 105 105 MM 105</th></td<>	Time: OPD Signature: Juit Publishing The ordnance items / explosive materials listed below were located by UXB Internationand on this data were turned over to the U.S. Government for final disposal. International disposal. OchTEB/ UXO Nomenclature Quantity ITEM T Stock. Removiero UXO Nomenclature Quantity ITEM T Stock. Stock 20mm 51 Stock. Stock 37-40 MM 2495 Stoce. S7 mm 36 166 144 15-716 MM 166 165 90 MM 105 105 MM 105
Description Description he ordnance items / explosive materials listed below were located by UXB Internation on this date were turned over to the U.S. Government for final disposal. beareb/ UXO Nomenclature Quantity ITEM To Stock With the transformation over to the U.S. Government for final disposal. beareb/ UXO Nomenclature Quantity ITEM To Stock With the transformation over to the U.S. Government for final disposal. beareb/ UXO Nomenclature Quantity ITEM To Stock With the transformation over to the U.S. Government for final disposal. beareb/ UXO Nomenclature Quantity ITEM To Stock With the transformation over to the U.S. Government for final disposal. Beareb/ Quantity Beareb/ Quantity Beareb/ Quantity Beareb/ Quantity Beareb/ Stock With the transformation over to the U.S. Government for final disposal. Beareb/ Quantity Beareb/ Stock With the transformation over to the U.S. Government for final disposal. Beareb/ Romm Beareb/ Stock With the transformation over to the transformation o	Description Description he ordnance items / explosive materials listed below were located by UXB Internation: nd on this date were turned over to the U.S. Government for final disposal. Define 1 Define 1 Define 1 Define 2 Quantity Term 1 Stock Prime Quantity Term 1 Define 1 Quantity Term 1 Define 2 Quantity Term 1 Quantity Term 1 Define 2 Quantity Term 2 Quantity <	Description Description he ordnance items / explosive materials listed below were located by UXB Internation nd on this date were turned over to the U.S. Government for final disposal. Define mover to the U.S. Government for final disposal. <th>O The ordnance items / explosive materials listed below were located by UXB Internationand on this date were turned over to the U.S. Government for final disposal. ocareb/ Removed UXO Nomenclature Quantity Stock 0 Stock 0</th>	O The ordnance items / explosive materials listed below were located by UXB Internationand on this date were turned over to the U.S. Government for final disposal. ocareb/ Removed UXO Nomenclature Quantity Stock 0
nd on this date were turned over to the U.S. Government for final disposal.Deareb/ EmovedUXO NomenclatureQuantityHTEM T STeek for MarkerCom200051Stock28:00200051Stock37-40MM24955757366075-76166	Ind on this date were turned over to the U.S. Government for final disposal.Defines/ EmoveroUXO NomenclatureQuantityItem to stock Proveso Stock ProvesoItem no Item no<	Ind on this date were turned over to the U.S. Government for final disposal.DEATED/ EmoveroUXO NomenclatureQuantityITEM D. STORK PDItem veroUXO NomenclatureQuantityITEM D. STORK PDItem veroItem veroSTORK PDItem veroItem vero	and on this date were turned over to the U.S. Government for final disposal.Och Teb/ RemovedUXO NomenclatureQuantityITEM T Stock The K The K Th
nd on this date were turned over to the U.S. Government for final disposal.Deareb/ EmovedUXO NomenclatureQuantityHTEM T STeek for MarkerCom200051Stock28:00200051Stock37-40MM24955757366075-76166	Ind on this date were turned over to the U.S. Government for final disposal.Defines/ EmoveroUXO NomenclatureQuantityItem to stock Proveso Stock ProvesoItem no Item no<	Ind on this date were turned over to the U.S. Government for final disposal.DEATED/ EmoveroUXO NomenclatureQuantityITEM D. STORK PDItem veroUXO NomenclatureQuantityITEM D. STORK PDItem veroItem veroSTORK PDItem veroItem vero	and on this date were turned over to the U.S. Government for final disposal.Och Teb/ RemovedUXO NomenclatureQuantityITEM T Stock The K The K Th
DefinitionUXO NomenclatureQuantityITEM To Stock is Stock is markerRom20mm51Stock is Stock is 37-40 MM37-40 MM249557 MM3660 MM34475-76 MM166	$\begin{array}{c c} \hline \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$	Ochreb/ Removed UXO Nomenclature Quantity ITEM 1 Stock marks Stock Stock Marks Stock 20mm 51 Stock Stock 37-40 MM 2495 36 Stock 57 Mm 36 36 Image: Stock 166 166 Stock 166 105 Mm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Remover OAC Nomenciature Quantity Stock $Side 20mm 51 51ce 51ce 37-40 MM 2495 36c 36c 57 mm 36 36 60 mm 36 36 90 mm 166 31 mm 90 mm 105 99 $
Rom marker Unit of the state 20mm 51 Stock 08:00 20mm 2495 37-40 MM 2495 57 mm 36 36 36 60 mm 214 314 75-76 mm 166 166	nom nmarker 05:00 20mm 51 Stock 37-40 mm 2495 1 57 mm 36 1 60 mm 214 1 75-76 mm 166 166 81 mm 40 105 105 mm 99 105	nom marker 03:00 20mm 51 Stock 37-40 mm 2495 1 57 mm 36 1 60 mm 314 1 75-76 mm 166 1 81 mm 40 1 90 mm 105 105 mm	Image Image Image 08-09 20mm 51 Stoce 37-40 mm 2495 36 57 mm 36 214 75-76 mm 166 81 mm 90 mm 105 105 mm
20mm 51 Stock 37-40 MM 2495 57 MM 36 60 MM 214 75-76 MM 166	20mm 51 Stock 37-40 MM 2495 36 57 Mm 36 36 60 MM 214 75-76 Mm 166 81 Mm 40 90 MM 105 105 Mm 99	20mm 51 Stock 37-40 MM 2495 1 57 MM 36 36 60 MM 214 75-76 MM 166 81 MM 40 90 MM 105 105 MM 99	28-26 20mm 51 Stoc 37-40 MM 2495 57 MM 36 60 MM 214 75-76 MM 166 81 MM 40 90 MM 105 105 MM 99
37-40 MM 37-40 MM 36 57 MM 36 40 MM 214 75-76 MM 166	37-40 mm 2495 57 mm 36 60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	37-40 mm 2495 57 mm 36 60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	37-40 MM 2495 57 MM 36 60 MM 214 75-76 MM 166 81 MM 40 90 MM 105 105 MM 99
60 mm 214 75-76 mm 166	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99
60 mm 214 75-76 mm 166	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	60 mm 214 75-76 mm 166 81 mm 40 90 mm 105 105 mm 99
75-76 mm 166	75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	75-76 mm 166 81 mm 40 90 mm 105 105 mm 99	75-76 mm 166 81 mm 40 90 mm 105 105 mm 99
	81 mm 90 mm 105 mm 99	81 mm 90 mm 105 mm 99	81 mm 90 mm 105 mm 99
	90 MM 105 105 MM 99	90 MM 105 105 MM 99	90 MM 105 MM 99
	105 mm 99	105 mm 99	105 mm 99
		J.J. Kolket Papts 77	JJJ RUCKET POLITS
M.83 Butter Fly Bomblets 152	M.83 Butten Fly Bomblets 152	M.83 Butten Fly Bomblets 152	M.83 Butter Fly Bomblets 152
		uner Fuzza (Astall B () 1/202 Stuck	earon Fuzes (Aptilleny and Bomb) 4282 Strep.
		reach Furge (Actual Column Col	00-00 Fuzes (Artilleny And Bomb) 4282 Stock.
		reacht Furge (October 1 B () 1/202 Stuck (wenews FUZes (Aptillance and Romf) 4282 Strap
FUTPS (Optilland a 1 Part) Uson Shak	Press FUZAS (Optilland a 1 Part) Hara State	~~~~~	

•

-

_ _

-

 $\overline{}$

~

-

_

-

- -

	T. T. S.		PAGE .	3 of 4
Time: Office Signature Outer Withman The ordnance items / explosive materials listed below were located by UXB International, and on this date were turned over to the U.S. Government for final disposal. Locatre V Locatre V UXO Nomenclature Ouantity ITEM Taken is the transitional, is the transitional, is the transitional of the U.S. Government for final disposal. Locatre V UXO Nomenclature Ouantity ITEM Taken is the transition of the U.S. Government for final disposal. Locatre V UXO Nomenclature Ouantity ITEM Taken is the transition of the U.S. Government for final disposal. Locatre V UXO Nomenclature Ouantity ITEM Taken is the transition of the U.S. Government for final disposal. Locatre V UXO Nomenclature Ouantity ITEM Taken is the transition of the U.S. Government for final disposal. Locatre V DD Ib Frans bombs 140 Steak Piles Bulk Migh Explosive 4491bs Steak Piles 10 10 Study of the U.S. And the transition of the U.S. And the transition of the transitistic of the transitistin other. <td< th=""><th>Project: F2</th><th>et Wingate N.M. Contract</th><th>No DAAA15-0</th><th>11-D-001</th></td<>	Project: F2	et Wingate N.M. Contract	No DAAA15-0	11-D-001
and on this date were turned over to the U.S. Government for final disposal. Locarres/ Removero UXO Nomenciature Quantity ITEM Determinant for final disposal. Removero UXO Nomenciature Quantity Stock Pile. FRom UXO Nomenciature Quantity Stock Pile. FRom UXO Nomenciature Quantity Stock Pile. FRom UXO Nomenciature Quantity Stock Pile. Bulk. Aligh Scolesive. 1400 Stock Of BLU-3 - + BLU - U Bomblers 208 10 Stock et WAn Heads 10 10 10 J20 Mm (Paekial) 1 1 1 Stock et Wan Heads 2 2 2 J20 Mm (Paekial) 1 1 1 Stock et Wan Heads 1 1 1 J30 Mm (Paekial) 1 1 1 J30 Mm (Paekial) 1 1 1 J30 Projecfile 1 1 1 M2 bounding mines 29 Stock Pil 1 M2 bounding mines 90 Maeked in F 10			(ρ)	
Removero ONO Nomenciature Cuantity Stock Pile Removero 30 1b Fense bomba 140 Stocked pile BULk High Scolesive 491bs 1 BLU-3-+ BLU-4 Bomblets 208 120 Mm (Paetia) 1 130 Mm (Paetia) 1 155 Mm 1 1 155 Mm 1 1 100 Matter 29 Stock Pil 110 Million 3 Paniplet 110 Million 3 Paniplet 111 Million 3 Paniplet 111 Million 3 Paniplet 111 Million 3 Paniplet 111 Million 3 Paniplet <				
Cubrowning 30 1b Feas bombs 140 Stocked Isulk Nigh Explosive 4916s BLU-3 - + BLU - 4 Bomblets 208 5 ⁿ Roeket Wan Heads 10 120 Mm (Pactial) 1 Smoke Cauistees 2 2.75" Roeket Wanhead 3" Projectile 1 3" Projectile 1 M2 Dounding mine 29 Stock BLU-3 Bomblet 90 Macked in f 90 Macked in f Cupperstored Government Agency:	REMOVED	UXO Nomenciature	Quantity	TEM Actin STOCKPiles MARKED IN
Bulk. High Explosive. 4916s BLU-3-+BLU-4 Bomblers 208 S* Rocket Wan Heads 10 120 mm (Pactial) 1 Smoke Cauisters 2 2.75" Rocket Wanhead 7 155 mm 1 3" Projectile 1 M2 bounding mine 29 Stock G BLU-3 Bomblet 90 Macked in P	Callent DB-0D	2016 FRAS bombs	140	
S" Roeket Wan Heads 10 120 Mm (Partial) 1 Smake Cauisters 2 2.75" Roeket Workhead 7 155 MM 1 3" Projectile 1 M2 bounding Mine 29 Stock Pil Comments:		Bulk High Explosive	49163	
Image:		BLU-3-+BLU-4 Bomblets	208	
Smoke Cauistens Z 2.75" Roeket Wowhead 7 155 MM 1 3" Pnojectile 1 4 M2 bounding Minle 29 Stock Pil Currenents:		5° Rocket WARHeads	10	
2.75" Roeket Wowhead 7 155 MM 1 3" Projectile 1 1 1 2 M2 bounding mine 29 Stoek Pil 1 1 <t< td=""><td></td><td>120 mm (Partial)</td><td>/</td><td></td></t<>		120 mm (Partial)	/	
ISS MM I ISS MM I J" Pnojectile I J" M2 bounding mine 29 Image: stored BLU-3 Bomblet 90 Comments: 1				
3" Projectile 1 M2 bounding min/e 29 Current obs BLU-3 Bomblet 90 Marked in F		2.75" Rocket Warhead	7	
Image: M2 bounding min/e. 29 Stock P:I Currents: 90 Marked in F Comments: 90 Marked in F		155 MM		
Current Agency: The undersigned acknowledges receipt of the items listed above.				
Comments: The undersigned acknowledges receipt of the items listed above. Government Agency:				
The undersigned acknowledges receipt of the items listed above. Government Agency:	Current of C	BLU-3 Bomblet	90	MARKED IN P
Government Agency:	Comments:	·	· .	
Government Representative:	Government /	Agency:		<u> </u>
	Government F	Representative:		

•

XA

UXB Internet	cional, Inc.	
		PAGE 4 OF 4
Project: FORT WINGA	EN.M.	Contract No. DANA15- 91- D-0011
Date: 5.27-93	UXB Su	pervisor. Robert DIEKMANN
Time: <u>0900</u>	Signatu	

The ordnance items / explosive materials listed below were located by UXB International, Inc., and on this date were turned over to the U.S. Government for final disposal.

LOCATED/ REMOVED FROM	UXO Nomenciature	Quantity	TEM Betien: STOCK Piled/ MARKED IN PLACE
OB-OD	BLU-4	182	MARKED in Place
	M83 bomblets	334	
	60 mm	1	
	40 mm	5	
	PG-9	1	
	5" Zun: Watchead	1	
	57 mm	3	
	75 mm	1	
4	81 mm	1	
64.000-00	20 16 Frag bomb	1	MARALE in Place

Comments: To the Best of my Knowledge all Opdinance Hems Stockpiled in the Demolitions area are present. TN Requereds to the Blow in place Hems, Complete assumance of Location For Receipt of each Hem is not possible due to exact Location WAS Not Provided to ME.

The undersigned acknowledges receipt of the items listed above.

Government Agency: _

Government Representative:

Signature:

LDCB Form 1.0015

	B International, Inc.		
Contraction of the second			
		PROF	1 or 5
Project: For	+ Wingate N.M. Contract No .:		· · · · · · · · · · · · · · · · · · ·
	30-93 UXB Supervisor Po		
[Deer D	TEICMANN
Time: 0	800 Signature: South	-Th u	man)
The ordnance	items / explosive materials listed below were loc	ated by LIXE	
and on this da	te were turned over to the U.S. Government for	final disposal	
Locares/	UXO Nomenciature	Quantity	ITEM Deties
REMOVED FRom			MARKED IN PL
Cuprent OB-00	aomm	6	Stock Piles
	37.40 MM	854	
	57 MM	9	
	60 MM	24	
	75-76 mm	29	
	81 mm		
	<u>90 mm</u>	8	
	105 mm	47	
	3.5" Rocket Parts	7_	
CURRENT	M83 Buller Fly Bomblets	83	
OB-OD	Fuzes (Art: 11eny And Bomb	934	Stock P:le
Comments: A I tems whe A the Curin 50D, or ite Stions by	HI the above items and follow the Recovered. From Listed and entions-or awaiting Disposal ; the where marked in place as Amy COD	ving 5 Reas And Actions Waiting (Aages of 1 Stock plan by Ahmy 1 rsposal
The undersig	ned acknowledges receipt of the items listed ab	ove.	
Government /	gency:		<u></u>
Government	Representative:	~ ~ <u>~</u>	
Signature:			

	UXB International,	inc.			
					_ of <u>5</u>
Project:	Fant Wingate	<u>N·M-</u>	Contract No.: Z	AAAI5-91-	D- 0011
Date:	9-30-93	UXB Sup	erviser. A obc	pt Dister	MAND
Time:	6800	Signature	- Honu	Julih	man

F.08

The ordnance items / explosive materials listed below were located by UXB International, Inc., and on this date were turned over to the U.S. Government for final disposal.

LOCATED/ REMOVED FROM	UXO Nomenciature	Quantity	TEM Action: STOCK Piled/ MARKED IN PLACE
06-00	20 16 FRAG Bombs		Stock Piled
· · · ·	Bulk High Explosive	1210	
	BLU-3 And BLU-4 Bomblets	10	
	5" Rocket Waehead	4	
	3" Projectile		
	M2 bounding mine	59	I I
	155 mm		Stock Piled
	BLU-3 Bomblet	6	MARKed is Place
	BLU-4 Bomblet	70	
4	M83. Bomblet	176	
Current OB.00	2010 FRAG BONNO		Mapled in Place

Comments:

The undersigned acknowledges receipt of the items listed above.

Government Agency: _____

· FEB-20-24 SHI 0.104

Government Representative:

Signature:

LOCE Plann 1.0015

	International, Inc.		
		Page	3 5
Project: For	- WINgate N.M. Contract	INO: DAAA15-	91-0-001
Date: 9	30-93 UXB Supervisor	Pahant 1	NIEK
1 I			
Time:	800 Signatures	Fuert The Je	imai _
The ordinance in	ems / explosive materials listed below we	ine located by UXB	International
and on this date	were turned over to the U.S. Governmen	nt for final disposal	l.
LOCATED/	UXO Nomenciature	Quantity	ITEM Bats
FROM			STOCK Pile
Deactivetides	20 mm	36	Stock P:
	37-40MM	10	1 7
Fuenate	57 mm		
Disposed Sike.	3.5" Rocket Motor	1	
OL OB-OD	20 mm		
	37-40 mm	/35	
	57 mm	3	
	60 mm	1	
	75-76 mm	18	l
	81 mm	<u> </u>	¥
010 03-00	90 mm	11	1Stock Pil
Comments:			
contraction.			
•			
		·	
The undersign	ed acknowledges receipt of the items list	ed above.	
Government A	jency:		
Government R	epresentative:		
Signatura			

r.03

r = #

- 40

0.....

,))

_ ~ ~ ~ -~ ---- $\overline{}$ - \sim $\mathbf{ }$ \sim $\mathbf{ }$ \sim

-- \sim \sim \sim - \sim -- $\overline{}$ ~ $\overline{}$ --- \sim $\overline{}$

~

 <u>.</u>

		B International, Inc.		
				<u>4 of 5</u>
P	roject: <u>120</u>	& Wingerts N.M.	Contract No.: DAGA 15-	91-0-0011
D	late:(2-30-93 UXB Supe	wison Robert T) EKMANN
		0800 Signature		
T	he ordnance nd on this de	items / explosive materials listed the were turned over to the U.S. G	below were located by UXI overnment for final disposa	3 International, Inc., I.
- IR	CATES/ Emoved	UXO Nomenclature	Quantity	ITEM Detion: STOCK Piled/ MARKED IN PLACE
		105 mm	2	Stock Piled
		3.5" Rocket Parts		
	_	M83	3	
		Fuzes	/3/	
ļ		20 16 FEAS bomb	8	
		But High Explosive Bly 3 and BLU.4 B	.516	
-		BILL 3 and BLU.4 B	ombiets 3	
		5" Rocket Wanhend		
		m2 bounding MING	14	
	<u>_</u>	155 mm	38	
O	00-00	Burster tube.	2	Stockpiled
Co	Comments:			
1	The undersig	ned acknowledges receipt of the i	tems listed above.	
G	overnment A	gency:		
G	ovemment R	lepresentative:		
Si	gnature:			

.

LDGB Ferm 1.0015

3

.

	3 International, Inc.	Prac	5 . 5
Date:	<u>+ Wingare N.M.</u> Contra -30-93 UXB Supervisor- 0800 Signature:	CINO DADA 15- Robert DI	
The ordnance and on this da Locates/	items / explosive materials listed below w te were turned over to the U.S. Governme	vere located by UXE ent for final disposal	
REMOVED	UXO Nomenclature	Quantity	TTEM Action: Stock Piled/ MARKED IN FLACE
ord OB-00	TRACER	1	Stock Piled
	BLU-4 Bomblet	6	marked in Place
06 03-00	M83 Bombdet	32	Manked in Alace
receipt of a	Demolition area are present ce items complete assur achitem is not possible 165 Not provided to n	e ove to	ins stud- ls to the trun for exact
	ned acknowledges receipt of the items ite		
Government	Agency: U.S. ARMY EDO Representative: <u>AUDRIE</u> J. N70. UMACh. YMMC		-
	your part of the second		

•

--

-

P.11

B Ferm 1.0015

UXB International, Inc.	
Project: Fort Wrigate, N.M	PAGE OF _4
	visor: Probent Dyelemann
Time: 0815 Signature:	Appliet Pu ihman

.

·····

The ordnance items / explosive materials listed below were located by UXB International, Inc., and on this date were turned over to the U.S. Government for final disposal.

LOCATED/ REMOVED FROM	UXO Nomenclature	Quantity	TEM Detion: STOCK Filed/ MARKED IN PLACE
010 08-00	50 Cal APT	4	Stock Piled
	20 mm Prosectiles	2	
	37-40 mm Projectiles	1094	
	60 MM Morton	1	
	75mm Projectiles	32	
	81mm Montan	1	
	90 mm Projectile	38	
	105 mm Projectile	2	
	3.5 Rocket Parts	2	
	M-83 Butter Cly Bomblet	3	
012 08-0D	Fuzes, (Antillery And Bomb)	3539	Stock Piled

Comments: All the above Items and following 3 pages of items Whene Recovered From Listed areas and Stockpiled in the Curnent OB-OD Rowarting Disposal actions by Army EOD, or items where Marked in place awarting Disposal actions by Army EOD.

The undersigned acknowledges receipt of the items listed above.

Government Agency:_

Government Representative: _

Signature:

LDGB Form 1.0015

		Pane	2 of 4
Project: FOR	+ WINGale N.M. Contract M	b. DAAA15-	91- D-001/
	-16-93 UXB Supervisor	1	
124886: //	UXB Supervisor	ODENT WIET	CMANN
Time:	815 Signature:	ut Them	hman)
The ordinance	items / explosive materials listed below were	located by UXB	International, I
	te were turned over to the U.S. Government		
LOCATED/	UXO Nomenclature	Quantity	STOCK Piles
REMOVED			MARKED IN
old OB-OD	2016 FRAG Bombs	15	Stock Pile
	BUIK HIGH Explosive	47/65	
	155 mm Projectile	9	
	M2 Bounding mine	12	
	Burster Tubes	67	
	2.75 Rocket Moton	2	
	Fuze extenden		
	Booster Tubes	3	
	mz Parts (Bounding mine)	217	↓↓
	81 mm tail boom		
01d 08-00	YOMM Red Phosphonous	2	Stock Pil
Comments:			
The undersig	acknowledges receipt of the items lister	above.	
Government	Agency:	···	
Government	Representative:		
7			

P.13

-

-

· ·
PAGE 3 of 4
Contract No. DAAA15-91 -D- 0011
pervisor Kobent DIETEMANN
. Aquit la ulman

The ordinance items / explosive materials listed below were located by UXB International, Inc., and on this date were turned over to the U.S. Government for final disposal.

LOCATED/ REMOVED FROM	UXO Nomenciature	Quantity	TEM Action: STock Piled/ MARKED IN PLACE
OH OB-OD	37 MM Shot CANNISLERS	38	Stockpiled
	200 16 6P Bamb (Partial)	2	
	HUKNOWN	12	
	3 ⁴ Rocket	1	Stockeiled
	Bip's 5-M83, 1-BLU-4	6	MARKed in Place
	Smoke CAUNISTERS / Candles	779	Stockpiled
Old OB-00	102 MM MORTOR	252	Stock Diled
08-00	Bulk Augh Explosive	5169	Stock Piled
	BLU-4 Bomblet	1	
↓	Buesten Tube	4	L
OB-0D	BUL-3. Bomblet	1	Stock Piled

•.

Comments:

The undersigned acknowledges receipt of the items listed above.

Government Agency:

Government Representative:

Signature:

L008 Ferm 1.0016

UXB International. Inc. PAGE 4 OF 4 Project: Fort Wingato N.M. Contract No.: DAAD 15-91-D-0011 Date: 11-16-93 UXB Supervisor: Kolocart Dietaman N Time: 0815 Signature: mas The ordnance items / explosive materials listed below were located by UXB International, Inc., and on this date were turned over to the U.S. Government for final disposal. TEM Action: LOCATED/ UXO Nomenclature Quantity Stock Piled/ REMOVED marked in Place FROM Deschation 1493 Projectile Stock Piled 20 mm FURNACC 37-40 MM Projectile 526 9 Projectile 57 mm 32 75 mm PROJECTIC Fuzes (Artillery and Bomb) 49 Deathvetie Stock Piled 20mm shell cases 19 FUEDALC 20mm Projectile 3 08-00 37-40 mm Projectile 4 Prosectile 2 75mm -Shell Crainia 90MM (artilleny and Bomb) 14 Stock Piled OB-OD Fuzes comments: To the best of my Knowledge all ordnemce items stack piled in the demolition area are present, in regulard to the Blow in Place tems complete assurance of Location for receipt of each items is Not possible due to exact location was Not provided to me. The undersigned acknowledges receipt of the items listed above. mu T. MURGAN, ICT Government, Represeptative: Signature: UXB Fermi 1.0015

EB-10-74 UHI 01190

r.15

			<u> </u>	۲.1
	8 Internation	al, inc.	Paar	
Project: Fo	et wingute	Contrac	# No.: DAMA 15-91	-
	14-93	•		
Time:06		Signature:		
The ordnance and on this da	items / explosive ate were turned ov	materials listed below we or to the U.S. Governme	ere located by UXE int for final disposal	International, Inc.
LOCATED/ REMOVED FROM	UX	O Nomenciature	Quantity	TEM Detion STOCK Piled/ MARKED IN PLA
OB-00	20 mm	·	1	Stock filed
08-00	BIU-3		1	StockRiled
08-00	BLU-4			Joek Piled
OH-OD	m 83	· · · · · · · · · · · · · · · · · · ·		StockPiled
GRANN P.F.	M49 This	Flance	1	Stuck Piled
<u></u>		· · · · · · · · · · · · · · · · · · ·		ļ
		· · · · · · · · · · · · · · · · · · ·		
		•		
areas and	the the about Stock piled i Army EDD.	e stems where Re in the current of	covened Fron 5-00 awaiting	Listed Disposal
actions by	Army EDD.	s receipt of the items list	5-00 awaiting	Listed Dispose L
actions by	Anny EDD.	s receipt of the items list	5-00 awaiting	Listed Pisposal
ARC(15 1240 Actions by The undersig Government /	Anny EDD.	s receipt of the items list	ed above.	Vispora L
AReas who actions by The undersig Government /	Anny COD. Anny COD. Ined acknowledge Agency: Representative:	in the cuencent of s receipt of the items list $f = \frac{41st}{200}$	ed above.	Prisperal

Appendix C Analytical Data

 Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 1 PROJECT NUMBER 7936033G 0201 PROJECT NUME ERM-PT. WINGATE FIELD GROUP FTWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH -

_ ---------------_ ------

> > ~

_

SAMPLE ID'S Parameters Units	DBASO12 FTWIN 1	DBASO11 FININ 2	DBASO10 PTWIN 3	DBASCO9 FTWIN 4	DBASO06 FTWIN 15	DBASO13 FTWIN 5	DBASOLJ FTWIN 6	DBASO05 FIWIN 14	DBASO20 FIWIN 7	
COLLECTION DATE: COLLECTION TIME:	11/17/93 09:10	11/17/93 09:25	11/17/93 09:35	11/17/93 09:45	11/17/93 10:10	11/17/93 10:15	11/17/93 10:15	11/17/93 10:25	11/17/93 10:35	
HMX	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
DG/G	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
DG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 3NT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.34	
UG/G 4-Amino-2,6-DNT, SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
UG/G BARIUM, TOTAL	525	477	200	383	443	434	400	387	201	
DG/G CALCIUM, TOTAL	55700	19700	5960	9960	23900	42900	27600	26500	23800	
UG/G CADMIUM, TOTAL	<0.515	2.38	1.22	<0.515	0.744	1.00	0.687	1.48	0.607	
UG/G COBALT, TOTAL	6.04	3.74	4.29	7.32	11.6	5.50	4.52	3.76	3.81	
UG/G COPPER, TOTAL	60.6	159	66.0	65.2	103	265	72.9	82.1	61.1	
UG/G POTASSIUM, TOTAL	3260	1140	904	2400	2140	2190	1490	1220	1310	
UG/G MAGNESIUM, TOTAL	8050	2920	2870	6200	3380	7320	6750	4100	3590	
UG/G SODIUM, TOTAL	338	216	197	276	278	286	279	225	202	
UG/G ZINC, TOTAL	101	241	48.9	65.2	222	96.1	76.6	65.1	94.7	
UG/G MANGANESE, TOTAL	610	341	319	510	710	470	423	383	317	
UG/G BERYLLIUM, TOTAL	1.35	0.759	0.880	1.03	0.855	0.765	0.619	0.772	<0.500	
UG/G ANTIMONY, TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
UG/G NICKEL, TOTAL	12.6	8.39	8.12	11.9	77.0	13.4	6.40	6.97	8.22	
DG/G Aluminum, Total	25800	8240	8990	20300	9680	17000	11700	11400	6760	
UG/G IRON, TOTAL	17100	7880	7910	13800	40400	13000	11700	8070	11000	
UG/G CHROMIUM, TOTAL	15.9	9.43	9.83	15.8	320	21.3	10.00	0.03	7.87	
UG/G SILVER, TOTAL	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	
UG/G VANADIUM, TOTAL	21.9	9.55	18.1	21.0	31.3	17.3	14.2	14.5	15.1	
UG/G ARSENIC	1.00	0.639	0.804	1.27	3.65	0.798	1.23	0.411	0.917	
UG/G										

•

- -

....

Environmental S		ring DATE 12/07/93 STATUS :	PAGE 2
PROJECT NUMBER	7936033G 0201	PROJECT NAME ERM-FT. WINGATE	
FIELD GROUP	PTMIN	PROJECT MANAGER MICHAEL WALSH	
		LAB COORDINATOR MICHAEL WALSH	

.

- · - ·-

---- --- --

-

SAMPLE ID'S PARAMETERS UNITS	DBASO12 PTWIN 1	DBASO11 FTWIN 2	DBASO10 FTWIN 3	DBASO09 FTWIN 4	DBASOO6 PTWIN 15	DBASO13 FTWIN 5	DBASO13 PTWIN 6	DBASO05 PTWIN 14	DBASO20 FTNIN 7
COLLECTION DATE: COLLECTION TIME:	11/17/93 09:10	11/17/93 09:25	11/17/93 09:35	11/17/93 09:45	11/17/93 10:10	11/17/93 10:15	11/17/93 10:15	11/17/93 10:25	11/17/93 10:35
LEND DG/G	58.2	32.6	15.0	17.3	22.7	29.8	30.5	17.5	16.1
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLIUM UG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153
MERCURY, SED UG/G-DRY	0.186	0.049	0.035	0.051	0.373	0.361	0.395	0.036	0.642
MOISTURE	15.2	15.7	14.0	18.4	18.8	12.5	12.1	18.1	11.3

-

-

-

....

	Engineering DATE 12/07/93 STATUS :	PAGE 3
PROJECT NUMBER 7936033G	0201 PROJECT NAME ERM-FT. WINGATE	
FIELD GROUP FININ	PROJECT MANAGER MICHAEL WALSH	
	LAB COORDINATOR MICHAEL WALSH	

SAMPLE ID'S Parameters Unit	DBASO19 FTMIN IS B	BIPSOO1 FTWIN 38	DBASO04 FTWIN 13	DBASO18 FTWIN 9	BIPSOO2 FTWIN 39	DBASO03 FTWIN 12	BIPSO03 FTNIN 40	BIPSO04 FTWIN 41	DBASO27 FININ 17	
COLLECTION DAT COLLECTION TIM		11/17/93 10:49	11/17/93 10:50	11/17/93 10:55	11/17/93 11:00	11/17/93 11:05	11/17/93 11:13	11/17/93 11:25	11/17/93 11:40	
HINCK	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
DG/C RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
UG/C 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/C	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/C NDB	<0. 283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/C TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/0 246TNT	; <1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT		<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
0G/G				<1.69						
2NT DG/G	•	<1.69	<1.69		<1.69	<1.69	<1.69	<1.69	<1.69	
4NT UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
3NT UG/G	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31 	
2-AMINO-4,6-DN UG/G		<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.38	<0.28	
4-AMINO-2,6-DN UG/G		<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	0.850	<0.250	
BARIUM, TOTAL	\$70	154	275	281	77.9	369	25.7	49.7	305	
CALCIUM, TOTAL	31700	42700	23900	11400	29100	41300	18300	3680	27900	
CADMIUM, TOTAL UG/G	0.748	<0.515	1.98	<0.515	4.51	<0.515	17.5	<0.515	0.670	
COBALT, TOTAL	6.08	5.35	3.69	16.9	2.81	3.82	<0.665	1.95	4.77	
UG/G COPPER, TOTAL	72.0	17.1	132	157	4.62	153	15.0	4.11	111	
UG/G POTASSIUM, TOTA	L 2330	2640	1090	1700	979	912	435	675	1730	
UG/G MAGNESIUM, TOTA		5550	4020	5740	2830	3100	782	1030	3260	
UG/G SODIUM, TOTAL	271	388	221	406	206	234	150	157	539	
UG/G ZINC, TOTAL	152	28.4	71.5	95.8	27.3	23.7	58.2	15.0	79.4	
UG/G MANGANESE, TOTA		272	361	746	196	547	28.3	108	351	
UG/G BERYLLIUM, TOTA		0.738	0.713	1.10	<0.500	0.644	<0.500	<0.500	<0.500	
UG/G ANTIMONY, TOTAL	,	<41.3	<41.3	93.0	<41.3	<41.3	<41.3	<41.3	<41.3	
UG/G NICKEL. TOTAL		11.2	7.25	24.7	5.11	10.2	<1.54	3.48	9.31	
UG/G	ļ	11700	9650	18600	4660	8110	2350	3870	8190	
ALUMINUM, TOTAL UG/G	ļ									
IRON, TOTAL UG/G		10200	9320	151000	4270	9370	1250	4110	12400	
CHROMIUN, TOTAL UG/G		11.6	9.48	55.6	5.80	13.7	2.74	3.56	9.70	
SILVER, TOTAL DG/G	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	
VANADIUM, TOTAL	20.7	18.3	12.8	22.1	9.52	15.6	4.81	10.2	15.2	
ARSENIC UG/G	0.902	0.825	0.626	1.93	0.750	0.926	0.320	0.317	0.817	

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 4 PROJECT MUNGLER 7936033G 0201 PROJECT NAME ERM-PT. WINGATE PIELD GROUP FININ PROJECT MANAGER MICHAEL WALSE LAB COORDINATOR MICHAEL WALSE									
SAMPLE ID'S Parameters UNITS	DBASO19 PTWIN 8	BIPSOO1 PTWIN 38	DBASO04 FTWIN 13	DBASO18 FTWIN 9	BIPSOO2 PTWIN 39	DBASO03 PTWIN 12	BIPSO03 FTNIN 40	BIPSO04 FTWIN 41	DBASO27 FTWIN 17	
COLLECTION DATE: COLLECTION TIME:	11/17/93 10:45	11/17/93 10:49	11/17/93 10:50	11/17/93 10:55	11/17/93 11:00	11/17/93 11:05	11/17/93 11:13	11/17/93 11:25	11/17/93 11:40	
LEAD DG/G	18.9	5.50	16.5	13.2	3.03	8.86	3.43	2.20	9.42	
SELENIUM DG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	
THALLIUM UG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	
MERCURY, SED DG/G-DRY	0.206	<0.027	<0.027	0.061	<0.027	<0.027	<0.027	0.606	0.145	
MOISTURE SWET WT	17.7	19.2	17.0	19.7	7.9	15.7	16.8	15.2	17.8	

•

•

 \sim ~ \sim \sim \sim \smile - \sim \smile \sim - \sim \sim \sim \sim \smile \sim $\overline{}$ \sim - \sim \sim - \sim - $\overline{}$ \sim

 \sim

)))

Environmental S	Science &	Engineer	ing DAT	E 12/07/	93 STAT	JS :	PAGE	5
PROJECT NUMBER	7936033G	0201 1	PROJECT	NAME	ERM-FT.	WINGATE		
FIELD GROUP	PIWIN	1	PROJECT	MANAGER	MICHAEL	WALSH		
		1	LAB COOR	DINATOR	MICHAEL	WALSH		

SAMPLE ID'S Parameters Units	BIPSO05 FTWIN 42	DBASO16 FTWIN 10	DBASO26 PTWIN 16	BIPSOO6 FTWIN 43	DBASO17 FTWIN 11	BIPSO07 FTWIN 44	DBASO25 FTWIN 19	DBASO32 FTWIN 29	DBASO24 FTWIN 20	
COLLECTION DATE: COLLECTION TIME:	11/17/93 11:40	11/17/93 11:45	11/17/93 11:55	11/17/93 11:58	11/17/93 12:00	11/17/93 12:13	11/17/93 14:40	11/17/93 14:45	11/17/93 14:55	
HMOK	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
DG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	30.0	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4.6-DNT	<0.28	2.41	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
UG/G 4-Amino-2,6-DNT,SED	<0.250	2.07	<0.250 -	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
UG/G BARIUM, TOTAL	169	524	725	40.3	582	75.3	479	336	152	
UG/G CALCIUM, TOTAL	4420	19500	33900	3430	15000	13500	24300	39900	3730	
UG/G CADMIUM, TOTAL	<0.515	0.892	<0.515	<0.515	2.50	6.36	<0.515	1.89	0.829	
UG/G COBALT, TOTAL	6.70	9.06	20.2	2.21	8.13	2.68	4.94	9.43	3.74	
UG/G COPPER, TOTAL	12.1	315	1070	2.63	465	109	108	557	109	
UG/G POTASSIUM, TOTAL	2000	2310	1780	664	2490	827	1180	1340	582	
DG/G MAGNESIUM, TOTAL	3300	6450	7570	1010	9070	1260	3920	3010	1460	
DG/G	209	299	1090	133	344	179	233	351	183	
SODIUM, TOTAL UG/G	33.3	65.1	<1.94	15.5	117	22.0	39.9	37.8	21.5	
ZINC, TOTAL UG/G			930	34.1	512	174	483	336	143	
MANGANESE, TOTAL UG/G	260 1.02	1120	0.878	<0.500	1.20	<0.500	0.809	<0.500	<0.500	
BERYLLIUM, TOTAL UG/G			112	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
ANT IMONY, TOTAL UG/G	<41.3	<41.3			22.1	6.09	8.60	151	6.54	
NICKEL, TOTAL UG/G	9.08	16.9	36.4	4.08			12000	7910	5800	
aluminum, total UG/G	12000	22300	11300	4130	26200	4300			7770	
IRON, TOTAL UG/G	12400	19100	163000	3610	26400	4670	9340	4910		
CHROMIUM, TOTAL DG/G	12.0	22.0	36.4	3.18	29.6	6.20	11.8	360	8.52	
SILVER, TOTAL UG/G	<0.521	<0.521	1.50	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	
VANADIUM, TOTAL UG/G	27.6	28.1	<1.77	10.3	23.2	11.5	19.2	17.0	14.4	
ARSENIC UG/G	3.03	0.973	0.493	0.645	1.10	1.48	1.11	1.34	0.906	

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 6 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROUP FIWIN PROJECT MANAGER MICHAEL NALSH LAB COORDINATOR MICHAEL WALSH										
Sample ID Parameter	-	BIPSO05 PTWIN 42	DBASO16 FIWIN 10	DBASO26 FTWIN 16	BIPSOO6 FTWIN 43	DBASO17 FTWIN 11	BIPSO07 FTWIN 44	DBASO25 PTWIN 19	DBASO32 PTWIN 29	DBASO24 PTWIN 20	
COLLECTIO COLLECTIO		11/17/93 11:40	11/17/93 11:45	11/17/93 11:55	11/17/93 11:50	11/17/93 12:00	11/17/93 12:13	11/17/93 14:40	11/17/93 14:45	11/17/93 14:55	
LEAD	UG/G	11.3	24.5	11.0	1.34	27.3	5.97	9.16	17.4	11.0	
SELENIUM	DG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	
THALLIUM	DG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	
MERCURY, S		0.039	0.052	<0.027	<0.027	0.046	<0.027	0.034	<0.027	<0.027	
MOISTURE	WET WI	25.6	20.9	16.6	10.0	19.0	15.6	12.2	16.3	15.9	

•

....

.

.

)

Environmental Science & Engine	3 STATUS : PAGE 7
PROJECT NUMBER 7936033G 0201	RM-FT. WINGATE
FIELD GROUP FININ	ICHAEL WALSH
	ICHAEL WALSH

SAMPLE ID Parameter	s	DBASO33 FTWIN 30	DBASO23 FTWIN 21	DBASO30 PTWIN 22	DBASO28 FTWIN 31	DBASO31 PTWIN 23	DBASO36 FTNIN 24	DBASO37 PTWIN 32	DBASO41 FTWIN 25	DBASO38 FIWIN 33	
	UNITS	30	41	••		••					
COLLECTIC		11/17/93 15:00	11/17/93 15:05	11/17/93 15:15	11/17/93 15:15	11/17/93 15:30	11/17/93 15:40	11/17/93 15:40	11/17/93 15:50	11/17/93 15:50	
HMC		<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
RDX	UG/G	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
135TNB	UG/G	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
1 3 DN9	UG/G	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
NB	UG/G	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
TETRYL	UG/G	<1.79	<1.79	<1.79	<1.79	<1.79	<1,79	<1.7 9	<1.79	<1.79	
246TNT	UG/G	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
26DNT	UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
24DNT	UG/G	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
2NT	UG/G	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
4NT	DG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
3NT	UG/G	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
2-AMINO-4		<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
4-AMINO-2	UG/G 2,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
BARIUM, TO		92.0	604	414	52.9	386	273	305	199	222	
CALCIUM,		19500	27400	11000	14900	39800	19900	32800	13000	37700	
CADMIUM,		<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	2.35	<0.515	1.82	
COBALT, TO	UG/G DTAL	2.07	5.81	4.66	1.83	5.18	3.33	4.89	3.64	5.98	
COPPER, TO	UG/G DTAL	47.6	34.2	29.2	47.1	104	38.3	552	272	357	
POTASSIU	UG/G 1, TOTAL	998	1770	1600	847	1770	719	1830	1300	2200	
MAGNESIU		2000	5150	3990	1120	5530	2540	3680	3000	4380	
SODIUM, T		246	287	201	153	295	187	321	213	420	
ZINC, TOT		13.3	22.2	13.8	14.5	26.2	11.6	29.5	17.2	27.5	
MANGANES	UG/G E, TOTAL	175	551	360	130	654	307	411	259	369	
BERYLLIU	UG/G M, TOTAL	<0.500	1.23	1.43	<0.500	1.15	0.899	0.858	0.730	0.681	
ANTIMONY	UG/G , TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
NICKEL, T	UG/G OTAL	4.30	8.07	8.32	3.73	10.3	4.94	17.6	9.08	14.3	
ALUMINUM		4480	19200	17200	3770	15600	7700	11600	11900	10500	
IRON, TOT		2800	14200	12100	4290	10900	3110	11500	7930	33400	
CHROMIUM		5.92	15.1	10.7	5.55	13.4	5.89	29.6	12.4	26.8	
SILVER, T		<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	0.766	<0.521	1.71	
VANADIUM	-	9.88	28.5	14.6	10.6	28.2	10.1	17.2	12.8	21.3	
ARSENIC	UG/G	0.955	1.26	0.327	1.35	1.01	0.874	1.32	0.412	0.820	
	UG/G										

- - - - -

~

-

_

...

-

Environmental Science PROJECT NUMBER 793603 FIELD GROUP FININ	Engineering DATE 12/07/93 STATUS : 3G 0201 PROJECT NAME ERM-FT. WINGATE PROJECT MARAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH	PAGE 8
---	--	--------

SAMPLE ID'S Parameters Units	DBASO33 FIWIN 30	DBASO23 PTWIN 21	DBASO30 FTWIN 22	DBASO28 FTWIN 31	DBASO31 FTNIN 23	DBASO36 FTWIN 24	DBASO37 FTWIN 32	DBASO41 FTWIN 25	DBASO38 FTWIN 33
COLLECTION DATE:	11/17/93	11/17/93	11/17/93	11/17/93	11/17/93	11/17/93	11/17/93	11/17/93	11/17/93
COLLECTION TIME:	15:00	15:05	15:15	15:15	15:30	15:40	15:40	15:50	15:50
LEAD UG/G	3.34	6.67	6.21	3.01	8.87	5.91	18.2	4.93	8.17
SELENIOM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLIOM UG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153
MERCURY, SED UG/G-DRY	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027
MOISTURE WET WI	12.8	20.0	11.2	11.4	14.9	17.5	15.0	17.3	13.6

-

~ _

- - - - -

- ---

Environmental Science & E	Ingineering DATE 12/07/93 STATUS :	PAGE 9
PROJECT NUMBER 7936033G 0	201 PROJECT NAME ERM-FT. WINGATE	
FIELD GROUP FININ	PROJECT MANAGER MICHAEL WALSH	
	LAB COORDINATOR MICHAEL WALSH	

SAMPLE ID'S Parameters Units	DBASO42 FTWIN 26	DBASO39 FIWIN 34	DBASO43 FTWIN 35	DBASO43 FTWIN 36	DBASO47 PTWIN 27	DBASO53 FIWIN 28	DBASO44 FTNIN 37	BIPSOOG FTWIN 45	DBASO59 FTWIN 49	
COLLECTION DATE: COLLECTION TIME:	11/17/93 16:00	11/17/93 16:00	11/17/93 16:35	11/17/93 16:35	11/17/93 16:40	11/17/93 16:50	11/17/93 17:00	11/17/93 17:18	11/18/93 08:10	
HNX	<0.947	<0.947	<0.947	<0. 94 7	<0.947	<0.947	1.57	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	4.14	<0.323	<0.323	
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	1.54	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 3NT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.37	<0.28	<0.28	
UG/G 4-AMINO-2,6-DNT,SED	<0.250	<0.250	0.254	<0.250	<0.250	<0.250	0.313	<0.250	<0.250	
UG/G BARIUM, TOTAL	400	310	212	203	79.0	163	179	56.3	230	
UG/G CALCIUM, TOTAL	48400	45100	26100	23100	11600	8850	24700	13700	5680	
UG/G CADMIUM, TOTAL	1.28	1.33	2.22	1.91	0.735	0.864	1.11	<0.515	<0.515	
UG/G COBALT, TOTAL	4.05	4.35	3.92	3.73	2.27	3.82	4.84	2.77	3.84	
UG/G COPPER, TOTAL	159	360	210	132	300	426	112	7.53	38.3	
UG/G POTASSIUM, TOTAL	1440	2200	1570	1400	253	1160	2390	698	1120	
UG/G MAGNESIUM, TOTAL	4190	4650	2810	2490	1540	2550	3590	1020	3420	
UG/G SODIUM, TOTAL	568	351	235	232	210	210	310	138	254	
UG/G	22.7	24.7	26.0	22.9	12.3	19.3	33.6	14.3	17.7	
ZINC, TOTAL UG/G MANGANESE, TOTAL	604	319	300	353	134	272	277	161	137	
UG/G		<0.500	<0.500	<0.500	<0.500	0.702	0.706	<0.500	<0.500	
BERYLLIUM, TOTAL UG/G	1.07		<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
ANTIMONY, TOTAL UG/G	<41.3	<41.3	9.70	7.12	10.00	15.0	9.43	3.92	8.14	
NICKEL, TOTAL UG/G	8.30	11.8		6190	5290	7810	11900	3550	10000	
ALUMINUM, TOTAL UG/G	11600	7920	7370				11600	4330	7140	
IRON, TOTAL UG/G	9440	8530	5620	4760	4530	10100				
CHROMIUM, TOTAL UG/G	11.7	15.4	11.7	8.31	17.2	87.3	13.8	3.78	10.2	
SILVER, TOTAL UG/G	0.736	0.758	1.06	0.787	<0.521	<0.521	<0.521	<0.521	<0.521	
VANADIUM, TOTAL UG/G	14.1	17.9	17.2	16.0	5.33	17.7	23.3	11.2	24.1	
ARSENIC UG/G	0.694	0.929	1.13	0.973	0.294	0.616	1.25	0.623	0.889	

,

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 10 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERN-PT. WINGATE FIELD GROUP FIMIN PROJECT MARAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID'S PARAMETERS UNITS	DBASO42 FTWIN 26	DBASO39 PININ 34	DBASO43 PTWIN 35	DBASO43 FTWIN 36	DBASO47 FTWIN 27	D BAS O53 FTWIN 28	DBASO44 FTWIN 37	BIPSOOS FTWIN 45	DBASO59 PTWIN 49		
COLLECTION DATE: COLLECTION TIME:	11/17/93 16:00	11/17/93 16:00	11/17/93 16:35	11/17/93 16:35	11/17/93 16:40	11/17/93 16:50	11/17/93 17:00	11/17/93 17:18	11/18/93 08:10		
LEAD DG/G	11.4	9.80	25.0	17.0	4.70	11.0	11.1	4.55	8.23		
SELENIUM DG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202		
THALLIUM UG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153		
MERCURY, SED DG/G-DRY	<0.027	<0.027	<0.027	<0.027	<0.027	.≪0.027	<0.027	0.034	<0.027		
MOISTURE	18.6	20.8	17.3	17.3	10.5	15.2	16.9	12.9	13.7		

.

-~ ~ _ ~ _ _ - \sim - \sim \sim ~ \sim \sim _ _)

Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 11 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROUP FTWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH

SAMPLE ID PARAMETERS		DBASO59 PTWIN 52	DBASO60 FTWIN 50	DBASO55 FTWIN 78	DBASO61 FTWIN 51	DBASO62 FTNIN 53	DBASO56 FTWIN 79	DBASO50 PTWIN 80	DBASO50 PTWIN 85	DBASO49 PTWIN 81	
COLLECTION	N DATE:	11/18/93 08:10	11/18/93 08:25	11/18/93 08:35	11/18/93 08:40	11/18/93 09:05	11/18/93 09:10	11/18/93 09:20	11/18/93 09:20	11/18/93 09:40	
HIMOX		<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
RDX	UG/G	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
135TNB	UG/G	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
13DNB	UG/G	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
NB	UG/G	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
TETRYL	UG/G	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
246TNT	UG/G	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
26DNT	UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
24DNT	0G/G	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
2NT	UG/G	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
4NT	UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	- <1.17	<1.17	<1.17	
3 NT	UG/G	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
2-AMINO-4	UG/G	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
-	UG/G ,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
	UG/G	274	246	146	102	337	91.7	352	366	211	
BARIUM, TO	0G/G	6120	32100	26300	27700	30300	42400	53100	59600	27900	
CALCIUM, T	DG/G	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	
CADMIUM, T	UG/G		4.91	3.74	2.40	3.90	1.99	6.87	7.38	3.71	
COBALT, TO	UG/G	3.92			29.8	273	13.8	48.6	58.1	74.9	
COPPER, TO	UG/G	59.3	105	52.8		2030	704	3420	3990	1610	
POTASSIUM	I, TOTAL UG/G	1090	1930	1120	1080	4380	2410	9060	8960	3010	
MAGNESIUM	I, TOTAL UG/G	2470	3600	2430	2320		205	1470	1370	263	
SODIUM, TO	UG/G	186	254	176	152	285	8.10	21.9	24.1	19.1	
ZINC, TOTI	v£ 10G/G	16.5	20.6	16.7	12.6	23.1	166	563	537	319	
MANGANESI	I, TOTAL UG/G	134		415	205		<0.500	0.693		<0.500	
BERYLLIU	1, TOTAL UG/G	0.755	0.791							<41.3	
ANTIMONY,	TOTAL UG/G	<41.3	<41.3	<41.3	_		<41.3				
NICKEL, TO	UG/G	6.19	8.45	6.12							
ALUMINUM.	TOTAL UG/G	7080	10300	5900							
IRON, TOT		5390	10700	7030	3270						
CHROMIUM		7.57	11.0	7.16							
SILVER, T		<0.521	<0.521	<0.521	<0.521						
VANADIUM		13.5	21.0	14.9	10.2	20.3					
ARSENIC	UG/G	0.796	0.541	0.849	0.840	0.778	0.756	1.10) 1.11	. 0.885	

.

· ----

.....

]]]]

.

•

)

-

-

-

-

-

-

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 12 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROUP FIWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID' Parameters	-	DBASO59 FTWIN 52	DBASO60 FTWIN SO	DBASO55 PTWIN 78	DBASO61 PTWIN 51	DBASO62 PTWIN 53	DBASO56 PTWIN 79	DBASO50 FTWIN 80	DBASO50 PIWIN 85	DBASO49 FTWIN 81	
COLLECTION		11/18/93 08:10	11/18/93 08:25	11/18/93 08:35	11/18/93 08:40	11/18/93 09:05	11/18/93 09:10	11/18/93 09:20	11/18/93 09:20	11/18/93 09:40	
LEAD	UG/G	7.21	4.62	5.26	3.82	6.87	2.83	6.22	6.17	17.5	
SELENIUM	UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	
THALLIUM	UG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	
MERCURY, SE	D UG/G-DRY	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	
MOISTURE	WET NT	17.1	14.4	13.7	11.7	15.9	9.3	16.3	18.1	16.3	

.

-

)

)))

 \sim - $\overline{}$ - $\mathbf{ }$ \sim --÷ \sim ---- $\overline{}$ -~ ~ ~

 .

Environmental Science 4 Engine	ering DATE 12/07/93 STATUS :	PAGE 13
PROJECT NUMBER 7936033G 0201	PROJECT NAME ERM-PT. WINGATE	
FIELD GROUP PTWIN	PROJECT MANAGER MICHAEL WALSH	
	LAB COORDINATOR MICHAEL WALSH	

SAMPLE ID'S Parameters Units	DBASO68 PTNIN 54	DBASO48 FTWIN 82	DBASO63 FTWIN 55	DBASO57 FTWIN S6	DBASO58 FTWIN 57	DBASO64 FTWIN 83	DBASO52 FTWIN 58	DBASO65 FTWIN 84	DBASO46 PTWIN 59	
COLLECTION DATE: COLLECTION TIME:	11/18/93 09:55	11/18/93 10:00	11/18/93 10:05	11/18/93 10:15	11/18/93 10:25	11/18/93 10:35	11/18/93 10:40	11/18/93 10:45	11/18/93 10:50	
HPOK	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G Int	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-Amino-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
UG/G 4-Amino-2,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
UG/G BARIUM, TOTAL	68.2	256	124	260	96.6	260	71.1	226	56.5	
UG/G CALCIUM, TOTAL	13500	44500	62400	205000	33000	32600	11100	17700	52300	
UG/G CADMIUM, TOTAL	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	
UG/G COBALT, TOTAL	2.69	3.45	6.80	4.30	3.07	4.49	2.44	3.01	3.35	
UG/G COPPER, TOTAL	53.8	43.4	3.38	7.25	111	31.9	251	56.8	92.2	
UG/G POTASSIUM, TOTAL	741	1510	2850	2440	1140	1990	863	2100	1310	
UG/G MAGNESIUM, TOTAL	1490	3650	9730	18800	2160	3680	1120	2070	4540	
UG/G SODIUM, TOTAL	171	206	425	1160	225	239	204	149	270	
UG/G ZINC, TOTAL	14.0	13.7	25.3	13.3	24.9	19.3	15.4	16.7	18.3	
DG/G MANGANESE, TOTAL	230	525	345	431	246	364	149	433	378	
UG/G BERYLLIUM, TOTAL	<0.500	<0.500	0.687	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
UG/G ANTIMONY, TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
DG/G NICKEL, TOTAL	4.53	6.12	15.2	6.78	5.22	7.79	5.61	5.72	8.18	
UG/G ALUMINUM, TOTAL	3110	10100	10700	7070	5280	11200	3770	7330	6170	
UG/G IRON, TOTAL	4120	4260	14000	2290	5960	9310	5180	4000	5240	
UG/G CHROMIUM, TOTAL	4.98	7.09	12.3	8.36	9.27	10.2	9.01	7.38	11.0	
UG/G SILVER, TOTAL	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	
UG/G VANADIUM, TOTAL	11.2	10.7	15.0	6.36	15.2	20.3	13.9	10.7	10.7	
DG/G	0.944	<0.209	1.17	1.04	0.762	1.42	1.35	0.618	0.985	
ARSENIC OG/G	V. 744	~~.203	•·•f	24						

)

-

-

-

Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 14 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROUP FIWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH

•

SAMPLE ID'S PARAMETERS UNI	DBASO68 PTWIN IS 54	FTNIN	DBASO63 FTWIN 55	DBASO57 FTWIN 56	DBASO58 FTNIN S7	DBASO64 FTWIN 83	DBASO52 PTWIN 58	DBASO65 FTWIN 84	DBASO46 FTWIN 59
COLLECTION DAT			11/18/93 10:05	11/18/93	11/18/93	11/18/93	11/18/93	11/18/93	11/18/93
LEAD				10:15	10:25	10:35	10:40	10:45	10:50
UG/C	3.46	6.30	4.48	5.25	5.27	6.80	4.47	8.35	4.67
SELENIUM UG/0	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLIOM UG/C	<0.153	<0.153	<0.153	0.532	<0.153	<0.153	<0.153	<0.153	<0.153
MERCURY, SED UG/0	<0.027	<0.027	<0.027	<0.027	<0.027	· <0.027	<0.027	<0.027	<0.027
MOISTURE	9.9 : WT	18.4	9.7	6.7	16.3	15.2	12.7	19.3	15.0

-_

_ \sim ~ --- $\overline{}$ \sim \sim - \sim \sim - $\boldsymbol{\smile}$ -~ \sim - \sim \smile \sim \sim - $\overline{}$ \sim - $\overline{}$ $\overline{}$ $\overline{}$ \sim \sim Ļ $\overline{}$ \sim

Environmental Science & Engine	ering DATE 12/07/93 STATUS :	PAGE 15
PROJECT NUMBER 7936033G 0201	PROJECT NAME ERM-FT. WINGATE	
FIELD GROUP FTWIN	PROJECT MANAGER MICHAEL WALSH	
	LAB COORDINATOR MICHAEL WALSH	

COLLECTION DATE: 11/18/93
NAX CG/G
RDX <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.323 <0.326 <0.326 <0.323
DG/G <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961 <0.961
UG/G C0.268 C0.260 C1.07 C1.17
UG/G <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283 <0.283
UG/G <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.79 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20 <1.20
UG/G cl.20 cl.20 <thcl.20< th=""> <thcl.20< th=""> <thcl.< td=""></thcl.<></thcl.20<></thcl.20<>
UG/G cl.17 cl.19 cl.117 cl.117 cl.117 cl.117 cl.117 cl.117 cl.117 cl.117
UG/G <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.09 <1.017 <1.17 <th< td=""></th<>
UG/G cl.69
DG/G <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.17 <1.131 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <1.31 <th< td=""></th<>
UG/G 3NT <1.31
UG/G 2-AMINO-4,6-DNT <0.28
2-AMINO-2,6-DNT, SED <0.250
4-AMINO-2,6-DRI,SED CO.230 CO.250 CO.250 <thco.250< th=""></thco.250<>
BARIUM, TOTAL S7.4 ISS LOT S00 S00 S100 S1200 S2600 CALCIUM, TOTAL 47300 6260 135000 118000 69300 11100 63000 33200 52600 UG/G UG/G DIG DIG 0.302 DIG 0.302 DIG 0.302 DIG 0.302 0.5
CALCIUM, TOTAL 4/300 6260 135000 110000 05500 0200 00000 00000 00000 00000 00000 00000 0000
CADMIDM, TOTAL 20.515 20.505 20.505 20.505 20.505 20.505 2000 20.505 2000 2000
COBALT, TOTAL 3.04 4.05 5.45 4.05 7.72 2.00 0.00 0.00 0.00 0.00 0.00 0.00
COPPER, TOTAL 132 4.55 9.46 9.56 3.57 201 000 2170 2170 2170
POTASSIUM, TOTAL 954 1660 3920 2130 2000 2000 2000 5430
MAGNESIOM, TOTAL 3500 2780 11400 3210 7500 2000 2000 2000 2000 2000 2000 200
SODIUM, TOTAL 265 211 1220 535 525 100 100 10 0 10 0 10 0
ZINC, TOTAL 16.6 16.8 13.1 15.7 125 200 007
MANGANESE, TOTAL 334 278 474 488 941 184 853 217 646 UG/G
BERYLLIUM, TOTAL <0.500 <0.500 <0.500 1.35 <0.500 1.01 <0.500 1.09 UG/G
ANTIMONY, TOTAL <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <41.3 <4
NICKEL, TOTAL 8.74 6.99 9.76 8.34 16.6 5.12 11.9 8.94 15.2 DE/G
ALUMINUM, TOTAL 4730 7910 12100 8220 21300 3800 20200 7850 19100
IRON, TOTAL 3930 8320 8540 8350 20000 4650 16700 8770 12500
CHROMIUM, TOTAL 10.4 8.11 8.45 7.97 22.3 8.64 18.0 13.9 17.4
SILVER, TOTAL <0.521 <0.521 <0.521 <0.521 <0.521 <0.521 <0.521 <0.521 <0.521 <0.521
VANADIUM, TOTAL 8.57 16.3 25.7 22.2 23.9 14.4 19.5 17.1 20.5
UG/G ARSENIC 0.786 0.323 0.602 0.546 0.638 0.670 0.927 1.42 0.744 UG/G

_ _ _ _

- _____

	Environs PROJECT FIELD GE	NUMBER 793	INCE & Engi 16033G 0203 FIN	PROJEC	T NAME	/93 STATUS ERM-PT. WI Michael WJ Michael WJ	Ingate Lsh	NGE 16	
SAMPLE ID'S PARMETERS UNITS	DBASO46 FTWIN 60	DBASO66 FININ 86	DBASO67 FTWIN 87	DBASO67 FTWIN 88	DC15001 PTWIN 89	DBASO45 FTWIN 61	DC1SO02 FTWIN 90	DBASO51 FTWIN 62	DC2SO01 FTWIN 91
COLLECTION DATE: COLLECTION TIME:	11/18/93 10:50	11/18/93 10:55	11/18/93 11:05	11/18/93 11:05	11/18/93 13:05	11/18/93 13:10	11/18/93 13:10	11/1 8/93 13:20	11/18/93 13:20
LEAD DG/G	3.38	3.78	5.41	4.91	10.5	2.89	21.2	37.4	11.7
SELENIUM DG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLIUM UG/G	<0.153	<0.153	0.366	0.343	<0.153	<0.153	0.206	<0.153	0.227
MERCURY, SED DG/G-DRY	<0.027	<0.027	<0.027	<0.027	<0.269	- ∢0.027	0.102	<0.027	0.944
MOISTURE SMET WT	15.0	12.2	18.4	16.6	19.1	11.6	16.2	13.4	22.1

 $\overline{}$

•

Environmental Science & Engine	3 STATUS : PAGE 17
PROJECT NUMBER 7936033G 0201	RM-FT. WINGATE
FIELD GROUP PTWIN	ICHAEL WALSH
	ICHAEL WALSH

SAMPLE ID'S PARAMETERS UNITS	DC2SOO2 PTWIN 92	DBASO40 FTWIN 63	DC3SO01 FTWIN 93	DC3SO02 FTWIN 94	DBASO35 FTWIN 64	DC4SOO1 FTNIN 95	DC4SO02 PTWIN 96	DC4SO02 FTWIN 97	DBASO29 FTWIN 65	
				11/18/01		11/18/93	11/18/93	11/18/93	11/18/93	
COLLECTION DATE: COLLECTION TIME:	11/18/93 13:25	11/18/93 13:35	11/18/93 13:40	11/18/93 13:45	11/18/93 14:00	14:00	14:05	14:05	14:10	
HMX UG/G	<0.967	<0. 94 7	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
UG/G 135TMB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	33.5	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G INT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-6,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
UG/G 4-AMINO-2,6-DNT,SED	<0.250	<0.250	0.622	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
UG/G BARIUM, TOTAL	317	58.5	232	501	38.8	415	346	322	59.8	
UG/G			24400	54000	20800	47700	45700	73800	15200	
CALCIUM, TOTAL UG/G	38400	66000					0.736	1.08	<0.515	
CADMIUM, TOTAL UG/G	5.91	<0.515	<0.515	2.13	<0.515	2.30		3.48	2.45	
COBALT, TOTAL UG/G	23.6	6.08	107	4.44	1.78	4.26	4.10		30.3	
COPPER, TOTAL UG/G	2380	5.30	495	149	31.3	231	113	74.6		
POTASSIUM, TOTAL UG/G	975	1820	603	1320	580	1350	1460	1120	562	
MAGNESIUM, TOTAL UG/G	3700	9250	3190	3980	960	3780	3920	3340	1090	
SODIUM, TOTAL UG/G	1530	388	1450	305	167	560	343	329	164	
ZINC, TOTAL DG/G	10.2	25.9	21.2	31.4	11.4	27.7	15.6	13.8	11.5	
MANGANESE, TOTAL UG/G	1370	350	8760	422	144	642	591	717	133	
BERYLLIUM, TOTAL UG/G	0.735	<0.500	<0.500	1.02	<0.500	0.851	0.896	0.782	<0.500	
ANTIMONY, TOTAL UG/G	140	<41.3	665	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
NICKEL, TOTAL UG/G	33.2	13.0	466	13.2	2.67	9.22	8.69	7.34	4.01	
ALUMINUM, TOTAL	5570	7610	1820	10800	2740	9760	11200	8230	3030	
UG/G IRON, TOTAL	213000	6580	1250000	4860	2520	5600	9080	3200	4340	
UG/G CHROMIUM, TOTAL	37.7	9.12	693	11.8	3.18	10.7	10.4	5.88	2.83	
UG/G SILVER, TOTAL	<0.521	<0.521	<0.521	<0.521	<0.521	1.14	<0.521	<0.521	<0.521	
UG/G VANADIUM, TOTAL	<1.77	14.0	<1.77	11.3	6.15	13.7	11.4	9.03	14.2	
UG/G ARSENIC	0.654	1.37	0.490	0.757	0.571	0.258	0,261	0.237	1.07	
UG/G										

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 18 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROOP FTWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID'S Parameters Units	DC25002 FTWIN 92	DBASO40 FININ 63	DC35001 FTWIN 93	DC3SO02 FTWIN 94	DBASO35 FTWIN 64	DC4SOO1 FTWIN 95	DC4SO02 FTWIN 96	DC4 SO02 FTNIN 97	DBASO29 FTNIN 65		
COLLECTION DATE: COLLECTION TIME:	11/18/93 13:25	11/18/93 13:35	11/18/93 13:40	11/18/93 13:45	11/18/93 14:00	11/18/93 14:00	11/18/93 14:05	11/18/93 14:05	11/18/93 14:10		
LEAD DG/G	8.30	4.24	10.2	11.3	2.59	17.5	7.29	6.54	1.96		
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202		
THALLIUM DG/G	<0.153	<0.153	<0.153	<0.153	<0.153	0.257	0.201	<0.153	<0.153		
MERCURY, SED UG/G-DRY	0.034	<0.027	0.101	<0.027	<0.027	. <0.027	<0.027	<0.027	<0.027		
MOISTURE ENET WI	14.7	5.7	19.6	11.3	10. 8	21.3	15.8	13.7	9.4		

))

 $\mathbf{ }$ \smile \sim \sim \sim \smile \sim \smile \sim $\overline{}$ $\overline{}$ \sim \sim \sim \smile $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \smile \sim \sim \sim \sim $\overline{}$ \sim \sim \sim

Environmental	Science &						PAGE	19
PROJECT NUMBER	7936033G					WINGATE		
FIELD GROUP	PTWIN				MICHAEL			
		ម	LE COOR	DINATOR	MICHAEL	WALSH		

SAMPLE ID'S Parameters Units	DCSSOO1 PTWIN 98	DC5SO02 FTWIN 99	DBASO15 FTWIN 66	DBASO22 FTWIN 67	DBASO14 FTNIN 68	DBASO14 PTNIN 69	DBASO21 FTWIN 70	DBASO34 FTWIN 71	DC105001 FTWIN 101
COLLECTION DATE: COLLECTION TIME:	11/18/93 14:10	11/18/93 14:15	11/18/93 14:40	11/18/93 14:45	11/18/93 14:55	11/18/93 14:55	11/18/93 15:05	11/18/93 15:20	11/18/93 15:25
HIMX	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961
UG/G 130MB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20
DG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09
DG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
UG/G INT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31
UG/G 2-AMINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28
UG/G 4-AMINO-2,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250
UG/G BARIUM, TOTAL	106	337	85.7	74.5	32.6	37.9	75.7	158	184
UG/G CALCIUM, TOTAL	29100	82600	5980	3260	22200	21700	15300	79100	26500
UG/G CADMIUM, TOTAL	<0.515	1.59	<0.515	<0.515	<0.515	<0.515	<0.515	<0.515	2.54
UG/G COBALT, TOTAL	2.77	3.48	3.04	2.32	1.42	1.99	6.84	4.91	3.38
UG/G COPPER, TOTAL	42.6	116	42.8	91.9	4.78	14.3	19.3	15.2	342
UG/G POTASSIUM, TOTAL	1380	2960	1080	854	401	515	387	2410	1370
UG/G MAGNESIUM, TOTAL	2350	3450	1550	850	1700	2040	1680	6210	2520
UG/G SODIUM, TOTAL	208	321	184	141	169	209	220	345	216
UG/G	12.6	13.2	26.0	14.0	10.3	16.2	45.6	17.8	59.2
ZINC, TOTAL UG/G	250	1000	186	153	117	171	194	330	281
MANGANESE, TOTAL UG/G	<0.500	0.805	<0.500		<0.500	<0.500	<0.500	<0.500	<0.500
BERYLLIUM, TOTAL UG/G	<41.3	<41.3	<41.3			<41.3	<41.3	<41.3	<41.3
ANTIMONY, TOTAL UG/G	5.71	6.99				2.58	4.01	11.4	11.6
NICKEL, TOTAL UG/G	5290	7400				3770	2510	7560	32000
ALUMINUM, TOTAL UG/G		3090				2720	36100	5660	5110
IRON, TOTAL UG/G	5950								75.9
CHROMIUM, TOTAL UG/G	7.71	9.62							
SILVER, TOTAL UG/G	<0.521								_
VANADIUM, TOTAL UG/G	11.8	14.5							
ARSENIC UG/G	0.363	0.705	1.23	0.509	,	2.30			

,

-

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 20 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-PT. WINGATE FIELD GROUP PTWIM PROJECT MANAGER MICHAEL WALSE LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID'S Parameters Units	DC5SOO1 FTWIN 98	DC5SO02 FTWIN 99	DBASO15 FTWIN 56	DBASO22 FTWIN 67	DBASO14 PTWIN 68	DBASO14 PTWIN 69	DBASO21 FTWIN 70	DBASO34 FTWIN 71	DC10SO01 FTWIN 101		
COLLECTION DATE: COLLECTION TIME:	11/18/93 14:10	11/18/93 14:15	11/18/93 14:40	11/18/93 14:45	11/18/93 14:55	11/18/93 14:55	11/18/93 15:05	11/18/93 15:20	11/18/93 15:25		
LEAD UG/G	2.98	10.2	4.93	2.14	1.08	2.01	23.1	3.83	6.92		
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202		
THALLIUM DG/G	<0.153	0.230	0.215	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153		
MERCURY, SED	<0.027	<0.027	0.038	<0.027	0.034	- 0.034	0.114	<0.027	<0.027		

13.0

13.6

8.5

10.2

15.0

 $\overline{}$ \sim -

_

_

UG/G-DRY

WET WT

13.4

19.6

9.7

.

.

MOISTURE

Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 21 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-FT. WINGATE FIELD GROUP FTWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH

.

SAMPLE ID'S Parameters UNITS	DC10SOO2 FTWIN 102	DC11SO01 FTWIN 103	DC115002 FTWIN 104	DC9SO01 FTWIN 105	DC9SO01 FTWIN 109	DC9SO02 FIWIN 106	DC85001 FTWIN 107	DCBSO02 FTWIN 108	DBASO02 FTWIN 73	
COLLECTION DATE: COLLECTION TIME:	11/18/93 15:30	11/18/93 15:40	11/18/93 15:45	11/18/93 15:50	11/18/93 15:50	11/18/93 15:55	11/18/93 16:00	11/18/93 16:05	11/18/93 16:10	
HMX	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
DG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0,961	<0.961	<0.961	<0.961	<0.961	
DG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	41.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
DG/G 3NT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	
UG/G 4-AMINO-2,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	
UG/G BARIUM, TOTAL	106	368	160	252	257	266	231	215	49.2	
UG/G CALCIUM, TOTAL	9510	27000	25600	37600	40200	35600	50100	40800	23100	
UG/G CADMIUM, TOTAL	<0.515	0.840	<0.515	<0.515	1.21	0.803	1.69	0.853	<0.515	
UG/G COBALT, TOTAL	2.24	3.70	3.72	3.79	4.07	3.34	4.59	3.35	2.36	
UG/G COPPER, TOTAL	163	434	230	164	171	88.9	128	61.3	5.86	
UG/G POTASSIUM, TOTAL	1170	1520	2340	1740	1810	1620	2060	1430	937	
UG/G MAGNESIUM, TOTAL	1410	3450	3530	3970	4360	3400	4160	3350	1710	
UG/G SODIUM. TOTAL	147	447	199	409	421	463	520	341	164	
UG/G ZINC, TOTAL	25.1	22.4	24.3	21.8	22.9	10.6	31.8	18.7	14.8	
UG/G MANGANESE, TOTAL	202	185	239	318	321	297	393	361	191	
UG/G BERYLLIUM, TOTAL	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	
UG/G ANTIMONY, TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
UG/G NICKEL, TOTAL	6.00	13.1	10.2	9.94	10.6	7.91	9.84	7.68	4.32	
UG/G ALUMINUM, TOTAL	3510	7950	8280	8200	8820	6820	7170	6600	3910	
UG/G							5940	5770	4110	
IRON, TOTAL UG/G	3500	3780	5800	7910	7810	4570			3.73	
CHROMIUM, TOTAL UG/G	8.81	15.7	14.4	13.0	12.9	6.96	11.1	7.16	<0.521	
SILVER, TOTAL UG/G	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521		
VANADIUM, TOTAL UG/G	8.44	26.9	16.0	19.5	21.5	17.1	19.3	17.5	8.30	
ARSENIC UG/G	0.619	0.389	0.667	0.900	0.570	0.651	0.846	1.00	0.555	

.

_ - -

- --

_

_

-

; ,

-

---------_ _ --_ ------_ ---_ -

FUATION PROFILE 1 3	Clence &	Engineering DATE 12/07/93 STATUS :	PAGE 22
PROJECT NUMBER			
FIELD GROUP	THIN	PROJECT MANAGER MICHAEL WALSH	
		LAB COORDINATOR MICHAEL NALSH	

-

•

•

SAMPLE ID'S Parameters Units	DC105002 FTWIN 102	DC11SO01 FIWIN 103	DC11SO02 FTWIN 104	DC9SO01 PTWIN 105	DC9SO01 FTWIN 109	DC9SOO2 FTWIN 106	DC8SO01 FIWIN 107	DC8SO02 FTWIN 108	DBASOO2 PTWIN 73
COLLECTION DATE: COLLECTION TIME:	11/18/93 15:30	11/18/93 15:40	11/18/93 15:45	11/18/93 15:50	11/18/93 15:50	11/18/93 15:55	11/18/93 16:00	11/18/93 16:05	11/18/93 16:10
LEAD DG/G	7.03	5.97	6.96	11.0	8.76	7.90	11.2	8.27	2.49
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLIUM UG/G	<0.153	0.204	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153
MERCURY, SED UG/G-DRY	0.043	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027
MOISTURE	10.6	15.8	14.8	17.0	17.2	17.1	23.6	11.9	11.2

-

 \sim

 $\overline{}$

 $\overline{}$

-

Environmental Science &	Engineering DATE 12/07/93 STATUS :	PAGE
PROJECT NUMBER 7936033G	0201 PROJECT NAME ERM-FT. WINGATE	
FIELD GROUP FIWIN	PROJECT MANAGER MICHAEL WALSH	
	LAB COORDINATOR MICHAEL WALSH	

SAMPLE ID'S Parameters Units	DC75001 FTWIN 110	DC75002 PTWIN 111	DBASO08 FIWIN 74	DC6SO01 FTWIN 112	DC6SO02 FTWIN 113	DBASO01 FTWIN 75	DBASO07 FTWIN 76	BGASO07 PTWIN 115	BGASO07 FTWIN 116	
COLLECTION DATE: COLLECTION TIME:	11/18/93 16:10	11/18/93 16:15	11/18/93 16:20	11/18/93 16:20	11/18/93 16:25	11/18/93 16:30	11/18/93 16:45	11/19/93 08:20	11/19/93 08:20	
HPOX	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
DG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
DG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 3nt	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	0.84	<0.28	0.58	<0.28	<0.28	
UG/G 4-Amino-2,6-DNT,SED	<0.250	<0.250	<0.250	<0.250	0.678	<0.250	0.518	<0.250	<0.250	
UG/G BARIUM, TOTAL	162	153	70.1	221	147	398	337	373	435	
UG/G CALCIUM, TOTAL	21000	34000	8020	24300	17000	59300	17900	47400	36700	
UG/G CADMIUM, TOTAL	1.17	1.65	<0.515	1.49	1.36	<0.515	1.25	3.25	2.10	
UG/G COBALT, TOTAL	2.93	3.35	0.863	4.28	4.08	3.22	4.28	3.19	3.88	
UG/G COPPER, TOTAL	186	126	16.3	118	130	14.0	37.4	627	367	
UG/G POTASSIUM, TOTAL	993	2160	400	1500	1440	1050	1920	1500	1620	
UG/G MAGNESIUM, TOTAL	1780	3170	484	2940	2340	24900	3440	2370	2800	
UG/G SODIUM, TOTAL	173	209	138	207	204	930	217	216	202	
UG/G ZINC, TOTAL	16.3	21.5	8.07	22.5	26.8	18.6	83.9	46.9	43.8	
UG/G MANGANESE, TOTAL	396	269	216	301	246	295	368	557	1050	
UG/G BERYLLIUM, TOTAL	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.709	0.736	0.660	
UG/G ANTIMONY, TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	
UG/G NICKEL, TOTAL	5.61	8.10	<1.54	9.84	7.97	4.37	7.44	7.41	12.0	
UG/G ALUMINUM, TOTAL	3820	6300	1340	6890	6500	5060	9660	5930	7970	
OG/G						5850	10500	4550	8340	
IRON, TOTAL UG/G	3310	5580	2000	6030	8460			9.71	17.5	
CHROMIUM, TOTAL UG/G	9.04	11.1	2.03	10.8	11.1	4.64	8.00		0.993	
SILVER, TOTAL UG/G	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	<0.521	2.73		
VANADIUM, TOTAL UG/G	15.0	13.8	5.95	18.8	19.5	12.6	13.9	9.68	16.5	
ARSENIC UG/G	0.556	3.69	0.512	0.916	0.999	1.24	0.517	1.03	0.508	

~-

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 24 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERM-PT. WINGATE PIELD GROUP FIWIN PROJECT MANAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID'S PARAMETERS UNITS	DC7S001 PTWIN 110	DC75002 FTNIN 111	DBASO08 FTWIN 74	DC6SO01 PIWIN 112	DC6SO02 FTWIN 113	DBASO01 PTNIN 75	DBASO07 FTWIN 76	BGASO07 PTNIN 115	BGASO07 FTWIN 116		
COLLECTION DATE: COLLECTION TIME:	11/18/93 16:10	11/18/93 16:15	11/18/93 16:20	11/18/93 16:20	11/18/93 16:25	11/18/93 16:30	11/18/93 16:45	11/19/93 08:20	11/19/93 08:20		
LEAD DG/G	7.30	17.0	1.71	8.67	6.90	6.68	35.7	15.7	29.0		
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202		
THALLIUM DG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153		
MERCURY, SED UG/G-DRY	<0.027	<0.027	<0.027	<0.027	<0.027	0.059	0.809	0.044	0.043		
MOISTURE	13.1	15.2	4.9	16.5	14.3	12.7	14.7	15.3	13.7		

•

-

, ,

_

Environmental Science &	Engineering DATE 12/07/93 STATUS	PAGE 25
PROJECT NUMBER 7936033G	0201 PROJECT NAME ERM-FT. WI	KGATE
FIELD GROUP FININ	PROJECT MANAGER MICHAEL WA	SH
	LAB COORDINATOR MICHAEL WAI	SH

SAMPLE ID'S Parameters Units	BGASOOS FTNIN 117	BGASO05 FTWIN 118	BGASO06 FTWIN 119	BGASO04 FTWIN 120	BGASO03 PTWIN 121	BGASO01 FTWIN 122	BGASO02 FTWIN 123	RFSO23 FTNIN 124	RFSO24 FTWIN 125	
COLLECTION DATE: COLLECTION TIME:	11/19/93 08:25	11/19/93 08:40	11/19/93 08:45	11/19/93 08:50	11/19/93 08:55	11/19/93 09:00	11/19/93 09:10	11/19/93 09:35	11/19/93 09:40	
HPMCX	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	<0.947	
UG/G RDX	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	<0.323	0.936	<0.323	
UG/G 135TNB	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	<0.961	
UG/G 13DNB	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	<0.268	
UG/G NB	2.21	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	0.842	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.7 9	
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	<1.20	
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
DG/G 3NT	<1.31	<1.31	<1.31	<1. 31	<1.31	<1.31	<1.31	<1.31	<1.31	
UG/G 2-AMINO-4,6-DHT	0.63	0.43	<0.28	<0.28	<0.28	<0.28	<0.28	1.14	0.51	
UG/G 4-AMINO-2,6-DNT,SED	0.643	0.480	<0.250	<0.250	<0.250	<0.250	<0.250	1.43	0.716	
UG/G BARIUM, TOTAL	383	205	425	296	364	447	317	518	551	
UG/G CALCIUM, TOTAL	49200	17500	36700	23700	31800	46300	28600	23800	43400	
UG/G CADMIUM, TOTAL	1.22	2.26	1.28	<0.515	2.39	1.28	<0.515	2.28	2.69	
DG/G COBALT, TOTAL	3.25	3.97	3.68	3.47	4.09	4.18	46.7	3.50	4.80	
UG/G COPPER, TOTAL	140	174	317	114	685	171	195	70.1	77.5	
UG/G POTASSIUM, TOTAL	1100	1130	1440	1310	1510	1560	969	1530	2000	
UG/G MAGNESIUM, TOTAL	2360	1510	2960	2600	5650	3790	3190	3160	3820	
UG/G SODIUM, TOTAL	231	193	222	156	231	221	1380	195	302	
UG/G ZINC, TOTAL	57.1	407	71.7	294	112	109	43.9	118	160	
UG/G MANGANESE, TOTAL	493	321	470	385	412	654	9180	354	444	
UG/G BERYLLIUM, TOTAL	0.727	<0.500	<0.500	0.655	<0.500	0.779	0.710	<0.500	<0.500	
UG/G ANTIMONY, TOTAL	<41.3	<41.3	<41.3	<41.3	<41.3	<41.3	332	<41.3	<41.3	
UG/G NICKEL, TOTAL	5.99	7.21	23.5	5.80	17.7	8.62	48.4	6.41	7.86	
UG/G ALUMINUM, TOTAL	6220	4170	9970	7070	6920	8010	2790	6920	7650	
UG/G IRON, TOTAL	4800	16600	5330	7290	9220	9550	551000	9370	10200	
UG/G CHROMIUM, TOTAL	6.67	9.18	9.42	6.24	24.1	10.2	100.0	8.92	8.75	
UG/G SILVER, TOTAL	<0.521	<0.521	<0.521	<0.521	0.690	<0.521	<0.521	<0.521	<0.521	
UG/G VANADIUM, TOTAL	9.38	8.16	10.5	11.5	11.6	12.9	<1.77	11.4	13.5	
UG/G ARSENIC OG/G	1.42	3.61	0.948	8.48	1.04	0.956	0.766	1.22	1.35	

...

Environmental : PROJECT NOMBER	Science & Engin 7936033G 0201	neering DATE 12/07/93 STATUS : PROJECT NAMERM-FT. WINGATE	PAGE 26
FIELD GROUP	FTHIN	PROJECT MANAGER MICHAEL WALSH	
		LAB COORDINATOR MICHAEL WALSH	

SAMPLE ID'S PARAMETERS UNITS	BGASOD8 Finin 117	BGASO05 FTWIN 118	BGASO06 FTWIN 119	BGASO04 Fiwin 120	BGASO03 FTWIN 121	BGASO01 FTWIN 122	BGASO02 PTWIN 123	RFSO23 FTWIN 124	RFSO24 FTWIN 125
COLLECTION DATE: COLLECTION TIME:	11/19/93 08:25	11/19/93 08:40	11/19/93 08:45	11/19/93 08:50	11/19/93 08:55	11/19/93 09:00	11/19/93 09:10	11/19/93 09:35	11/19/93 09:40
LEAD DG/G	15.5	40.6	10.6	45.1	27.3	19.3	16.0	47.3	44.3
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202	<0.202
THALLION DG/G	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153	<0.153
MERCURY, SED DG/G-DRY	0.135	1.99	0.233	5.88	0.629	1.04	2.44	1.84	1.56
MOISTURE	14.2	11.4	12.6	12.0	14.8	20.5	17.4	14.5	17.7

-

-

,

	Environmental Science & Engineering DATE 12/07/93 STATUS : PAGE 1 PROJECT NUMBER 7936033G 0201 PROJECT NAME ERN-FT. VINGATE FIELD GROUP FTVIN PROJECT MANAGER MICHAEL WALSH FTVINW1 ALL LAB COORDINATOR MICHAEL WALSH									
64MB/ E 1516				FBLANK	FBLANK	FBLANK	FBLANK	FV/58	STSH01	
SAMPLE ID'S PARAMETERS UNITS	FBLANK FTVIN 18	FBLANK FTWIN 72	FBLANK FTVIN 100	FTWIN 114	FTVIN 157	FTWIN 158	FTVIN 159	FTVIN 164	FTWIN 165	
COLLECTION DATE:	11/17/93	11/18/93	11/18/93	11/18/93	11/19/93	11/19/93	11/19/93	11/19/93	11/19/93	
COLLECTION TIME:	12:10	15:40	15:00	16:30	12:05	12:10	12:15	12:40	12:50	
HPC	<0.563	<0.563	⊲0.563	<0.5 63	<0.563	<0.563	<0.563	<0.563	<0.563	
UG/L RDX UG/L	≪0.412	<0.412	⊲0.412	<0.412	<0.412	<0.412	<0.412	<0.412	<0.412	
135TNB	<0.425	<0.425	⊲0.425	<0.425	<0,425	<0.425	<0.425	<0.425	<0.425	
UG/L 130NS UG/L	<0.549	<0.549	<0.549	<0.549	<0.549	<0.549	<0.549	0,570	<0.549	
NB	<0.817	<0.817	<0,817	<0.817	<0.817	<0.817	<0.817	<0.817	<0.817	
UG/L TETRYL	<1.18	<1.18	<1.18	<1.18	<1.18	<1.18	<1.18	<1.18	<1.18	
UG/L 246TNT	<0.451	<0.451	<0.451	≪0.451	⊲0.451	<0.451	⊲0.451	1.97	<0.451	
UG/L 260NT	<0.260	⊲0.260	<0.260	<0.260	<0.260	<0.260	<0.260	<0.260	<0.260	
UG/L 24DNT	<0.260	<0.260	<0.260	⊲0.260	<0.260	<0.260	<0.260	<0.260	<0.260	
UG/L 2NT	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/L 4NT	<0.714	<0.714	<0.714	<0.714	<0.714	<0.714	<0.714	<0.714	<0.714	
UG/L 3nt	<0.805	<0.805	<0.805	<0.805	<0.805	<0.805	<0.805	<0.805	<0.805	
UG/L 2-AMINO-4,6-DNT	<0.25	<0.25	-0.25	⊲0.25	<0.25	<0.25	<0.25	<0.25	<0.25	
UG/L 4-AMINO-2,6-DNT	<0.250	<0.250	⊲0.250	40.250	<0.250	<0.250	<0.250	3.16	<0.250	
LIG/L BARIUM, TOTAL	3.00	<3.00	<3.00	<3.00	<3.00	<3.00	ব.00	261	126	
UG/L CALCIUM, TOTAL	167	56.8	61.7	74.9	81.5	89.9	97.4	223000	75600	
UG/L CADHIUM, TOTAL	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	
UG/L COBALT, TOTAL	<10.8	<10.8	<10.8	<10.8	<10.8	<10.8	<10.8	24.6	<10.8	
UG/L COPPER, TOTAL	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	56.1	10.9	
UG/L POTASSIUM, TOTAL	<1080	<1080	<1080	<1080	<1080	<1080	<1080	5930	10600	
UG/L MAGNESIUM, TOTAL	<89.2	<89.2	<89.2	<89.2	<89.2	-89.2	<89.2	62100	35800	
UG/L SODIUM, TOTAL	ح ة،	حک ا	<251	<251	<251	< 251	<251	609000	420000	
UG/L ZINC, TOTAL	<20.0	<20.0	<20.0	<0.0	<20.0	<20.0	<20.0	331	38.4	
UG/L MANGANESE, TOTAL	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	3040	1410	
UG/L BERYLLIUM, TOTAL	<2.00	<2.00	≪.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	
UG/L ANT INONY, TOTAL	<25.1	<25.1	<25.1	<25.1	<25.1	<25.1	<25.1	<25.1	<25.1	
UG/L NICKEL,TOTAL	<23.3	<23.3	<23.3	<23.3	<23.3	<23.3	<23.3	439	<23.3	
UG/L ALUNINUN, TOTAL	<200	<200	<200	<200	<200	<200	<200	5740	<200	
UG/L IRON,TOTAL	<112	<112	<112	<112	<112	<112	<112	6070	356	`
UG/L CHRONIUN, TOTAL	<22.4	<22.4	<22.4	<22.4	<22.4	<22.4	<22.4	27.8	<22.4	
UG/L SILVER,TOTAL	<10.00	<10 .00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	<10.00	
UG/L VANADIUM, TOTAL	<7.62	<7.62	<7.62	<7.62	<7 .62	<7.62	<7.62	13.3	<7.62	
UG/L ARSENIC	3.36	2.81	2.16	<2.00	<2.00	<2.00	<2.00	5.55	2.90	
UG/L										

-

_ _ _ -_ --------_ _ --_ -

	Environ PROJECT FIELD GR	NUMBER 793	ince & Engi 160336 0201 111	PROJEC	T NAME	/93 STATUS ERM-FT, VI NICHAEL W	NGATE	NGE 2	
	FTVENU	ALL	•		DORD INATOR	MICHAEL W	LSH		
SAMPLE ID'S	FBLANK	FBLANK	FELANK	FELANK	FBLANK	FBLANK	FBLANK	F\/38	BTSU01
PARAMETERS UNITS	FTWIN 18	FTVIN 72	FTWIN 100	FTWIN 114	FTVIN 157	FTVIN 158	FTWIN 159	FTWIN 164	FTWIN 165
COLLECTION DATE: COLLECTION TIME:	11/17/93 12:10	11/1 8/93 15:40	11/18/93 15:00	11/18/93 16:30	11/19/9 3 12:05	11/19/93 12:10	11/19/93 12:15	11/19/93 12:40	11/19/93 12:50
LEAD	<4.54	4.93	<4.54	-4.54	-4.54	<4.54	<4.54	<4.54	<4.54
UG/L SELENIUM	Q.54	<2.54	<2.54	<2.54	<2.54	~2.54	<2.54	<2.54	<2.54
UG/L THALLIUN	<4.14	<4.14	<4.14	~ 4.14	<4.14	<4.16	-4.14	<4.14	<4.14
UG/L MERCURY, TOTAL	<0.500	<0.500	⊲0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0,500
UG/L BENZENE	NRG	NRQ	NRG	NRQ	NRQ	NRQ	NRQ	<1.92	<1.92
UG/L TOLUENE	MRQ	NRQ	KRQ	NRQ	NRG	NRQ	NRQ	<2.10	<2.10
UG/L ETHYLBENZENE	NRQ	NRQ	NRQ	NRG	NRQ	NRQ	NRQ	<0.62	<0.62
UG/L N-XYLENE	MRG	MRQ	KRQ	NRQ	NRQ	NRQ	NRQ	<1.04	<1.04
UG/L 0-AND/OR-P XYLENE	NRQ	NRQ	NRQ	KRQ	MRQ	NRQ	NRG	<1.34	<1.34
UG/L METHYLENE CHLORIDE	NRQ	NRQ	KRQ	NRQ	NRQ	NRQ	NRQ	<2.48	2.48
UG/L 1,1-DICHLOROETHYLENE	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	<1.85	<1.85
UG/L 1,1-DICHLOROETHANE	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	<1.93	<1.93
UG/L T-1,2-DICHLOROETHENE	NRQ	NRQ	KRQ	NRQ	NRO	NRG	NRQ	<1.75	<1.75
UG/L CHLOROFORM	NRQ	NRQ	NRQ	NRG	NRQ	XRQ	NRQ	<1.88	<1.88
UG/L 1,2-DICHLOROETHANE	NRQ	NRQ	NRQ	NRQ	KRQ	NRQ	NRQ	<2.07	<2.07
UG/L 1,1,1-TRICHL'ETHANE	NRQ	NRQ	NRG	DRK	NRQ	NRQ	NRQ	<1.09	<1.09
UG/L CARBON TETRACHLORIDE	NRQ	NRQ	NRG	NRQ	NRQ	NRQ	NRQ	<1.69	<1.69
UG/L TRICHLOROETHENE	NRQ	NRQ	NRG	NRQ	NRQ	NRQ	NRQ	<1.31	<1.31
UG/L 1,1,2-TRICHLOROETHANE	NRQ	NRQ	NRQ	NRQ	NRG	NRQ	NRQ	<1.63	<1.63
UG/L TETRACHLOROETHENE	NRQ	NRQ	NRQ	NRG	NRQ	NRQ	NRQ	<2.76	<2.76
UG/L CHLOROBENZENE	NRG	NRQ	HRQ	XRQ	NRQ	NRG	NRQ	<1.36	<1.36
UG/L NITRITE	NRQ	NRG	NRG	NRG	XRQ	KRQ	NRQ	<60.9	<609
UG/L ' NITRATE	NRQ	MRQ	MRG	MRQ	NRG	KRQ	MRQ	<113	<1130
UG/L FLUORIDE	icro	NRQ.	NRQ	NRG	MRQ	KRQ	NRQ	<1000.0	<1000.0
UG/L CHLORIDE	NRG	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	214700	121900
UG/L SULFATE	NRG	NRQ	NRQ	NRQ	NRG	NRQ	NRQ	615200	353700
UG/L PHOSPHORUS, T	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	<10.00	<10.00
ÚG/L PHOSPHATE-ORTHO	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	NRQ	288	33.3
UG/L TDS	NRQ	NRQ	NRQ	WRQ	NRQ	MRQ	NRQ	1870000	1230000
UG/L						F Uth			: 20000

.

NRQ = NOT REQUESTED FOR ANALYSIS

)

		MBER 79360336 020"	Ineering DATE 12/07/9 PROJECT NAME E PROJECT NANAGER N LAB COORDINATOR N	RM-FT, VINGATE	PAGE 3
SAMPLE ID'S PARAMETERS	BIPFBO1 FTWIN				
UNI	TS 178				
COLLECTION DAT COLLECTION TIM					
HINCK	⊲.563				
UG/I RDX	<0.412				
UG/1 135TN8	L ⊲0.425				
UG/1 13DNB	L <0.549				
UG/I					
UG/I					
UG/1 246TNT					
UG/1 26DNT					
UG/1 24DNT					
UG/1			÷.		
UG/I					
UG/					
UG/1 2-AMINO-4,6-D	L				
UG/ 4-ANINO-2,6-D	L				
HGZ					
BARIUM, TOTAL UG/	L				
CALCIUN, TOTAL	L				
CADHIUN, TOTAL	L				
COBALT, TOTAL UG/	<10.8 L				
COPPER, TOTAL UG/					
POTASSIUM, TOT	L				
MAGNESIUM, TOT. UG/	L				
SODIUM, TOTAL UG/	ι ⁽ 251				
ZINC, TOTAL UG/	<20.0				
MANGANESE, TOT UG/	1				
BERYLLIUM, TOT UG/	1				
ANTIMONY, TOTA	L <25.1 'L				
NICKEL, TOTAL	< 23.3				
ALUMINUH, TOTA	L <200				
IRON, TOTAL	<112				
CHROMIUM, TOTA	L <22.4				
SILVER, TOTAL	<10.00				
VANADIUM, TOTA UG/	L < 7.62				
ARSENIC UG/	<2.00				
J4/					

-

-* ---------بي. ----_ -

-

-

	Environmental PROJECT NUMBER FIELD GROUP FTVINNI	7936033G 0 FTVIN ALL	201 PROJECT NAME EI PROJECT NAMAGER N LAS COORDINATOR N	
SAMPLE ID'S PARAMETERS	BIPFB01 FTVIN			
UNITS	178			
COLLECTION DATE: COLLECTION TIME:	11/18/93 10:05			
LEAD UG/L	33.8			
SELENIUM UG/L	2.54			
THALLIUM UG/L	<4.14			
MERCURY, TOTAL UG/L	⊲0.500			
BENZENE UG/L	MRQ			
TOLUENE UG/L	NRQ			
ETHYLBENZENE UG/L	NRQ			
H-XYLEKE UG/L	NRQ			
0-AND/OR-P XYLENE UG/L METKYLENE CHLORIDE	NRQ NRQ		<i>.</i> :	
UG/L 1,1-DICHLOROETHYLENE	NRQ			
UG/L 1,1-DICHLORGETHANE	NRG			
UG/L T-1,2-DICHLOROETHENE	NRQ			
UG/L CHLOROFORM	NRQ			
UG/L 1,2-DICHLOROETHANE	NRQ			
UG/L 1,1,1-TRICHL'ETHANE	NRQ			
UG/L CARBON TETRACHLORIDE UG/L	NRQ			
TRICHLOROETNENE UG/L	NRQ			
1,1,2-TRICHLOROETHANE UG/L	NRQ			
TETRACHLOROETHENE UG/L	MRQ			
CHLOROBENZENE UG/L	NRQ			
NITRITE 4 UG/L	MRQ			
UG/L	NRQ			
FLUORIDE UG/L	9MQ			
CHLORIDE UG/L	XRQ			
UG/L UG/L PHOSPHORUS, T	NR9 NR9			
UG/L DHOSPHATE-ORTHO	NRQ			
UG/L TDS	KRQ			
UG/L	2 bron			

.

.....

-~ ~ -~ $\overline{}$ -_ -_ **~**-- $\overline{}$ - \sim $\overline{}$ $\overline{}$ \sim _ \sim $\overline{}$ -

 $\overline{}$

G	Environmental Science & Engin PROJECT NUMBER 79360336 0201 FIELD GROUP FIVIN FTWINS3 ALL			PROJECT	WOR'ING DATE 12/08/93 STATUS : PROJECT NAME ERM-FT. VIN PROJECT NAMAGER NICHAEL WAL LAS COORDINATOR NICHAEL WAL			IGATE LSN			
SAMPLE ID'S PARANETERS UNITS	BIP S0090 FTVIN 173	BIPSO10 FTWIN 174	BIPSO11 FTVIN 175	BIPSO11D FTVIN 176	RF5001 FTVIN 132	RF9002 FTVIN 133	RFS003 FTWIN 134	RF8004 FTVIN 135	RFS005 FTVIN 136		
COLLECTION DATE: COLLECTION TIME:	11/18/93 09:05	11/18/93 09:15	11/18/93 09:25	11/18/93 09:25	11/19/93 08:35	11/19/93 08:40	11/19/93 08:55	11/19/93 09:05	11/19/93 09:10		
HICK	<0.947	⊲0.947	⊲0.947	<0.947	1030	1960	⊲0.947	<0.947	<0,947		
UG/G RDX	0.959	⊲.323	⊲0.323	⊲0.323	5370	10900	2.13	⊲0.323	⊲.323		
UG/G 135TNB	⊲0.961	<0.961	⊲0.961	⊲0.961	38.8	48.1	⊲0.961	<0.961	40.961		
UG/G 13DNB	<0.268	<0.268	⊲0.268	<0.268	<0,268	⊲0.268	<0.268	<0.268	<0.268		
UG/G NB	<0.283	<0.283	<0.283	<0.283	<0,283	<0.283	<0.283	0.428	<0.283		
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79		
UG/G 246TNT	<1.20	<1.20	<1.20	<1.20	4480	3840	<1.20	<1.20	<1.20		
UG/G 26DNT	<1.17	<1.17	<1.17	<1.17	<1.17	3.71	<1.17	<1.17	<1.17		
UG/G 24DNT	<1.09	<1.09	<1.09	<1.09	9.21	10.3	<1.09	<1.09	<1.09		
UG/G 2NT	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69		
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17		
UG/G 3NT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31		
UG/G 2-ANINO-4,6-DNT	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	0.73	0.47		
UG/G 4-AMINO-2,6-DNT, SED	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	<0.250	0.686	0.455		
UG/G BARIUN, TOTAL	51.9	88.6	36.0	45.4	267	299	368	255	222		
UG/G CALCIUM, TOTAL	14500	1830	1220	1610	23000	44200	14600	29900	19800		
UG/G CADHIUM, TOTAL	68.8	15.1	⊲0.515	≪0.515	2.57	7.35	237	97.3	<0.515		
UG/G COBALT, TOTAL	2.36	3.19	1.58	2.10	2.75	3.76	15.5	11.0	2.83		
UG/G COPPER, TOTAL	67.2	22.2	5.92	12.8	465	141	21900	3950	81.6		
UG/G POTASSIUN, TOTAL	824	960	611	849	1890	1240	1620	1800	960		
UG/G MAGNESIUN, TOTAL	1100	1060	509	684	2020	2580	1740	2860	2210		
UG/G SODIUM, TOTAL	165	143	126	127	254	256	435	412	195		
UG/G ZINC,TOTAL	32.4	31.2	26.5	32.1	37.5	i 123	27700	7680	59.9		
UG/G MANGANESE, TOTAL	130	164	54.0		348		1310	701	173		
UG/G BERYLLIUM, TOTAL	<0.500		<0.500				<0.500	<0.500	<0.500		
UG/G ANTIMONY, TOTAL	-41.3		<41.3			_	89.9	57.8	<41.3		
UG/G NICKEL,TOTAL	4.71		2.40			8.40	94.0	46.3	5.58		
UG/G	2920		2370) 15100	113000	30900	5790		
ALUNINUM, TOTAL UG/G	3430						54300	71600	4660		
IRON, TOTAL UG/G	6.01								6.51		
CHROMIUM, TOTAL UG/G	<0.521		<0.521					100.0	<0.521		
SILVER, TOTAL UG/G	6.91							13.1	11.9		
VANADIUM, TOTAL UG/G		_									
ARSENIC UG/G	0.736	1.46	¥.373								

	Environmental Science & Engineering DATE 12/08/93 STATUS : PAGE 2 PROJECT NUMBER 79360336 0201 PROJECT NAME ERN-FT. WINGATE FIELD GROUP FTVIN PROJECT NAMAGER MICHAEL WALSH FTVINS3 ALL LAB COORDINATOR MICHAEL WALSH									
SAMPLE ID'S PARAMETERS UNITS	81 75009 0 FTWIN 173	BIPSO10 FTVIN 174	BIPSO11 FTVIN 175	81950110 FTW1N 176	RF9001 FTVIN 132	RF9002 FTVIN 133	RF9003 FTW18 134	RFSOO4 FTVIN 135	RFSO05 FTWIN 136	
COLLECTION DATE: COLLECTION TIME:	11/18/93 09:05	11/1 8/93 09:15	11/18/93 09:25	11/18/93 09:25	11/19/93 08:35	11/19/93 08:40	11/19/93 08:55	11/19/93 09:05	11/19/93 09:10	
LEAD UG/G	4.08	6.44	2.47	7.55	8.50	11.4	4030	573	11.1	
SELENIUN UG/G	<0.202	⊲.202	<0.202	⊲.202	⊲.202	⊲0.202	0.246	<0.202	⊲0.202	
THALLIUM UG/G	40.153	<0.153	0.238	4.153	⊲.153	40.153	⊲0.153	40.153	40.153	
MERCURY, SED	<0.027	<0.027	4 0.027	<0.027	<0.027	⊲0.027	⊲0.027	<0.027	<0.027	
NOISTURE SHET VT	8.3	13.4	10.7	14.8	11.7	13.3	19.1	14.5	13.5	

•

.

 \sim

 $\overline{}$

-

		HJNBER 793	60336 02 01 In	PROJEC	T NAME T NAMAGER	193 STATUS ERH-FT. VI HICHAEL VA HICHAEL VA	NGATË LSN	GE 3		
SAMPLE ID'S Parameters	RF9006	RF\$007	RF 9006	RF 9009	RF\$010	RF3010	RF5011	RFS022	RF\$022	
UNITS	FTWIN 137	FTVIN 138	FTVIN 139	FTWIN 140	FTVIN 141	FTVIN 142	FTVIN 143	FTWIN 126	FTWIN 128	
COLLECTION DATE: COLLECTION TIME:	11/19/93 09:15	11/19/93 09:20	11/19 /93 09:25	11/19/ 93 09:25	11/19/93 09:30	11/1 9/93 09:30	11/19/93 09:35	11/ 19/93 09:45	11/19/93 09:45	
NMCX UG/G	99. 7	11.0	12.2	1.59	4.96	5.61	⊲0.947	4.40	4.77	
RDX UG/G	229	12.8	12.7	⊲.323	1.54	2.09	1.00	11.5	9.90	
135TNB UG/G	7.18	5.59	⊲0.961	⊲0.961	40.96 1	4.961	<0.961	1.86	1.29	
13DNB	1.08	<0.268	⊲0.268	⊲0.268	<0.268	<0.268	<0.268	0.331	<0.268	
UG/G NB	<0.283	<0.283	⊲0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	
UG/G TETRYL	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	
UG/G 246TNT	68.3	8.10	<1.20	<1.20	2.97	4.29	<1.20	<1.20	<1.20	
UG/G 26DNT	8.88	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G 24DNT	159	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	
UG/G 2xit	<1.69	<1.69	<1 .69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	
UG/G 4NT	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	
UG/G SNT	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	< 1.3 1	<1.31	
UG/G 2-ANINO-4,6-DNT	14.1	2.11	1.17	<0.28	7.61	7.89	≪0.28	0.35	0.49	
UG/G 4-AMINO-2,6-DNT,SED	<0.250	2.18	0.679	⊲0.250	4.97	5.03	⊲.250	0.551	0.773	
UG/G BARIUN, TOTAL	1110	956	2140	42900	5340	2480	217	306	413	
UG/G CALCIUN, TOTAL	20000	36500	42100	11200	31400	55700	16900	39100	53800	
UG/G CADHILM, TOTAL	1.73	1.82	2.39	16.6	3.08	3.21	0.774	20.1	19.8	
UG/G COBALT,TOTAL	4.29	3.50	5.72	31.3	6.94	4.20	3.51	9.93	6.04	
UG/G COPPER,TOTAL	915	180	321	1180	267	304	96.3	182	160	
UG/G POTASSIUM, TOTAL	% 7	938	1960	<119	95 0	852	1750	1770	2240	
UG/G MAGNESIUM,TOTAL	3560	8730	6860	186000	5140	18300	2550	3290	4530	
UG/G SODIUM, TOTAL	406	383	294	863	555	649	208	481	440	
UG/G ZINC, TOTAL	119	116	91.4	4220	289	274	53.0	237	220	
UG/G NANGANESE, TOTAL	256	356	506	179	368	380	252	518	494	
UG/G BERYLLIUM, TOTAL	⊲0.500	≪0.500	0.706	⊲0.500	<0.500	<0.500	⊲0.500	<0.500	<0.500	
UG/G ANTINONY, TOTAL	-41.3	-41.3	41.3	84.7	-41.3	-41.3	-41.3	-41.3	«41.3	
UG/G NICKEL,TOTAL	21.2	8.00	10.00	21.6	7.94	7.32	5.26	23.9	14.5	
UG/G ALUMINUN, TOTAL	64200	60500	11500	65700	12100	17700	7020	7080	7640	
UG/G IRON, TOTAL	5590	4490	11300	13200	6800	4980	7920	42200	27300	
UG/G CHRONIUM, TOTAL	37.9	8.43	15.4	55.3	10.9	11.2	8.15	24.9	28.8	
UG/G SILVER, TOTAL	<0.52 1	<0.521	1.13	⊲0.521	0.857	<0.521	≪0.521	≪0.521	40.521	
UG/G VANADIUN, TOTAL	17.2	18.3	15.6	4.34	10.6	10.3	13.3	13.4	15.6	
UG/G ARSENIC	<1.05	<1.05	0.876	75.5	1.45	0.926	1.85	4.43	0.943	
UG/G										

	Environmental Science & Engineering DATE 12/08/93 STATUS : PAGE 4 PROJECT NUMBER 7936033G 0201 PROJECT NAME ENH-FT. VINGATE FIELD GROUP FTVIN PROJECT MANAGER MICHAEL WALSH FTVINS3 ALL LAB COORDINATOR MICHAEL WALSH										
SAMPLE ID'5 PARAMETERS UNITS	RF\$006 FTWIN 137	RF\$007 FTVIN 138	RF9008 FTWIN 139	RFSCO9 FTVIN 140	RFSO10 FTVIN 141	RF8010 FTVIN 142	RF9011 FTVIN 143	RFS022 FTVIN 126	RF9022 FTV1N 128		
COLLECTION DATE: COLLECTION TIME:	11/19/93 09:15	11/19/93 09:20	11/19/93 09:25	11/19/93 09:25	11/19/93 09:30	11/19/93 09:30	11/19/93 09:35	11/19/93 09:45	11/19/93 09:45		
LEAD UG/G	370	27.9	20.8	~ 4.2	55.8	29.6	17.7	162	185		
SELENIUM UG/G	⊲0.202	<0.202	<0.202	⊲0.202	<0.202	<0.202	<0.202	<0.202	⊲0.202		
TRALLIUN UG/G	⊲0.153	⊲0.153	40,153	0.471	⊲0.153	⊲0.153	<0.153	<0.153	4 0.153		
HERCURY, SED	≪0.027	<0.027	0.034	<0.027	⊲0.027	⊲0.027	<0.027	0.788	0,908		
UG/G-DRY NOISTURE XWET VT	11.9	25.1	16.4	22.6	13.3	13.3	10.9	18.5	22.5		

•

)))

~

)))

_ L $\overline{}$ - $\overline{}$ \sim $\overline{}$ \sim L L --_ _ $\overline{}$ -

			njaber 793 Cup fili	60336 0201 1N	INDERING DATE 12/08/93 STATUS : PAGE 5 PROJECT NAME ERN-PT. WINGATE PROJECT NAMAGER MICHAEL WALSH LAB COORDINATOR MICHAEL WALSH					
		FTVINS3	ALL			ORDINATOR	NICHAEL WA	LSN		
SAMPLE ID		RF\$021	RFS012	RFS020	RFS019	RFS013 FTVIN	RFS018 FTVIN	RFS014 FTWIN	RFS015 FTVIN	RFS016 FTWIN
PARAMETER	S UNITS	FTWIN 127	FTWIN 144	FTV18 129	FTWIN 130	145	131	146	147	148
COLLECTIO		11/19/93 09:50	11/19/93 09:50	11/19/93 09:52	11/19/93 09:55	11/19/93 09:55	11/19/93 10:00	11/19 /93 10:00	11/19 /93 10:05	11/1 9/93 10:07
HINC		704	170	243	157	38.1	<0.947	672	190	665
RDX	UG/G	3740	1080	1150	971	50.3	⊲.32 3	4590	3030	4960
135TN8	UG/G	11.0	17.2	1.39	5.31	9.02	⊲0,961	328	5.39	377
130N8	UG/G	<0.268	0.572	<0.268	0.348	1.53	<0.268	13.9	<0.268	5.94
NB	UG/G	⊲0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283	<0.283
TETRYL	UG/G	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1.79	<1 .7 9
246TNT	UG/G	47.6	23.0	4.43	15.9	2.26	<1.20	303	7.84	1100
26DWT	UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	2.37
240NT	UG/G	<1.09	2.13	<1.09	<1.09	<1.09	<1.09	13.5	<1.09	14.8
2NT	UG/G	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69	<1.69
401	UG/G	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
	UG/G	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31
SNT	UG/G		10.6	14.3	8.29	1.34	<0.28	12.2	5.27	8.31
2-ANINO-4	UG/G	4.89		11.4	5.63	2.04	<0.250	<0.250	4,94	<0.250
	UG/G	<0.250	8.05			319	437	297	396	238
BARIUN,TO	UG/G	685	734	363	596			23200	24300	23700
CALCIUN,T	OTAL UG/G	23400	21900	22100	20600	18600	17300			2.87
CADHIUN,T	'OTAL UG/G	1.50	2.59	2.45	1.73	3.31	2.01	⊲.515	1.45	
COBALT, TO	UG/G	5.73	8.26	3.27	4,18	10.3	3.14	5.31	7.14	4.74
COPPER, TO		27.1	247	125	34.9	186	39.2	7.53	89.0	7.90
POTASSIU	•	1500	1710	1960	1040	2490	1220	1570	1440	1640
MAGNESIUM	I, TOTAL	4760	3190	2900	2590	3100	2410	3900	3960	3560
SCD IUN, TO		248	263	206	197	373	205	287	303	347
ZINC, TOTA		89.9	181	92.2	110	431	59.3	35.1	89.8	33.6
MANGANES		335	414	314	289	600	235	283	387	254
BERYLLIU		⊲0.500	0.654	<0,500	<0.500	<0.500	⊲0.500	0.783	0,656	0.621
ANT INONY,	UG/G TOTAL	<41.3	-41.3	<41.3	<41.3	-41.3	-41.3	<41.3	-41.3	<41.3
NICKEL, TO	UG/G	8.28	18.2	6.02	5.86	30.7	5.29	7.00	18.5	5.80
ALUNINUN	UG/G	9310	8320	5810	7260	8860	9320	9280	8570	8420
IRON, TOT	UG/G	15500	39600	7150			7550	10500	29400	9510
CHRONIUM	UG/G	11.5	16.5	7.38			6.06	8.10	11.7	7.47
SILVER, T	UG/G	<0.521	<0.521	4.521						
-	UG/G	14.5	14.0							
VANADIUM	UG/G									
ARSENIC	UG/G	1.40	5.94	V./ <i>C</i> /	0.700	9.79	,			

-

-

-

-

_.

- ----

_ ___

	Environmental Science & Engineering DATE 12/08/93 STATUS : PAGE 6 PROJECT HUMBER 79360336 0201 PROJECT HAME ERH-FT. WINGATE FIELD GROUP FTWIN PROJECT MANAGER MICHAEL WALSH FTWINS3 ALL LAB COORDINATOR MICHAEL WALSH								
SAMPLE ID'S Parameters Units	RF8021 FTWIN 127	RF9012 FTV1N 144	RF\$020 FTVIN 129	RF\$019 FTVIN 130	RFSO13 FTVIN 145	RF9018 FTV1N 131	RFS014 FTWIN 146	RF\$015 FTW1N 147	rfs016 Ftvin 148
COLLECTION DATE: COLLECTION TIME:	11/19/93 09:50	11/19/93 09:50	11/19/93 09:52	11/19/93 09:55	11/19/ 93 09:55	11/19/93 10:00	11/19/93 10:00	11/19/93 10:05	11/19/93 10:07
LEAD UG/G	105	95.7	26.2	24.9	102	5.80	6.03	196	6.07
SELENIUM UG/G	<0.202	<0.202	<0.202	<0.202	⊲.202	⊲0.202	⊲0.202	⊲0.202	<0.202
THALLIUM UG/G	40.153	0.184	4 .153	4 .153	4.153	4 .153	0.201	4.153	⊲.153
MERCURY, SED UG/G-DRY	0.108	0.1 59	0.494	0.558	0.232	0.224	40.027	0.043	⊲0.027
NDISTURE XWET WT	13.4	11.0	15.6	14.3	14.5	14.5	10.3	13.1	7.7

_

_ _

-

--

-_

-_

-

_

.

	S001 ARY S001 TVIN FTVIN 150 151 9/93 11/19/93 2:15 12:15 .947 391	ARY 5002 FTW1N 152 11/19/93 12:20	ARYSOD3 FTW18 153 11/19/93	ARY9006 FTVIN 156	ARY9004 FTW18 154	ARY 5005 FTVIN 155
UNITS 149	150 151 9/93 11/19/93 2:15 12:15	152 11/19/93	153			
	9/93 11/19/93 2:15 12:15		11/19/93			
	.947 391		12:30	11/19/93 12:30	11/1 9/93 12:40	11/19 /93 12:45
NIOC 173 <0		<0.947	⊲0.947	⊲0.947	⊲0.947	<0.947
	.323 2480	⊲.323	⊲0.323	⊲. <u>32</u> 3	⊲.323	⊲.323
	.961 <0.961	⊲0.961	⊲0.961	⊲0.961	⊲0.961	<0.961
UG/G 130N8 1.32 <0	.268 <0.268	<0.268	<0.268	⊲0.268	<0.268	<0.268
UG/G NS <0.283 <0	.283 <0.283	<0.283	<0.283	° ⊲0.25 3	<0.283	<0.283
UG/G TETRYL <1.79 <	1.79 <1.79	<1.79	<1.79	<1.79	<1.79	<1.79
UG/G 246TNT 162 <	1.20 5.83	<1.20	<1.20	<1.20	<1.20	<1.20
UG/G 26DNT <1.17 <	1.17 <1.17	<1.17	<1.17	<1.17	<1.17	<1.17
UG/6 24DNT <1.09 <	:1.09 <1.09	<1.09	<1.09	<1.09	<1.09	<1.09
UG/G 2NT <1.69 <	:1.69 <1.69	<1.69	<1.69	<1.69	<1.69	<1.69
UG/G 4NT <1.17 <	1.17 <1.17	<1.17	<1.17	<1.17	<1.17	<1,17
UG/G 3NT <1.31 <	1.31 <1.31	<1.31	<1.31	<1.31	<1.31	<1.31
UG/G 2-AMINO-4,6-DNT 9.85	0.28 4.37	<0.28	⊲.28	<0.28	<0.28	<0.28
UG/G 4-AN1NO-2,6-DNT,SED <0.250 <0	.250 2.76		⊲0.250	⊲0.250	<0.250	<0.250
UG/G BARIUN,TOTAL 616	56.7 75.9	108	525	124	371	126
	10900 11900	9080	17200	15000	39300	13900
).515 <0.515	i 1 .01	1.24	⊲0,515	1.03	<0.515
UG/G COBALT,TOTAL 7.48	1.58 1.68	3 2.10	3.46	3.14	4.84	2.53
UG/G COPPER, TOTAL 1980	12.3 47.8	55.0	341	12.1	103	16.3
UG/G POTASSIUM, TOTAL 2030	489 697	2 966	1120	1170	2080	973
UG/G KAGNESIUM, TOTAL 4100	792 931	1820	2110	2000	4370	1590
UG/G SOD I UN, TOTAL 442	121 143	2 181	254	227	291	271
UG/G ZINC,TOTAL 128	10.3 10.7	7 43.9	56.6	13.9	32.6	12.3
UG/G MANGANESE, TOTAL 485	148 299	9 177	255	233	374	221
UG/G BERYLLIUM, TOTAL 0.733 <	0.500 <0.50	⊲.500	⊲0.500	<0.500	0.629	<0.500
UG/G ANTINONY,TOTAL <41.3	41.3 41.1	3 <41.3	<41.3	~1.3	41.3	<41.3
UG/G NICKEL,TOTAL 34.8	<1.54 2.7	5 3.43	10.7	5.10	9.33	3.72
UG/G ALLMINUM, TOTAL 38900	1730 250	0 4150	5110	4430	9930	3450
UG/G IRON, TOTAL 16300	2510 338	0 5390	7070	6040	\$150	3140
CHRCHIUN, TOTAL 31.9	2.56 3.8	7 6.51	23.3	5.54		
	0.521 <0.52	1 40.521	0.954	⊲0.521	⊲0.521	⊲.521
VANADIUN, TOTAL 24.7	7.30 9.7	7 8.9	8.85	13.1	39.5	
UG/G ARSENIC 1.18 UG/G	0.768 0.87	0.696	1.41	2.09	0.727	1.09

	PROJECT	Environmental Science & Engineering DATE 12/08/93 STATUS : PROJECT HAMBER 79360336 0201 PROJECT HAME EIN-FT. VINGATE FIELD GROUP FTVIN PROJECT MANAGER MICHAEL WALSH FTVINES ALL LAB COORDINATOR MICHAEL WALSH						
SAMPLE ID'S PARAMETERS UNITS	RF8017 FTVIN 149	ARY9001 FTV18 150	ARY9001 FTV18 151	ARYSOOZ FTVIN 152	ARY9003 FTWIN 153	ARY9006 FTVIN 156	ARYSOO4 FTVIN 154	ARYSO05 FTW1N 155
COLLECTION DATE: COLLECTION TIME:	11/19/93 10:10	11/19/93 12:15	11/19/93 12:15	11/19 /93 12:20	11/1 9/93 12: 30	11/19/93 12:30	11/19/93 12:40	11/19/93 12:45
LEAD UG/G	49.2	1.83	2.22	8.06	22.2	10.9	8.55	6.97
SELENJUN UG/G	⊲0.202	<0.202	⊲0.202	≪0.202	⊲0.202	<0.202	<0.202	<0.202
TNALLIUM UG/G	4 .153	⊲0.153	4.153	Q.153	4 0, 153	4 .153	4.153	40.153
MERCURY, SED UG/G-DRY	0.126	<0.027	⊲0.027	0.271	0.131	<0.027	< 0.027	<0.027
NOISTURE XWET VT	22.3	12.1	13.1	9.7	22.8	22.4	13.9	15.8

. .

.

.

•

-

-

_

-

-

-