Administrative Record

FORT WINGATE DEPOT ACTIVITY, GALLUP, NEW MEXICO

Document No. 97-3

Fort Wingate Depot Activity, Restoration Advisory Board (RAB) Meeting, February 5, 1997

Paul Baca Professional Court Reporters

February 1997

Inquiries regarding this Document and/or the Administrative Record for Fort Wingate Depot Activity should be made to: Commander, Tooele Army Depot, Tooele, Utah 84074

—

		<u> </u>	clicula -	王十八 77
				1
LES:				
9242 NT RA	1	FORT WINGATE DEPOT ACTIVITY		
2 () 843 ELLER	2	RESTORATION ADVISORY BOARD MEETIN	G	
не 200 о 8710 х: (505 Т ЕХ С	3			
• Sur Mexic I • Fa TNG A	4			
c . SW , New 3-9241 3 -9241	5	•.		
old Ave lietque, 05) 84. ITY RB	6			
400 Gi Albuqi Tel (Si QUAL)	7			
	8			
	9			
X	10	HELD AT		
C	11	OCTAVIA FELLIN PUBLIC LIBRARY		
Ζ.	12	GALLUP, NEW MEXICO		
	13	On		
la c	14	FEBRUARY 5, 1997		
lession. irt orters,	15	6:00 P.M.		
Pro Co Re Re	16			
	17			
	18			
	19			
$\sum_{i=1}^{n}$	20			
	21	PRESENTATION FROM		
	22	STEVE EGNACZYK - Project Manager with ERM		
	23	MARY JANE STELL - Project Geologist with ERM		
	24	KATRINA AJEMIAN - Project Manager for the U.S. Engineers	CC1p	of
[]	25			

_ _

_ _

) |

JUALITY REPORTING AT EXCELLENT RATES! Icl. (505) 843-9241 • Fax: (505) 843-9242 Albuquerque, New Mexico 87102 400 Gold Ave , SW + Suite 200

1

2

3

4

5

6

7

8

9

10

11

12

Reporters, Inc Professional Court

PAUL BACA

PROCEEDINGS

Good evening everyone. we MR. FISHER: would like to welcome you here this evening to the Fort Wingate Depot Activity Restoration Advisory Board Meeting. My name is Larry Fisher, and I'm the BRAC Environmental Coordinator for Fort Wingate, although I'm located at Columbia Depot in Utah.

Before we get started, what I'd like to do is to have everyone, if you wouldn't mind -- I hope not -- I would just like to go around and have everyone introduce themselves and say who you represent, so we know who the And I think we'll feel more comfortable with players are. that, and we'll just start right here. 13

Okay. Good evening. My name MR. WHITMAN: 14 I'm a geologist with the New Mexico is Chris Whitman. 15 Environment Department, and I'm representing the ECT, a 16 member for the Environment Department. 17

Malcolm Walden. I'm the base MR. WALDEN: 18 transition coordinator, the federal base transition 19 coordinator for Fort Wingate. 20

MS. AJEMIAN: I'm Katrina Ajemian. T (m 21 project manager for the Corp of Engineers and all actions 22 out at Fort Wingate. 23

Steven Egnaczyk. I'm the MR. EGNACZYK: 24 project manager for ERM and department geologist at the 25

3 QUALITY REPORTING AT EXCELLENT RATES! Fax. (505) 843-9242 1 Environmental Center in Fort Wingate. 2 MS. STELL: I'm Mary Jane Stell. I'm the 3 project geologist also working in ERM at Fort Wingate. 4 MR. TOM: My name is Vincent Tom. Tel. (505) 843-9241 5 MR. FISHER: Who do you represent? Just 6 yourself or ... 7 MR. TOM: It's a public meeting, right? 8 MR. FISHER: Yes, uh-huh. 9 MR. TOM: Yeah, uh-huh. 10 MS. AJEMIAN: Public. 11 MR. FISHER: Public. Okay, that's fine. 12 Thanks. 13 MR. CURLEY: I'm Gerald Curley with the 14 Bureau of Indian Affairs, Navajo Area. Professional Court Reporters, Inc 15 MR. MURPHY: Roy Murphy with the Bureau of Indian Affairs, Navajo. 16 17 MR. BARBER: Wilson Barber, BIA, Navejo. 18 MS. JACOBS: I'm Julie Jacobs with the New 19 Mexico Environment Department and the Ground Water Quality PAUL BACA 20 Bureau. 21 MR. SOLANO: I'm Phillip Solano with the New Mexico Environment Department. 22 23 I'm Chuck Hendrickson with MR. HENDRICKSON: the EPA Region 6. I'm a geologist and cleanup team member 24 25 for EPA.

Albuquerque, New Mexico 87102

Suite 200

35

100 Gold Ave

4 QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 + Fax: (505) 843-9242 MR. MENAPAN: Bud Menapan. I'm just on my 1 2 own, by myself. MR. MCCALISTER: Stan McCalister. 1'm with 3 the Fort Worth District Corp of Engineers. 4 ALEXANDER I'm with the Tim Alexander. MR. 5 Army Environmental Center. 6 Joe Winkler, New Mexico MR. WINKLER: 7 Environment Department, Gallup Field Office. 8 I'm just with I'm Bob Herren. MR. HERREN: 9 the Cope Memorial Chapel. lO CRA We were just going around and MR. FISHER: 11 introducing ourselves, so would you mind -- I'm sorry, if 12 you'd introduce yourself. 13 Good evening. My name is MR. MILLER: Yes. 14 Reporters, Inc Professional Court Pat Chee Miller, 317 Bortot near Gallup. 15 Okay. our MR. FISHER: Okay. Thank you. 16 meeting tonight will consist of an overview of the 17 environmental work being performed, of course, at Fort 18 Wingate, and our first presentation is on the findings of 19 PAUL BACA the investigation into our open burning/open detonation 20 21 area. And, also, we'll talk about the results on the 22 evaluation of what we call our TNT washout lagoons. ALSO, 23 we have a presenter on the investigation of the cantral 24 And then to follow up, we'll and western landfill. 25

Albuquerque, New Mexico 87102 400 Gold Ave . SW • Suite 200

Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

Albuquerque, New Mexico 87102

Suite 200

•

400 Gold Ave., SW

1

ICRA

Professional Court Reporters, Inc

PAUL BAC

have -- basically, we'll discuss upcoming activities.

Mary Jane Stell and Steve Egnaczyk will be doing most of the briefing on this. They're with ERM, as they said, and then the upcoming activities will be presented by Katrina, and then we'll just kind of go from there. If you have any questions, feel free to ask them as we go. Steve.

8 MR. EGNACZYK: Thanks, Larry. Good evening 9 everyone. What we've tried this time is to put some 10 overhead together for everyone to look at since it seems a 11 little difficult and a little unwieldly every time we come 12 here with our maps and try to tape them up to the wall, 13 and this and that, and try to point out some of the areas.

MR. FISHER: I'm sorry. I forgot one thing as usual. If you have any questions, if you would, please, just tell us your name and then ask your question so it can be recorded. Sorry.

MR. EGNACZYK: No problem. I'll try to stay out of the way of everyone. But if someone can't see, please let me know. I'll be glad to shove to one side. What this is, is actually just a slide from the later presentation.

But just to give you a locational prospective of where the open burning/open detonation area is at Fort Wingate Depot, it's located along the property boundary on the

R0 Gold Ave., SW + Suite 200 Albuquerque, New Mexico 87102 Fet (505) 843-9241 + Fax. (505) 843-9242

QUALITY REPORTING AT EXCELLENT RATES!

western portion of the installation, right in this area 1 This is the RCRA permitted, open burning/open 2 here. detonation area that we've been performing evaluations on. 3 Just this past summer, we implemented our fuel program 4 We've reported to the RAP Committee and to in that area. 5 the folks at the RAP meeting in the past about what our 6 objectives were for that investigation, but I'll just 7 briefly summarize that. 8

Over the course of our investigation and preliminary 9 characterization activities in the OB/OD area, a series of 10 debris and burial areas located along two arroyo 11 stretches, one running through the current OB/OD area and 12 one running through the closed OB/OD area, were 13 We put together a closure field program, a identified. 14 set of work plans that were submitted to the State of New 15 Mexico as part of the RCRA closure and as part of the 16 approved RCRA interim status closure plans for that area 17 to go in and investigate those debris and burial site 18 areas. 19

The reason for the extensive planning is because of the unexploded ordinance that is located in that area that present somewhat of a safety concern in doing our investigation work, so we just wanted to make sure we had ourselves set up correctly and that the plans and all the work plans were to everyone's satisfaction before we

Professional Court Reporters, Inc

PAUL BACA

 Fax. (505) 843-9242 Albuquerque, New Mexico 87102 202 Suite • (505) 843-9241 400 Gold Ave., SW QUALITY Tel.

EXCELLENT RATES!

REPORTING AT

Reporters, Inc Professional Court

PAUL BAC

implemented our activities in those areas. 1

2 Many of you may or may not have been up into that 3 area, so we have a few overhead shots that will give you a 4 little bit of a prospective of what we're dealing with in Let me just kind of superimpose these two on 5 this area. 6 top here.

7 What you're going to see now is the closed area, which 8 basically jug handles off this side and off towards the property boundary. And what you're looking at right now 9 is basically that portion of the closed OB/OD area, 10 11 looking towards the property boundary, which would be off 12 to your right-hand side of this overhead slide.

13 What we have running through this area, and actually 14 running through both the current and closed OB/CD areas, is an arroyo or basically a drainage area running through 15 16 both the areas. This area, right here, you can see the 17 length of trees that run down through the arroyo area. What we had were access roads that ran along both sides of 18 19 the arroyc area. And, basically, demolition and 20 detonation activities had occurred prior to around the 21 1950 time frame in this area, which is why it's kind of 22 referred to as the "closed area."

23 In doing our site walk-throughs through this area, a 24 number of debris pile and burial sites were located along 25 the arroyo face. We also had some geophysical information

400 Gold Ave., SW + Sunte 200 Albuquerque, New Mexaco 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RAFES!

NCRA

Protessional Court Reporters, Inc

PAUL BACA

from some of our earlier investigations that identified 1 certain anomalies under the surface that we were to 2 investigate through our trenching activities. The 3 scope of doing our field activity was basically to, number 4 one, go in and bounder any areas of waste debris, then to 5 do sampling of that waste debris, and then of the 6 underlying soils underneath the waste debris to see if 7 there had been any impact of the underlying soils in the 8 environment based on those past activities. 9

So what you see there represented in this figure are basically the transects of trenches that were installed throughout this area and then back-filled during the course of our investigation. So this is actually the closed OB/OD area, after we had gone through our trenching, through all of the debris pile and burial site areas.

What I'll have are some figures later on that actually show you where we did do the excavation trenches and our approximated boundary of delineated waste that we are currently working on at this point in time.

But just so you can see, this is a little bit of a visual prospective of one angle of the closed area, and then there is another leg of the arroyo system that kind of bends out the area you were just looking at, comes in from over this way, and then this area kind of takes a

Э

EXCELLENT RATES! (505) 843-9241 + Fax. (505) 843-9242 Albuquerque, New Mexico 87102 Suite 200 REPORTING AT ντιτγ E

100 Gold Ave., SW

3

4

5

6

7

8

Reporters, Inc Professional Court

PAUL BA

left turn to the south and then goes along the property l 2 boundary.

You can see the arroyo area up in here. It connects into the arroyo stretch that I had shown you in the previous figure. In this area, we also had several debris pile and burial sites there that had been identified during some of our initial characterization activities that we investigated through our trenching program.

9 Let me give you a quick visual prospective of the current area. What you're looking at right now is along 10 the western portion of the current OB/OD area that was the 11 12 actual RCRA permitted OB/OD operation at Fort Wingate. 13 It's almost along the western portion of the property 14 boundary and looking to the east down into the actual 15 valley area that encompassed the current OB/OD area.

16 Along this area here, if I can get my pen to go in the 17 right spot, you can see the length of the arroyo running 18 through this area and curving through this location.

19 In this area, we had identified a number of debris 20 pile and burial sites also during our initial 21 characterization activities, and we once again planned out 22 a trenching excavation program to trench through those 23 areas to confirm the waste materials that were deposited 24 there, then also to sample and analyze those waste 25 constituents, as well as the underlying soils.

ò

100 Gold Ave., SW + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1

2

3

4

5

6

7

8

9

10

11

12

activities.

NCRA

PAUL BACA reporter. In Reporter. In

13 area.
14 As you can see here, we are trenching through. Well,
15 we basically had two categories of areas in the current
16 OB/OD area, areas that looked to be small, little valleys
17 or cut-outs, if it had waste disposed over the time of
18 operation of the area. This area started being used
19 around the 1955 time frame, was used up until the close of

In doing this, we also delineated the boundary of

confirmed the boundary of some of those wetland areas and

series of trenches that were done into the arroyo face and

representation of what we were uncovering and just some of

the excavation activities in both the current and closed

What we have now are some photos to kind of give you a

through some of the upper areas to actually confirm what

the boundaries of waste materials were.

So what you had there, then, was basically a

potential sensitive habitat and wetland areas, and in

coordination with the Corp of Engineers in Albuquerque,

minimized our impact to those and in the course of our

19 around the 1955 time frame, was used up until th 20 the installation in 1992.

So a lot of areas were basically small cuts or small cutbacks off the main arroyo that had been back-filled with waste debris from the OB/OD operations or from operations on the installation.

25

So what we do in most cases is actually try to

REPORTING AT EXCELLENT RAFES! Tel. (505) 843-9241 + Fax: (505) 843-9242 Alhuquerque, New Mexico 87102 QUALITY

7

8

9

10

11

• Surfe 200

100 Gold Ave., SW

Professional Court Reporters, Inc.

PAUL BACA

been set off that might have been motion detection fuses 1 2 or fuses that were just pressure sensitive or something 3 like that. At any point in time that you see an ordinance 4 item -- and I'm not sure if we have any of our UXO experts here, I don't think so, so I'll try to speak on the 5 6 subject.

But in some cases, there will be pieces of a fuse or pieces of the ordinance item that still remains intact as you approach that item. For our safety reasons, when you see something like that, you take the most conservative approach, which is there may, in fact, be enough of that ordinance item left there to actually detonate on its own. 12 13 So what we call that is a blow-in-place item.

14 There are several categories of those items. One, 15 from a live ordinance standpoint would be a blow-in-place 16 item where you would actually back away from that and put some explosives near that item and then remotely detonate 17 it, and then the remaining ordinance items would remove in 18 19 stage.

20 What we see in most cases are remnants, shell 21 fragments, metal fragments associated with the ordinance 22 item. They're safe to be moved. In those cases, we would then pick those items up and stockpile them, and those are 23 24 some of the activities that were done in coordination with the Fort Worth district's contractor out there on 25

400 Gold Ave., SW. • Suite 200 Albuqueeque, New Mexico 87102 Tel. (505) 843-9241 • Tax: (505) 843-9242 QUALETY REPORTING AT EXCELLENT RATES!

> Professional Court Reporters, Inc.

PAUL BACA

site.

1

So in other words, there were, in fact, situations where there were items that were sensitive to -- you know, to any contact. But there weren't any burial shells, for example, that hadn't ever been detonated or treated in some way, shape or from by the OB/OD operations. Everything out there was pretty much a remnant or a residue off those operations.

Here, you can see an excavation of another trench 9 What we have is a designation through one of the areas. 10 for the current OB/OD area crap areas or debris areas. So 11 those are just our designations, because we went through 12 and identified each of those locations along the length of 13 the arroyo, so we can come back and map them correctly. 14 And in this case, it depicts some burn residue, some of 15 the drums and other debris that were in that location. 16

In most cases, we were successful in actually 17 trenching through the areas. One of our concerns was 18 because of the manner of disposition within the arroyo, 19 materials could have been dumped at one location and 20 bulldozed along the length of the arroyo face, creating 21 of contamination or residue quite a deep extent 22 We really were able to We didn't find that. materials. 23 excavate through in almost all cases the disposed 24 materials so that we could actually bounder that both by 25

400 Gold Ave., SW. + Suite 200 Albuquerque, New Mexico 87302 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALLTY REPORTING AT EXCELLENT RATES!

NCRA

Professional Court Reporters, Inc

PAUL BACA

1 depth and then on a lateral extent.

Here, you can see one of the arroyo faces that I was mentioning to you before and our excavator sitting on top of the -- actually, the wall or the face, the base of the canyon, valley, and then digging down into the arroyo face itself. The materials you see all along the face are the texture materials that had been placed down in the arroyo itself and what we were excavating through.

9 Here, once again, just another depiction. You can see 10 the excavator sitting on top of the arroyo bank and then the materials that are being uncovered as we go down 11 In all cases what we would do is take samples 12 through. 13 of, for example, that colored material to try to determine 14 exactly what the waste constituents may or may not be, and 15 then we'd always excavate the clean soil and then sample 16 below those waste materials into the clean soils to 17 provide some kind of an assessment of potential impact to 18 the underlying soils from those waste materials.

And what we have here is just another trench and then just another depiction of a trench excavated through one of the areas. What we saw in a lot of cases was basic layering through the soil material of different waste or materials that had been disposed, and then basically soil had been moved around in the whole area as part of the OB/OD operations.

Tel. (505) 843-9241 + Fax: (505) 843-9242 Albuquerque, New Mexico 87102 400 Gold Ave , SW + Suite 200

QUALITY REPORTING AT EXCELLENT RATES!

1

2

3

Reporters. Inc Protessional Court

PAUL BAC

In a lot of cases, metal banding and things like that And then some remnants of the demolition were uncovered. and detonation operations.

Now, coming back to a prospective of the different 4 areas, here we have the current OB/OD area. If you 5 remember, once again -- I realize we just gave you a fast 6 showing of those first pictures -- but basically, once 7 again, here is the southern portion of the OB/OD area 8 The arroyo itself is shown by this looking to the north. 9 little line going through the OB/OD area. 10

And what you can see here are the areas that we 11 actually did trench through, the defined waste areas and 12 the area of the boundary of the waste materials as we have 13 currently projected it based on our initial 14 characterization activities. 15

We're currently awaiting the analytical results to 16 come through, so we can more accurately determine the 17 boundaries of these waste areas and potential 18 correspondence to any action levels that might be 19 applicable to our closure scenarios. 20

And then we have the same overview for the closed 21 You can see the length of the arroyo itself that 22 area. runs along this stretch right here and a debris pile and 23 burial sites that we did excavate through and our 24 delineated waste boundaries. 25

1.5

400 Gold Ave _ SW + Sune 200 Albuqueque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Protessional Court Reporters, Inc

18

19

PAUL BACA

I would say in summary, the current OB/OD area did 1 have delineated or defined waste areas that we were aple 2 3 to dig through and uncover. But we feel, as far as the 4 closure options and what we've represented to the RAP in the past is that we're looking at two different options, 5 excavation and removal of those areas into an on-site 6 7 land-based unit and then some type of an in-place closure 8 for areas that are just not feasible for removal, either 9 from a safety standpoint or just a material standpoint. 10 So that is still consistent with the options we're looking 11 at now, some type of an in-place closure and/or excavation and removal to an on-site land-based unit. 12

The areas that we've delineated here, then, we would actually do projections on and then in coordination with the design phase with the Fort Worth district actually come up with a design for the closure option for submission to the regulatory agencies.

> MS. JACOBS: I have a question. MR. EGNACZYK: Sure.

MS. JACOBS: This is Julie Jacobs. So if you close it in place, are the contaminants that are there going to actually degrade over time?

23 MR. EGNACZYK: Well, explosives by 24 themselves have some natural degradation in them. I guess 25 maybe I should clarify what closure in place means versus

3.5

Tel. (505) 843-9241 • Fax: (505) 843-9242 Albuquerque, New Mexico 87102 400 Gold Ave . SW + Suite 200

QUALITY REPORTING AT EXCELLENT RATES!

3

7

8

9

10

11

For example, we have in the current area, 1 excavation. focus areas where we were able to actually show that there 2 was just a small area, a small depression in the surface that was backfilled over time. That whole area guite 4 easily could be excavated and removed into a land-based 5 unit. 6

Areas like this where we have a very large concentration of materials by depth, there's a certain point in time where you actually get very destructive almost to the arroyo, almost to the sense of destroying the arroyo.

So I think at that point in time it would be a balance 12 based on the action levels that are agreed upon in the 13 closure plan, a balance to actually removing those 14 materials, principally the trash, the debris and the stuff 15 that might impact that slope and the stabilization of the 16 slope, and then do some stabilization in place to actually 17 maintain the face of the arroyc and the water channel. 18

We also have a wetland area down through there, so it 19 becomes a balance and then preserving the natural 20 resources of the arroyo itself versus actually destroying 21 So I think that's it as part of the closure operation. 22 something that would be a balancing factor that we would 23 then do in our recommendation of the closure option. 24 So the only time we'd really look at keeping anything 25

Reporters, Inc Protessional Court

PAUL BACA

1.7

400 Gold Ave., SW. + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241. + Fax: (505) 843-9242 **REPORTING AT EXCELLENT RATES!**

QUALITY

NCRA

Protessional Court Reporters, Inc

PAUL BACA

in place is if those soils actually were below an action level that were agreed upon in the closure plan or were just so inaccessible because of ordinance items or other items that we had found that were just too prohibitive safety-wise to actually go in and do any restoration of that area.

7 Just to add that, that is actually what we found a 8 little bit to the north here in some of these areas, is 9 there was a very high concentration of unexploded 10 ordinance and just safety issues, the "ifs" that I were 11 talking about before, that in going into that area and 12 actually excavating into the face of that, there may be a 13 point in time that safety concerns really override the 14 feasibility of removing that material.

At that point in time, then, we would implement any measures to stabilize that slope and minimize any migration of contaminants into those water pours or to any potential surface water runoff.

MR. WALDEN: Question. Malcolm Walden. Steve, who is the final arbiter, or who is the final approver of the plan? Is it the State of New Mexico, or is it --

23MR. EGNACZYK: The State of New Mexico.24MR. WALDEN: They're the ones who would25actually say, "Yes, this is good to go?"

Tel. (505) 843-9241 • Fax: (505) 843-9242 Smile 200 400 Gold Ave., SW

1

2

QUALITY REPORTING AT EXCELLENT RATES! Albuquerque, New Mexico 87102

Reporters, Inc. Professional Court

18

19

20

21

22

25

PAUL BACA

I don't want to speak MR. EGNACZYK: Yes. for them, but yes.

And, once again, in the closed area, just to give a 3 little bit more clarification, it appears that most of the 4 activities in this area were all along this one roadway 5 and that they would then shove the residue into the face 6 The closed OB/OD area does not have the 7 of the arrovo. extent of waste and debris anywhere near the current OB/OD 8 area, and those areas -- as you can see by how the 9 boundaries have been delineated, we feel that those areas 10 can very easily be excavated and removed, and because of 11 the different nature between the two arroyos, this being a 12 very steeply walled arroyo channel, we think that that 13 could be stabilized very easily by benching that back a 14 And we think that that's something that could little bit. 15 be restored a lot easier than the wall of the arroyo in 16 the current OB/OD area. 17

I have a question. MR. BARBER: Yes, sir. MR. EGNACZYK: How many burial Wilson Barber. MR. BARBER: sites did you find, and how are you treating those? A:e you leaving them in place? I'm sure you're disturbing

some when you did some excavation. 23 By "burial sites," are you MR. EGNACZYK: 24 meaning the debris areas that we identified through this

		20
400 Gold Ave., SW. • Suite 200 Albuquerque, New Mexico 87402 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES:	1	27022
	- -	
	2	MR. BARBER: IS that what you mean by burial
	2	ND DONDORNK Diebe
	- 1	MR. EGNACZYK: RIGHT.
	5	MR. BARBER: Not human remains?
	6	MR. EGNACZYK: Archeologic sites were not
	7	directly encountered in the activities that we were doing
	8	through this area.
	9	As part of the memorandum of agreement between the
NCRA	10	Army and the related parties, we had an on-site
	11	archeologist that did look at any areas where they had
	12	previously been undisturbed soil areas.
Protessional Court Reporters, Inc	13	For example, this area had been disturbed to such an
	14	extent because of the OB/OD operations over the time, that
	15	we had an archeologist look at the location in
	16	coordination with the Albuquerque district. And they
	17	didn't feel that an oversight, direct oversight, was
L BACA	18	needed in this area.
	19	However, in the later presentation I will be giving
	20	where we were digging into actual native soils and
	21	actually areas that had not been impacted in the past, we
	22	did have an on-site archeologist monitor our excavation
	23	activities.
	24	In the course of doing all of our activities, they d d
	25	overview our activities in coordination with the average
	20	overview our activities in coordination with the surveying

- -

_

-- \sim \sim -- $\overline{}$ $\overline{}$ $\overline{}$ -_ ----_

-

-

-

-

~

)

))

-

_ -

))

)))

-- 400 Gold Ave., SW • Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1

2

CRA

Professional Court **Reporters**, Inc

PAUL BACA

that we weren't directly impacting any area or any finding 3 that had been identified to date. 4 When you used the term MR. BARBER: Ókay. 5 "burial site," I thought you were talking human burial, 6 you know, remains. 7 Human remains burial area? MR. EGNACZYK: 8 MR. BARBER: Yes. 9 We did not uncover MR. EGNACZYK: Right. 10 There have been areas within the OB/OD area any of that. 11 that have been identified in the past, but they weren't 12 impacted by any of the activities that we were currently 13 working in. 14 As you're using the term MR. WALDEN: 15 "burial," that means debris? 16 Debris, yes, that's correct MR. EGNACZYK: 17 Did that answer your question? Sorry. 18 MR. BARBER: Yes. 19 Can I answer any other MR. EGNACZYK: 20 Thank you very much. questions? 21 I'm Mary Jane Stell. 1′ m Okay. MS. STELL: 22 I've been working the project geologist for this project. 23 on it since we started this job in 1992. The thing lim 24 here to talk you about tonight is the work that we've been 25

work that the Albuquerque district had been coordinating

with, I believe New Mexico State University, to make sure

1

doing at the TNT leaching beds.

2 Just to give you a little bit of prospective, based 3 upon the facility this boundary up here is I-40. The 4 administration area is right along in here, the main offices, and then the TNT leaching bed washout facility is 5 6 right down in this area. So just to give you some kind of 7 prospective of the area of the facility we're going to be 8 talking about.

22

9 Initially, this -- for those of you who may not be familiar with the TNT washout operations, it would impact 10 out of spec munitions, take out the solvent explosives to 11 the extent possible, take a hot water wash system, rinse 12 13 out that to reclaim any TNT possible. That fluid would 14 then go through some processing tanks into a series of 15 settling basins exterior to the building and then would 16 overflow from that location into a troth and then go into a series of evaporation and infiltration lagoons. 17

18 We've done a lot of soil sampling out here in this 19 area. This being the actual washout building itself. You 20 can see there's two little rectangles here. Those would 21 have been the concrete sumps, and they said they'd go into 22 that first to settle out anything additionally.

23 Then there would be a troth leading out into --24 initially, this area over here was called the pre-1962 25 beds. That's what was used in that time period for this

Reporters, Inc. Professional Court

PAUL BAC

QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 • Fax: (505) 843-9242

Albuquerque, New Mexico 87102 400 Gold Ave . SW + Suite 200

QUALITY REPORTING AT EXCELLENT RATES! Fel. (505) 843-9241 • Fax: (505) 843-9242 Athuquergue, New Mexico 87102 400 Gold Ave., SW + Sume 200

1

4

6

13

14

15

16

17

25

Professional Court Reporters, Inc

PAUL BACA

And evaporation infiltration of these washout waters. then after 1962, they developed these two locations over 2 The waters would flow out into those peds. here. 3

So we knew that being -- based upon this operation, this was a potential source of soil and groundwater 5 And as part of the remedial investigation contamination. feasibility study, we went out to look at this as -- you 7 know, what are the soil concentrations, what might be 8 moving along this little drainage way over in here, and 9 then that is led to what could potentially be in the 10 groundwater. So this map is kind of a compilation of all 11 the sampling that has been done over time. 12

There were some old wells put in in the 1981 time Unfortunately, three of them were not installed frame. deeply enough that they did not detect any groundwater. This FW-10 did, and it has been monitored periodically for a number of years.

What we did is we came in and we looked at these soil 18 -- surface soil sampling locations, which are the round, 19 We also installed, as you can see, numerous 20 red dots. subsurface soil borings, which we sampled at an every 21 five-foot interval to try and get some idea with 22 vertically what the soil contamination would be with 23 depth. 24

And then just recently, this summer, as part or this

400 Gold Avel, SW + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES:

> Professional Court Reporters, Inc

effort, we've gone in and installed a background well here thinking that any groundwater is probably flowing generally toward the Puerco River. So we assumed that this would probably be a background concentration, unimpacted area, so we have some point of comparison as to what the concentrations in the other wells may mean.

And then we installed three downgrading wells, TMW-02, 8 03 and 04 to try and get some idea of has the groundwater 9 been impacted at all and to try and get a prospective on 10 what way the groundwater in this immediate vicinity may be 11 moving.

And at this point, we have got some analytical data back, and it is -- at this stage, it is draft analytical data. And what that means is there are a series of both EPA, Army procedures that need to be done on the data to make it qualified.

17 We looked at were there any possibilities that the 18 sampling protocol had been impacted that we could have 19 cross-contaminated between locations, did the laboratory 20 have something that may have potentially impacted the 21 results of this sample? So that checking has yet to be 22 done, and that's the only reason we call this as it's 23 draft data. We have yet to go through a lot of those 24 processes.

25

PAUL BACA

But what we're presenting here tonight is here are the

400 Godd Ave., SW. • Suite 200 Athuquerque. New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALFTY REPORTING AT EXCELLENT RATES!

NCRA

Protessional Court Reporters, Inc

PAUL BACA

explosive detections in these three down-gradient wells. 1 At this point, we have -- the process we have for 2 evaluating the data is, as I said, we've installed a 3 We compared the down gradient locations background well. 4 to that to say, "Okay, assuming our background well is 5 good, unimpacted, now what have we done to the water by 6 And that is what we're seeing the facility operations?" 7 here in TMW-03 -- 02, 03 and 04, there are explosives 8 detected in those down-gradient wells. 9

And in our process, the first step after the 10 comparison to background is then we compare it to a series 11 of regulatory levels, maximum contaminant levels from 12 And then for those Federal Government, from the State. 13 constituents that they are not available, we look at 14 potential human health risk-based numbers, and we look at 15 what are those as far as a screening level -- an action 16 And that Do we need to look at more evaluation? 17 level. has been exceeded at these sites also. 18

19 The next thing that we've done is just to give you, 20 again, a little bit more of a prospective here. In the 21 northern portion of the facility, we did exceed both the 22 background levels and these human health based-risk levels 23 at all of those three wells.

So what we are currently doing is looking at, again, what direction do we think the groundwater may be moving

2 E

400 Gold Ave., SW. • Soute 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Professional Court Reporters, Inc

PAUL BACA

in? And based upon these four wells and a preliminary look at the data, it looks like it's generally flowing in the direction we'd expect, generally toward the north fork of the Puerco, but, you know, I caution you again. That is a great distance between this location and the location of that river considerably to the north of here.

7 Right now we are currently evaluating -- one of the 8 things we were talking about the regulators today is, 9 what's the next step? How can we proceed to evaluate this 10 area further? And hopefully we'll be ready to talk about 11 that the next time we get together. Yes.

MR. WINKLER: Joe Winkler. What we're seeing here is stuff washed -- they would remove the big chunk of the explosive and then wash out the inside of the container?

MS. STELL: Right. Right. That's my
 understanding of the procedure, that is correct.

Right. And what you have to 18 MS. EGNACZYK: understand also is, is there is a multiple-stage process 19 to try to recapture the explosives, because, I mean, they 20 21 would obtain any recycle or reuse again. So there's 22 actually a three-or a four-stage almost settling process 23 that would be undertaken before any water would actually get through these leaching beds. 24

25

MR. WINKLER: Okay. So their goal was to

27 QUALITY REPORTING AT EXCELLENT RATES! Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax. (505) 843-9242 maybe extract the - -1 MR. EGNACZYK: And reuse the explosives, 2 actually, in this. 3 Even what's washed out, maybe MR. WINKLER: 4 they could get it out of that? 5 Exactly. MR. EGNACZYK: 6 And that was the series Right. MS. STELL: 7 They tried to get everything to kind of settling tanks. 8 of precipitate out that they possibly could before they 9 let this water out into these lagoons. 10 Malcolm Walden. How deep is MR. WALDEN: 11 the groundwater that you found this contamination in? How 12 far down? 13 MS. STELL: Approximately 50 feet below the 14 Professional Court Reporters, Inc. ground surface. 15 And all three wells had similar MR. WALDEN: 16 readings? 17 Similar readings. MS. STELL: 18 So it seems to be flowing MR. WALDEN: 19 PAUL BACA generally the same? 20 The sediments in this It does. MS. STELL: 21 area are a very irregular mix of silts and clays. This is 22 Things would sort of a -- kind of an alluvial wash area. 23 have kind of washed on off the highland. So it's not - -24 like in some instances, you have a very thick sequence of 25

400 Gold Ave., SW + Suite 200

this same type of material. This is more of a complex
 innerfingering of materials.

MR. WALDEN: And you said that it exceeded both human health levels and -- by how much? Greatly? A little bit or...

6 MS. STELL: The easiest number that I 7 remember off the top of my head is the current drinking 8 advisory water number for RDX is 2. And cur highest 9 concentration for RDX here was 160. Now, again, this is 10 parts per billion concentration. They're very low 11 concentrations, but, yet, we did exceed by a considerable 12 amount. Okay.

MR. EGNACZYK: What I'd like to speak to you about now is an investigation program that was actually implemented almost exactly this time frame last year, basically, the investigation of debris pile and burial sites. And by "burial sites," again, I mean waste burial sites here in the northern portion of the installation.

There were actually three areas that we were asked to investigate. The background of these areas as we've represented to the RAP in the past is, in the course of doing our initial environmental investigation activities, two additional landfilling areas that we designated, the western and central landfill areas, were identified through us as areas that might have been utilized either

QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Professional Court Reporters, Inc

PAUL BACA

400 Gold Ave., SW + Suite 200 Albuqueque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Protessional Court Reporters, Inc

PAUL BACA

at the close of the installation or during the closing
 moments of the installation for the placement of municipal
 trash, debris and anything associated with the final
 closure of the installation.

5 We also had the Group C'disposal area, which had been 6 identified during our early investigation efforts, and the 7 State of New Mexico identified potential compliance issues 8 related to our surface water regulations with having trash 9 and debris located on a water course or one of the arroyos 10 in the area of the Group C disposal area.

So we investigated a program to, number one, go in and 11 confirm whether or not waste had actually been disposed in 12 both the areas that were designated as the western and 13 central landfill area, but then also to do an extent of 14 potential trash migration or location within the Group C 15 disposal area, so that could be recommended for removal 16 and in compliance with the State of New Mexico's surface 17 water regulations. 18

So basically this was also used as almost a trial 19 period with our excavation team and with our UNO oversight 20 contractor for the work that I presented to you earlier in 21 The concern here was the presentation in the OB/OD areas. 22 We had a relative that we had a very safe area. 23 really, a relative lack of any concern from a UNG 24 standpoint. We thought that this would give us a trial 25

		3 Q
isət		
400 Gold Avel, SWL + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RA	. 1	run, really, from any investigation activities we'd be
	2	doing later in the OB/OD areas.
	3	MS. JACOBS: What's UXO?
	4	MR. EGNACZYK: Unexploded ordinance.
	5	MS. JACOBS: What's OB/OD?
	6	MR. EGNACZYK: Open burning/open detonation.
	7	MS. JACOBS: Thank you.
	8	MR. EGNACZYK: Sure. Are there any other of
	9	those words that I've been using that I can answer for
NCRA	10	anyone? I apologize. Sometimes you get used to these.
	11	The Group C disposal area consists of really two
	12	locations. And what's missing here in this figure is the
stonal ters, inc	13	arroyo system that runs through this area, but basically,
	14	there is one location I think I've talked in there
	15	we are. There's one very small location that's kind of in
Profe Court Repoi	16	a cutback to the arroyo itself, almost a little "V" in the
	17	channel to the arroyo. And then there's another area, a
	18	larger area, that's located really along an arroyo side
CA	19	wall.
	20	So as you can see here, we really implemented a
	21	program that was very consistent to what I reported to you
	22	a little earlier where we excavated through these
	23	locations, confirmed the boundaries of the waste areas.
. .	24	And in this case, our whole focus here is, is to actually
	25	delineate the boundary of the waste areas so that all this

_

)

 \sim

))

_

--

--

· _ ·

Albuquerque, New Mexico 87102 SW • Sum 200 400 Gold Ave.

Tel. (505) 843-9241 • Fax: (505) 843-9242

QUALITY REPORTING AT EXCELLENT RATES!

Reporters, Inc Professional Court

PAUL BACA

material can be removed and placed in the on-site 1 land-based unit and removed from the arroyo water course. 2 Just to give you an example of some of the information 3

that we're currently digesting ourselves is, in all cases, 4 what we've tried to do is almost do a cross-section of 5 materials that were located in some of these areas. 6

As you can see here, this is a cross-section of a 7 trench that we did through the areas so that you can see 8 that we actually come out of waste material to native 9 soils on both sides and also by depth, and that when we 10 also tried to quantify not only the materials that were 11 located down in there, but then also where we took our 12 samples so that we come back and compile this information, 13 compile this data, from almost a three dimensional 14 prospective, we can really see what's there and what we 15 need to pull out of the location. 16

The central landfill area is actually an old arroyo 17 system that had been backfilled and closed off. Τt 18 actually intersects at this location down in an arroyo 19 that runs -- bearings here -- along this stretch here. 20 This is a current arroyo -- oh, that's a roadway, sorry. 21 The current arroyo is down here. It intersects down 22 And, basically, the waste material was at this location. 23 placed within this arroyo, backfilled, and almost 24 backfilled just like a regular landfill area. 25

 Fax: (505) 843-9242 Albuquerque, New Mexico 87102 Suite 200 100 Gold Ave., SW + 843-9241 υνιμτ (505)Е

REPORTING AT EXCELLENT RATES

Z

Reporters, Inc Professional Court

PAUL BAC

This is another area that we were fairly certain that 1 they had done some landfilling activities in, because it 2 3 was active at the point in time that we initially mobilized to the site, but we weren't sure exactly what 4 5 waste materials had been landfilled there.

So the focus here was to go in, confirm the waste 6 7 materials that

8 actually had been landfilled here, confirm the lateral 9 extent and depth of any waste materials, and then provide 10 information, analytical information, about the nature of 11 any hazardous constituents that may or may not be there, 12 but also information to actually perform closure of this 13 landfill area, whether that be closure in place again, if that's conceivable, or within the acceptable criteria of 14 15 the regulations or excavation and removal of all the waste 16 materials into an on-site land-based unit.

17 What you can see here is, is basically the transects 18 of the excavation trenches that were done through this 19 area.

20 And, once again, an example of an excavation trench 21 showing a lot of cases that there was native soil to a 22 large extent located along the width of the arroyo and 23 then various layers of waste materials that had been present and then also the fact that we actually did 24 actually get out of the waste materials by depth and also 25

400 Gold Ave. . SW. • Suite 200 Albuqueque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1

NCRA

Professional Court Reporters, Inc.

PAUL BACA

in a length and width dimension.

This is the western landfill area. This is located right up along the northern portion of the installation. This is another area that was reported to us as having had landfilling activities. This area was not active at the point in time that we mobilized to the installation, so it was really an unknown location to us.

However, as I have photos of later on in the 8 presentation, there were several depressions that were 9 When you did look at the location, not obvious to us. 10 high points that only from the area, but from the several 11 are located, there were several -- what appeared to be 12 depressions or slip trenches that may, in fact, have been 13 And we also had several constructed in this area. 14 disturbed areas of vegetation located extraneous two to 15 three trench areas, and all those areas were basically 16 investigated by the excavation activities during the 17 course of our operations. 18

What you can see here, for example, is an example of 19 us coming in from an area that we feel was clear and 20 moving in until we did define the waste materials and then 21 stopping and then coming in and basically coming in 22 So we basically had that in a perpendicular to that area. 23 And then by depth, we two dimensional prospective. 24 basically would be able to come up with a third dimension, 25

QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 • Fax: (505) 843-9242 New Mexico 87102 Suite 200 115 400 Gold Ave Albuquerque,

1

З

4

Professional Court Reporters, Inc

PAUL BACA

the depth of the waste materials.

2 Once again, here's an example of one of the trench profiles that we did put together. What we were able to confirm in the western landfill area is pretty much there had been a lot of inner material and debris from the 5 6 closure operations of the installation, wood debris, metal 7 strapping, parts of some of the deactivation furnaces, bricks, furnace bricks, metal structures, and different 8 9 thinks like that. Not a lot of municipal trash, more 10 metal banding and wood debris more than anything else, 11 electrical conduit. Just a lot of construction debris 12 that was associated possibly with the closing days of the 13 installation or just some demolition of previous 14 operations.

15 Now, once again, just some photos to give you some 16 idea of what we're looking at. This is a little difficult 17 to see. This is the Group C disposal area. You can see 18 the waste materials that were kind of placed along the 19 side of the arroyo bank and in the side cut and cur 20 excavator moving through those area, a lot of pallets, a 21 lot of tires, a lot of ammunition box materials.

22 There's another photo of the larger area from the 23 Group C disposal area. Again, you can see a lot of pallets, a lot of wood materials, ammunition box residue, 24 25 This area did have some concern for metal strapping.

400 Gold Ave., SW + Sunte 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

5

NCRA

Professional Court Reporters, Inc.

PAUL BACA

1 unexploded ordinance, and we did have the UXO oversight 2 not only in these activities, but the other land to it --3 at the other landfill areas just for safety purposes. 4 Here you can see a trench through the waste materials

in the Group C disposal area.

This is a photo of the central landfill area. That
was a backfilled arroyo channel. What you can see here is
basically the base of the arroyo channel as it's been
backfilled and now with the vegetative growth that's
occurring, the side walls of the arroyo itself.

And then, again, some of our excavation activities 11 through those areas, a lot of the strapping, the wood 12 pallets, a lot of metal banding also located in this area, 13 and a lot more of what I would consider more municipal 14 trash and not so much construction of demolition debris. 15 There also was one drum identified in the course of 16 That drum unfortunately was our excavation activities. 17 punctured by our excavator in the course of uncovering 18 All the waste material and soil that was impacted by 19 it. that drum were all excavated and removed, and these waste 20 materials were removed to a hazardous waste disposal 21 facility. 22

They were tested. They did not come up as RCRA hazardous waste, but the Army decided that out of safety security, that they would send those materials to a
36 QUALITY REPORTING AT EXCELLENT RATES! Iel. (505) 843-9241 + Fax: (505) 843-9242 hazardous waste disposal facility. And we believe it was 1 2 basically hydraulic oil. What's RCRA hazardous waste? 3 MS. JACOBS: MR. EGNACZYK: Pardon? 4 5 MS. JACOBS: RCRA? 6 MR. EGNACZYK: It did not meet any of the 7 characteristics of a hazardous waste. In other words, it 8 was not corrosive. It was not a ignitable. It did not 9 It was all from -- not corrosive. fail TCLP. 10 MR. WALDEN: What does RCRA mean? MR. EGNACZYK: Resource Conservation and 11 12 Recovery Act. 13 Here's an overview of the western landfill area. lt's a little difficult to see, but -- because I know what I'm 14 Ĕ Protessional Court Reporters, Inc looking for. You can see some of those slip trenches are 15 just depressions that we did identify in that area, and 16 that's what we based our excavation activities on, and 17 that is, in fact, where we did find the materials that had 18 19 been landfilled. PAUL BACA 20 Once again, just a couple of shots of a lot of the 21 electrical conduit and just materials that were incovered 22 in the western landfill area. 23 An old fire protection system stand pipe. 24A lot of inner materials. 25 In this area, there were also some shells from one of

Albuquerque, New Mexico 87102

- Suite 200

27

400 Gold Ave

400 Gold Ave., SW + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALTTY REPORTING AT EXCELLENT RATES!

NCRA

Protessional Court Reporters, Inc.

PAUL BACA

the previous operations that were all basically -- had
 been demilitarized. They were just basically empty shells
 that had been placed in an operation.

The focus now for this area is we've now kind of summarized all of these results, and all of the results from this area are farther along than for the OB/OD area, and we're currently in the process of presenting a report to the Army. It will then be presented to the State of New Mexico and EPA for final resolution and closure of these areas.

MR. MURPHY: Steve, these rocket canisters -- Roy Murphy, the rocket canisters that you mentioned, or at least illustrated in the cross-section there, you didn't have any photos of those, or are these the shipping containers, or are these the actual rocket units?

I think by --MR. EGNACZYK: 17 Not the projectile or warhead, MR. MURPHY: 18 but the actual motor? 19 No, I think you're MR. EGNACZYK: 20 misinterpreting what we mean by "motor." In this case, a 21 motor is a small motor, the kind you see on TV and the 22 Army, not the kind that you have as far as rocket 23 These are all small propelled engines of any kind. 24 These would be shells ordinance items ordinance items. 25

38 QUALITY REPORTING AT EXCELLENT RATES! from a shell category. 1 2 MR. MURPHY: Right. But what part of the 3 rocket, the 3.5 inch rocket did vou find? 4 MR. EGNACZYK: The shell itself. MS. STELL: This is Mary Jane Stell. 5 And 6 you're right, most of it -- because I was there -- was the 7 packing. The canisters were the packing materials, the things that the shells themselves would sit in for the 8 9 packing. 10 MR. EGNACZYK: Is that what you meant? MR. MURPHY: Not the actual --11 12 MR. EGNACZYK: No, I'm sorry, not the actual 13 shell itself. 14 MR. MURPHY: Not an actual --Protessional Court Reporters, Inc. MR. EGNACZYK: No, no, not actual shell. 15 These ordinance items here had actually been run through, 16 what we believe, the deactivation furnace where they 17 18 actually had been demilitarized, and these were the empty 19 shells that were remaining. They had holes in the side, PAUL BACA 20 and all the materials had all been washed out of those 21 materials. 22 MR. MURPHY: Yeah, but that's the 15Es. I'te 23 specifically asking about the three-and-a-half inch 24 rockets. MS. STELL: Well, that was packing materials 25

Tel. (505) 843-9241 + Fax. (505) 843-9242

Albuquerque, New Mexico 87402

Suite 200

15

100 Gold Ave .

39 QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 • Fax: (505) 843-9242 1 only. MR. MURPHY: 2 Okay. Albuquerque, New Mexico 87102 Any other questions? Thank 3 MR. EGNACZYK: 4 you. Joe Winkler here. MR. WINKLER: I'd like to 5 ask somebody from the State if they could describe some of 6 the specifications for on-site closure that are evaluated. 7 I don't know who I should address that to. 8 MR. SOLANO: I'm Phillip Solano from the New 9 Mexico Environment Department. And your question, again, 10 was? 11 What are the criteria that you MR. WINKLER: 12 look at when they say, "We think this should be on-site 13 closure as opposed to removal"? What do you -- things do 14 Protessional Court **Reporters, Inc**. you look at to say, "Yes, you can do that," or "No, you 15 can't"? 16 MR. SOLANO: The Army is going to come up 17 with a proposal for the on-site disposal unit, as far as 18 what type of a unit it will be, and put that into a 19 PAUL BACA proposal and submit it to us and review it and make sure 20 that it abides by the courtesy of all regulations, the 21 State -- State regulations. 22 Okay. Could you just briefly MR. WINKLER: 23 describe some of the criteria that are in the CFRS? 24 MR. SOLANO: Some of the criteria regarding 25

400 Gold Ave , SW + Suite 200

SW + Suite 200 100 Gold Ave .

EXCELLENT RATES!

QUALITY REPORTING AT

ы Г

Professional Court Reporters, Inc

PAUL BACA

25

843-9241 • Fax: (505) 843-9242

Albuquerque, New Mexico 871()2 Tel. (505) 843-9241 • Fax: (505)

the on-site disposal unit, a portion is going to be set 1 It is going to be approximately 1300 acres; is 2 aside. that correct? And that'll be secured in the front of the 3 fence, and that'll be called the unexploded ordinance 4 boundary, and that'll be strictly for Army personnel, 5 on-site personnel, and it will not be accessible to any 6 7 public. It will be fenced, signed and security impanaled. 8 It will remain in Army jurisdiction for security. It will 9 not be turned over as transfer of the boundary.

10 MR. ALEXANDER: Tim Alexander from the Army 11 Environmental Center. Joe, what we looked at relative to the central and western landfills, initially, we actually 12 13 looked at New Mexico's criteria for closing in solid waste landfilled posts. 14

15 And some of those criteria involved engineering analysis of capping materials, okay. And, actually, what 16 we were looking at is, I think, the performance standard 17 had been minus impermeability for that cap. 18 That's the type of thing we looked at. 19

20 What we have been considering of late -- and I think 21 we've talked to the RAP a number of times about this 22 site-wide restoration concept. I think that's what 23 Phillip was alluding to, was a land-based unit within the OB/OD area. 24

So, initially, we looked at the central and western

400 Gold Ave ., SW + Sunte 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242

QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Protessional Court Reporters, Inc

PAUL BACA

22

23

24

25

1 landfills, and we're still looking at this option, 2 although it doesn't -- you know, we're favoring it to the 3 other, is to actually close it in place of ordinance with 4 New Mexico's regulations, okay. What is that? Again, 5 it's generally impermeable type of cap, surface water 6 drainage systems. That's essentially it.

7 The other now, on the other hand, is the Resource 8 Conservation and Recovery Act of Hazardous Waste Facility, 9 which would be a double-lined unit basically with a 10 leachate collection system in place, with a leachate 11 detection monitoring system in place, closed with an 12 impermeable cap.

Probably that -- that's really the state of the art 13 It's double-lined -- a for land disposal facilities. 14 double-lined system, impermeable cap, a leachate 15 collection and, actually, a between the liners with a 16 leachate monitor and detection zone. And, obviously, 17 there will be some type of a monitoring and detection 18 Typically, that is a system outside the unit as well. 19 groundwater system, but there are other alternatives. 20 Does that answer your question? 21

MR. WINDORD: Yes. Thank you very much. MR. FISHER: Any other questions? I'll now turn the time over to Katrina.

MS. AJEMIAN: I'm Katrina Ajemian. I'm with

QUALITY REPORTING AT EXCELLENT RATES! Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 Sune 200 400 Gold Ave., SW 10 11 12 13 14 Professional Court Reporters, Inc 15 16 17 18 19 20 21 UL BA 22 23 24 25

1 the Fort Worth District Corp of Engineers. Up until now 2 my role has been to take the lead on the design function 3 that Fort Worth district was accepting after the remedial 4 investigations.

However, we're now in the process at this time where I'm in the role as the project manager and the BRAC integrator for coordinating all work done by both the Huntsville district and Albuquerque district and, also, accepting some of the work now from Army Environmental Center to include the investigation work that ERM has been doing.

Julie, did I see a question?

MS. JACOBS: Yes, please. What is BRAC? MS. AJEMIAN: Base Realignment and Closure, which is the program under which Fort Wingate was closed. MR. WALDEN: That's the 1988 site, first --MS. AJEMIAN: All the work that we have been

talking about at this meeting up until now falls under an umbrella of a study and report called Remedial Investigation and Feasibility Study, RIFS for short from

1 here on.

This is a process that we started in 1992, and it began with the indepth research of the operations of this facility and identifying potential areas of concerns of which we identified 45.

40) Gold Ave , SW + Suite 200 Albuqueque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 **QUALITY REPORTING AT EXCELLENT RATES!**

We then looked at those, tried to do soil sampling and the kind of sampling that Mary Jane and Steve have been reporting, identified; was there a concern at this area? And if there was nothing found, then address it as no further action needed. And if there was something found, assess the risk of what was found and then develop a proposed action.

We are now coming to the final stage of that activity, 8 and I've got a schedule here that will show you how we'll 9 What you see first, here, is the site finish this out. 10 work that has been ongoing in the final stages of it. In 11 fact, just today, we are starting this very last phase, 12 which is another round of monitor well sampling to help 13 verify that data, the preliminary draft data that Mary 14 Jane was discussing earlier. 15

After that, we are going into the final stage 16 of the Remedial Investigation Feasibility Study, and we 17 are looking to have a report to the regulators for 18 coordination with them in the June/July time frame, and 19 then a final report that will be released to the public 20 and all the public repositories in the August time frame. 21 Now, one issue that we have come to agreement with New 22 Mexico Environmental Department and the Environmental 23 Protection Agency is that this RIFS report will address 24 only the soil areas of concern at Fort Wingate, because 25

Protessional Court Reporters, Inc

PAUL BACA

Tel. (505) 843-9241 • Fax: (505) 843-9242 Albuquerque, New Mexico 87102 Sinte 200 400 Gold Ave, SW Professional Court Reporters, Inc. **NUL BA**

QUALITY REPORTING AT EXCELLENT RATES!

2

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

obviously from what Mary Jane was reporting earlier, there 1 has been some explosives identified in the groundwater, 2 and there is additional work in that area. So this final report is not going to close out the groundwater 4 There will be additional studies in that 5 investigations. area and follow on RIFS reporting for the groundwater. 6

After the final report, then, we will go into what we've been discussing, and that is, what's the cr-site closure? And the next step is to come up with a proposed action for closure of all the contaminated soils that we have found within potentially the OB/OD unit.

That's an area that we are still discussing with the regulators. After our RIFS is final, we will draft a proposal, submit it to the regulators for coordination. And I think if you noticed down there, one of the final steps is that there will be a public meeting and a public comment period.

That's what we're looking at doing in this area through the summer under the RIFS.

Question, Julie.

If I'm a member of the public MS. JACOBS: here in Gallup, how can I get a copy of that information? MS. AJEMIAN: It will be here in the Gallup Public Librarv.

> MR. EGNACZYK: It is here.

QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 • Fax: (505) 843-9242 Alhuquerque, New Mexico 87102

400 Gold Ave , SW + Suite 200

1

2

3

4

5

Reporters, Inc. Professional Court

PAUL BACA

Yeah, everything we've done to MS. AJEMIAN: this point is here, and all future documents will be here I believe we also submit it in the Gallup Public Library. to the Navajo. MR. EGNACZYK: Right, the Navajo, EPA, land survival is all -- and the RIFS report, employment, the 6 RCRA employment contract, and there may be a few others. 7 Tim Alexander. It was MR. ALEXANDER: 8 brought to my attention earlier that frankly there may be 9 materials actually missing from the repository here in the 10 So what we're going to do, is we'll go Gallup Library. 11 back and inventory that file and reestablish what's 12 missing. 13 Any other questions on this MS. AJEMIAN: 14 phase of activities? 15 Tim Alexander again. I just MR. ALEXANDER: 16 want to make a comment, and poor Katrina, I kind of pushed 17 her up there tonight. She's doing pretty good here. Ι 18 just want to confirm that what we're talking about is 19 getting a report out that will, in fact, as Katrina said, 20 address the contaminated scils that we've identified and 21 assessed in the past several years at Fort Wingate. It 22 does not address the groundwater. 23 The closure of the OB/OD area is really on another 24 track, and frankly, that track is a Resource Conservation 25

400 Gold Ave . SW + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax. (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

7

8

9

10

11

12

Professional Court Reporters, Inc.

UL BA

and Recovery Act closure of an interim status unit. This was a unit that was really -- I guess, if it wasn't going to be closed, it will have to be permitted to keep on operating. Well, obviously, we've closed down the post, so we've discontinued use of that operation, and we're looking to close it.

And I think what Katrina was alluding to earlier is something that may be unclear to you, is we continue to work in that area in accordance with the closure, and it was submitted to New Mexico. Now, that closure plan was actually submitted, an amendment to it. It was submitted in May of this year.

As yet -- actually, we've put it out for public comment as well. So we went through a period where there was notifications, a public comment period and a response period. So I think it's pretty well wrapped up, but we haven't actually received a final approval for that particular closure plan, but we continue to work through the elements of that closure plan.

So we're looking to get that approved in the near term, and then we'll continue on the work necessary to figure out what exactly our problems are up in that area and what we need to do to address them. So it is a separate tract. What we want to take care of this year is that Remedial Investigation and Feasibility Study on those

-16

400 Gold Ave., SW + Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax. (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1 sites that were, I guess, pushed forward as a result of 2 that study.

Tim is correct. This MS. AJEMIAN: 3 finalization here that we're talking about in August does 4 not represent finalization of the groundwater or 5 finalization of the closure of the open burning/open 6 It represents finalization of the detonation unit. 7 landfill-type areas that Steve was showing you pictures of 8 just a short while ago. 9

And just for clarification, there is -- it's hard to see with this light -- but somewhere in there "OU," that represents not Oklahoma University, but operating unit. So when we're talking about land-based unit, the soils, contamination, we're talking about an operating unit of contaminated soils that we are addressing a little closer now.

Additional activities that will be ongoing include further investigation of the groundwater issues. This is an overhead that Mary Jane showed you a little while ago, and, you know, we have identified wells that we're going up and verifying that there is contamination on.

This summer we are looking at additional studies that will identify areas for additional well locations to trv to identify the extent of the hits that we have received. I use "hits," meaning above non-detect, constituents above

Professional Court Reporters, Inc

CRA

PAUL BACA

400 Gold Avel, SW + Sune 200 Albuquerque, New Mexico 87102 Fel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES:

NCRA

Professional Court Reporters, Inc

PAUL BACA

1 non-detect and the sampling. So we will start that work
2 this summer.

In addition, we will be following up on the work in the open burning/open detonation unit area to try and better understand the geological conditions up there. We've put in some wells that we've done some preliminary monitoring, and the preliminary results we're getting are very uneven. So we want to go in there and do some geophysical studies.

This is the area for those of you that are familiar with the topography around here where the generally flat, sloping area comes up against the hogback ridges, and that is -- at this junction, is where that OB/OD unit is.

So we're going to start some fieldwork going in there and trying to identify exactly what the subsurface looks like, so we can better evaluate the groundwater conditions in the future and better address the closure plan. Any guestions on the groundwater?

Some other activities that will be going on this summer that, in my mind, are a little more exciting because they're actual remediation activities -- you're going to see something happening out here other than just taking more samples.

Building 503 was the washout plant that Mary Jane discussed that yielded the water that went into the TNT

QUALITY REPORTING AT EXCELLENT RATES! Icl. (505) 843-9241 • Fax: (505) 843-9242 Albuquerque, New Mexico 87102

7

8

9

10

11

400 Gold Ave., SW + Suite 200

Reporters, Inc. Protessional Court

PAUL BACA

That building has very low potential reuse leaching beds. 1 for a couple of reasons. One is the industrial facility 2 is in very poor condition as a structure itself. And, 3 The contaminants of two, it is highly contaminated. 4 concern that were identified in the Remedial Investigation 5 and Feasibility Study include explosives. 6

What happened in the washout process was heat and hot water was used as a solvent, a solution to wash out the munitions so that we have volatilization of explosives that then cooled and deposited throughout the building. We also have asbestos in that building, lead-based paint. We have paint on the washout plant equipment itself. And 12 in one of the rooms where transformers were stored, we 13 have some PCB stains from the transformers. 14

We are going to come in this summer, remediate those 15 areas and then demolish the building as an ultimate 16 remedial action, which will yield a site -- clear site 17 ready for you guys -- ready for the transfer of when that 18 time occurs. 19

Right now we're looking at schedule where we will 20 solicit bids on the contract in the March/April time 21 frame, award construction by June, and then hopefully 22 start work and mobilize in July. 23

MR. ALEXANDER: Tim Alexaander of the 24 I just want to make a statement to Environmental Center. 25

Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

Suite 200

S.W.

100 Codd Ave .

NCRA

Professional Court Reporters, Inc

PAUL BACA

the effect that we have a lot of these types of structures 1 nationally. And the way we handle these are to actually 2 evaluate them and recommend an abatement alternative to 3 the Department of Defense Explosive Safety Board. And 4 we've done that, and we actually have proposed some loops 5 But that's who we've interacted with in regards 6 on that. 7 And I to how best to rectify that particular condition. guess the answer is, is we are going to be demolishing the 8 That's the bottom line, demolish it, then close 9 building. off. 10

The safety concern is that MS. AJEMIAN: 11 with the volatilization of the explosives and the 12 liquidation in the process, that there could be explosives 13 in any nook and cranny of that building. So it's a 14 step-by-step, pretty much a hand demolition and inspection 15 of each component. And areas where there's residual 16 explosives will be taken up to the OB/OD unit for proper 17 disposal. 18

MR. WINKLER: Will you be looking -- Joe Winkler -- at sediment as opposed to a chunk of explosive remedy?

MS. AJEMIAN: No, we're not talking sediment. We're talking a workshop where molten material may have solidified. So it would be more along the chunk line. That's why it's a hand process. You don't -- you

400 Gold Ave., SW. • Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax. (505) 843-9242

QUALITY REPORTING AT EXCELLENT RATES!

1

2

NCRA

Professional Court Reporters, Inc

PAUL BACA

MR. WINKLER: З Could you, again, state your organization and your role in 4 I am with the Corp of 5 MS. AJEMIAN: 6 Engineers, U.S. Army Corp of Engineers, civilian employee, 7 okay. MR. WINKLER: In Texas? 8 9 MS. AJEMIAN: I am in the Fort Worth Our jurisdiction covers, in the military area, 10 district. construction projects for New Mexico and the state of 11 12 Texas. And your title for this --MR. WINKLER: 13 I am in two titles really. MS. AJEMIAN: 14 From the Fort Worth district prospective, I am the project 15 16 manager for all our work at Fort Wingate Depot Activity to include the Ballistic Missile Defense Crganization's 17 construction out there at this time. In that role, I 18 oversee the design and construction for all activities 19 20 here at Fort Wingate. In addition, from the base realignment and closure 21 prospective, I am the BRAC integrator for the 22 environmental restoration program here at Fort Wingate. 23 In that role, I coordinate with Army Environmental Center, 24 the unexploded ordinance and clearance activities out of 25

don't go in and bulldoze this building. So it will be a

step-by-step hand removal process.

JUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 • Fax. (505) 843-9242 New Mexico 87102 Soule 200 too Gold Ave, SW Albuquerque, Ĕ Professional Court Reporters, Inc PAUL BACA

3

4

Huntsville Corp District, and the cultural resource
 activities out of the Albuquerque Corp District.

MR. WINKLER: And you're a civil engineer by trade, I assume?

MS. AJEMIAN: I am an environmental 5 6 engineer by Master's Degree, and then cn-the-job training 7 go along with that. I have actually been involved in this project for two years now. I was the lead design engineer 8 9 when we first started in 1995, looking at the facilities 10 like building 503, and I was integral in developing the 11 remediation design for it. And now, in these past three 12 months, I've been transitioned into the lead role for 13 Fort Wingate Depot activities. So I do bring historical 14 knowledge to it.

And the last activity that we will have out here in the next few months is a pilot wash of some of the igloos. Back in the RIFS investigations, a sampling was done of seven to eight percent of the igloos in each wall. There's a total of 732 igloos on the entire installation, so you can figure out the percentage.

There were roughly 11 to 12 where white samples indicated minute levels of explosive dust. A few of those are in use right now by TPL and by the Ballistic Missile Defense Organization. There are eight that are not in use.

400 Gold Ave., SW + Sunte 200 Alluquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Professional Court Reporters, Inc.

PAUL BACA

We are proposing and will coordinate this with both 1 EPA and New Mexico Environmental Department, a 2 high-pressure, low-volume wash of these igloos as a 3 remedial action, and we are doing a pilot wash to 4 demonstrate the technology here at Fort Wingate. The big 5 issue at Fort Wingate, of course, is the fact that there's 6 no water available and there's no disposal area. And so 7 it could be a very costly process to have to bring water 8 in for each igloo. 9

So the pilot wash includes the testing and demonstration of a treatment and recycling process for the wash water. We are going to mobilize for this in March. And weather permitting, we will do the actual

14 demonstration in April. Question, Malcolm? 15 MR. WALDEN: Yes. Malcolm Walden.

16 gentleman this morning that I was talking to there who had 17 the results from the wash igloos that BMDO did, were you 18 privy to those results?

MS. AJEMIAN: I have not been privy to thoseresults, but I am familiar with what they did.

MR. WALDEN: Okay. They showed the results this morning, and, in essence, they found zero, nothing there which would indicated that, you know, if you pick two at random in that -- and did that two, I would hope that by the time you do your pilot, if they also showed

The

REPORTING AT EXCELLENT RATES! (505) 843-9241 • Fax: (505) 843-9242 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 200 Sunte 400 Gold Ave , SW + VILLAY

5

6

7

8

9

10

11

12

13

Professional Court Reporters, Inc

PAUL BAC

nothing, that, you know, that would give cause to look at 1 maybe not doing every igloo on the depot and spending a 2 3 lot of money unnecessarily. Can you use this data as part 4 of your sampling?

MS. AJEMIAN: No, because they did not use the methods that we are using. They did not use the same sampling program that we are using. Plus, the thing that we have on our igloos that they did not have, is we have known concentrations prior to washing, and we have no idea what condition those igloos were in. So we -- it is a different data set altogether and cannot be correlated.

MR. WALDEN: Okay.

MS. AJEMIAN: However, I think the result that they found, nothing in their water, is something that 14 we intend to duplicate, and we believe that our system 15 16 will yield that result.

17 And, in fact, we have received inquiries from other 18 installations around the country about what we are doing. 19 There has been no large scale demonstration or igloo wash 20 like this in the country, and several installations are 21 interested in looking at Fort Wingate as the lead 22 installation in this area. And so it could become, 23 nationwide, a highlighted activity.

That's all I have for what we'll be doing this summer 24 25 out at Fort Wingate. Any questions for ma?

QUALITY REPORTING AT EXCELLENT RATES! Tel. (505) 843-9241 + Fax: (505) 843-9242 Albuquerque, New Mexico 87102 400 Gold Ave , SW + Suite 200

6

7

8

9

Inc

Protessional Court Reporters, Inc

PAUL BACA

Roy Murphy. This may seem very MR. MURPHY: 1 minor, but there is quite a bit of graffiti inside some of 2 these, and some of the archeology types have even said 3 What affect will that have that this should be preserved. 4 with your --5

No, We have investigated. MS, AJEMIAN: For those that have not seen the this is a valid concern. quote, graffiti, some of it is very artistic.

> MR. MURPHY: Yes, it is.

This is not the gang Okay. MS. AJEMIAN: 10 graffiti you see out under the bridges or the railroad 11 We have been working very closely with Ronald track. 12 Some of you may Kneebone of the Albuquerque district. 13 know him, and he has been working very closely with the 14 SHPO, State Historic Preservation Office, here -- I think 15 I got the right words for that acronym -- here in the 16 State of New Mexico. 17

They have gone out and inventoried all of the drawings 18 and have asked the State Historic Preservation Office, 19 "What do you think?" The result has come back that, first 20 of all, they don't think this wash will impact them. Even 21 if it did, they do not feel it is a significant cultural 22 resource and that we have adequately documented, and we 23 were in the final stages of documenting with igloo 24 diagrams, pictures and everything what is out there. 25

56 QUALITY REPORTING AT EXCELLENT RATES! MR. EGNACZYK: They've doubled them also. 1 2 MS. AJEMIAN: Okay. I didn't even know So we have taken great interest in that and did not 3 that. want to do any damage if we had a definite cultural 4 resource there, and we think we have it well documented. 5 6 MS. JACOBS: Is that like World War II era, 7 or something? 8 MS. AJEMIAN: Yes. MS. WALDEN: Malcolm Walden. I can comment 9 on that, when they were constructed. There's one there 10 that is particularly of historical significance, because 11 the majority of the work force that built the igloos at 12 13 Fort Wingate were Navajo due to sheer demographics, you know, when it became a county. 14 Professional Court Reporters, Inc There was one gentleman who was African American, and 15 he made characters of himself in some of these igloos, 16 because he was a real distinct minority at the time. And 17 they felt that to be of historic significance, the fact 18 that, you know, one African American wanted from the 19 PAUL BACA 20 That's a lot of what generated the investigation. igloos. 21 That information is in the MS. AJEMIAN: State record and is available today. 22 MS. EGNACZYK: And Fort Worth has already 23 presented -- put together a publication on that also, I 24 25 believe.

Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242

400 Gold Ave., SW + Suite 200

57 QUALITY REPORTING AT EXCELLENT RATES! MS. AJEMIAN: Any other questions for me? 1 2 Ms. Jacobs. How do you plan MS. JACOBS: Julie Jacobs. 3 to wash these lagoons out? And what are you going to do 4 with the water and ... 5 The lagoons? MS. AJEMIAN: 6 No, I'm sorry, igloos? MS. JACOBS: 7 Lagoons, igloos, you know. 8 Chris Whitman in your office MS. AJEMIAN: 9 has the proposal. 10 MS. JACOBS: Okay. 11 He's not in He's right here. MR. FISHER: 12 the office. 13 Chris, would you like to MS. AJEMIAN: Oh. 14 Professional Court Reporters, Inc address that? 15 Chris Whitman here. Yeah. MS. WHITMAN: 16 The ultimate disposition of the water from the washout has 17 not been determined yet. I think you guys are approaching 18 the City of Gallup, right? 19 PAUL BACA That is the lead option right MS. AJEMIAN: 20 now, that after we pre-treat it with the carbon absorption 21 unit we'll be using, is that will be taken to the Gallup 22 Municipal Waste Land Treatment where we'll pay a f e for 23 disposal, however that --24 MR. WHITMAN: Other options have been 25

Аврицисцие, New Мехисо 87102 Tel. (505) 843-9241 — Fax: (505) 843-9242

400 Gold Ave , SW + Sune 200

_

_

400 Gold Avel, SWI + Suite 200 Albuqueque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

NČRA

Professional Court **Reporters, In**e

PAUL BACA

proposed, like sprinkling of water, if it's clean enough, out on the open range. That sort of activity would require a permit from the State Environment Department to undertake that. So that permit is being evaluated as we speak.

MS. AJEMIAN: The actual wash itself, though, is similar to steam cleaning, high pressure, low volume, and there are trenches within the igloos themselves. They've got a chalkboard here if I could show you what I'm talking about.

Looking at -- as most people have seen one of these igloos, at least in my authority, now, you've got the roof of it like that. But if you look at the floor, you've got this with an outlet to the exterior. So it's already designed to be washed down. So we don't foresee collection should be any problem.

In fact, Stan McCalister, our on-site rep. with the Corp of Engineers -- Julie, if you want to talk to him later -- he observed how the ones that had already been washed out were collected and says it was an excellent collection system, so it can be done.

Any other questions. Okay.

MR. FISHER: Okay, thanks, Matrina. I
appreciate that. Does anybody have any other questions on
anything else that's been presented tonight? Julie.

400 Codd Ave., SW + Suite 200 Albuquerque, New Mexico 87402 Tel. (505) 843-9241 + Fax. (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

NCRA

Professional Court Reporters, Inc

PAUL BACA

Julie Jacobs. I want to thank MS. JACOBS: 1 You're far outnumbered here, as the public for coming. 2 you can probably tell, and I think the presenters have 3 They've done a good given you a lot of great information. 4 But if I were one of you job on presenting their topics. 5 in the public, I'd just be blown out of the water. And so 6 I do want to give you folks a chance to express your 7 concerns to the experts who are here now and can, vou 8 It's easy to just clam know, can answer your questions. 9 up, because you probably feel totally overwhelmed to this. 10 These are the people to ask your questions to, so here's 11 If you're quiet, well, that's that. 12 your chance.

If you do have any questions on MR. FISHER: 13 the way back again, we try to do these on a quarterly 14 You know, it depends on, you know, all the work 15 basis. we're doing out there and if we have enough information to 16 But we try to have them on a guarterly present to you. 17 basis, so if you'd like to write them down and bring them 18 to the next meeting, we'll pretty well have all the same 19 players here for the next meeting. 20

MR. MILLER: Hello. My name is Bat Miller. I'm the general contractor who was contracted by the Corp of Engineers to erect the missile test sites at Fort Wingate. I want to thank the Corp for giving us a chance to work. I would like for you to reserve all the work for

UALITY REPORTING AT EXCELLENT RATES! Fax: (505) 843-9242 2 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax: (505) Smite 200 3 4 100 Gold Ave., SW 5 6 7 8 9 10 11 12 13 14 Professional Court Reporters, Inc 15 16 17 18 19 PAUL BACA 20 21 22 23 24 25

1

future or look for contract -- environmental-type work. Ι just want to say thank you and have a very save environment up there.

MS. AJEMIAN: I will mention in response to that -- and this Katrina Ajemian -- that our small business representative within the Fort Worth District Corp of Engineers has already approached me and asked about our upcoming work and what can we set aside and identify for targeting northern-owned businesses in the So that is something we're definitely looking at. area. MR. MILLER: We want the money to stay here. MR. FISHER: I understand. Yes, sir. MR. TOM: I had a question --MR. FISHER: Your name, please. My name is Vince Tom -- as to who MR. TOM:

comprises the Restoration Advisory Board?

MR. FISHER: If you'd like to be a member of the Restoration Advisory Board, basically, they filled out an application a few years ago when we got started and submitted it, and, basically, it was just kind of voted upon, you know, who would attend -- or who would be a member of this board.

MR. TOM: So who are the members now? The members -- of course, I MR. FISHER: didn't bring my list, but I'm a cochair, you know, and the

400 Gold Ave., SW. • Suite 200 Albuquerque, New Mexico 87102 Tel. (505) 843-9241 • Fax: (505) 843-9242 QUALITY REPORTING AT EXCELLENT RATES!

1

2

3

NCRA

Professional Court Reporters, Inc.

PAUL BACA

Army representative. We have another cochair, Lynn Shelton, who was unable to be here tonight.

MR. EGNACZYK: He's ill.

4 MR. FISHER: He's ill. Mr. Joe Wirkler is 5 also a member of the Restoration Advisory Board. Bob 6 Herren is also a member of the board.

There were -- Malcolm Walden MR. WALDEN: 7 There were members from the Army and from 8 speaking here. the State Regulatory Agency and then members at large. 9 There were notices that were put out in the paper that 10 basically were asking for concerned citizens to volunteer. 11 And just about everybody that did was selected due to the 12 small number. 13

There are other BRAC installations, and it might be 14 worthwhile to give a little bit of background here in 15 Restoration Advisory Boards. They were created by 1993 16 legislation. As part of the parliament that -- what's 17 known as President Clinton's fire plan and then further by 18 the Base Closure Community Assistance Act, to serve the 19 single purpose of getting BRAC cleanup data out to the 20 public as a whole. 21

Some BRAC installations in the country have Restoration Advisory Boards where there will be 60 or 70 members of the public there. Here at Fort Wingate, the public participation has always been fairly small, but it

52 QUALITY REPORTING AT EXCELLENT RATES! Athuquerque, New Mexico 87102 Tel. (505) 843-9241 + Fax. (505) 843-9242 is still an open process, open to the public, and anyone 1 who is interested is more than welcome. You know, all 2 you've go to do is submit your name. 3 MS. AJEMIAN: This is Katrina Ajemian. Who 4 5 should they submit their name to? MR. WALDEN: Larry Fisher, Cochair. 6 Myself. And if you'd like to 7 MR. FISHER: do that, if you'd leave your name with that young woman 8 out there. You know, we can send you an application and 9 have you fill it out, okay? 10 MR. TOM: Okay. 11 If not, Any other questions? MR. FISHER: 12 we thank you very much for your participation here 13 tonight. Thank you very much. 14 Reporters, Inc Professional Court (The proceedings stood in recess.) 15 16 17 18 19 PAUL BACA 20 21 22 23 24 25

100 Gold Ave., SW + Suite 200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

QUALITY REPORTING AT EXCELLENT RATES!

Tel. (505) 843-9241 + Fax: (505) 843-9242

Albuquerque, New Mexico 87102 400 Gold Ave., SW + Suite 200

Reporters, Inc. Professional Court

PAUL BACA

REPORTER'S CERTIFICATE

GERLENE M. MARTINEZ, a court reporter for the I, office of Paul Baca Professional Court Reporters, do hereby certify that I reported the foregoing meeting in stenographic shorthand and transcribed, or had the same transcribed under my supervision and direction and that the same is a true and correct record of the proceedings had at the time and place.

I FURTHER CERTIFY that I am neither employed by nor related to any of the parties, and that I have no interest whatsoever in the final disposition of this matter.

WITNESS MY HAND THIS 5TH day of March 1997.

Μ. tified Court Recorter 12/31/97 # 75 Cer License Expires

RA BOARD MEETING			Condenselt							#75 - and				
#75 (1)	63.23		29.9	29.1	29.19	accord	ance	÷()``>	admini	stratio	<u>n (1)</u>	alludin	g 121	40.23
11 00	1:15		29 23	29.25	25:24	accura	telyn	15.17	22.4			40 7		
02 [1]	25:8		29:24	29.22		acres	ij 40:2		advisor	ГУ (8)	1 🖸	alluvia	រ ប្រ	27,23
03 [2]	24:8	25:8	30.22	31.5	34-5	acrony	m	55 16	24	28.8	tit ie	almost	[11]	9.13
04 [2]	24.8	25:8	31:7	31:14	31:21	Actia	36:12	41.8	81:10	0112	0:10	13 24	17:10	17.10
11 m	52-21		31.21	31.25	32.21	46:1	61:19					28:22	28:15	29:19
12	52.21		i 32.21	33:1	33:23	action	[9]	15-19	- Anans - 2015	5 [2]	3.14	31.11	21.2	31.14
12/31/9	7.01	63.73	33.25	34:5	34:9	17:13	18:1	25.1n	affort		e e . 1	intona a		5.75
1300	40.2	00.40	34.11	34:16	34:20	43:5	43:7	44:10	Africa	11	2214		718	7.74
155600	30.2		34.20	35-4	24.23	+9:17	53:4		AIRCal SAUG	0 [2]	20.15	9.1	9:10	913
160	20.44		35	35.12	35-13	actions	S [1]	2.22	after	w.14	1.1.1.1	9 (6	13:13	13.21
100(1)	-0.9		35.14	35.21	35:25	active	[2]	32.3		344 75-10	יינ ו ב	14.0	15:23	19:5
1055	10.10		36 7	30:8	36:14	23.2			43:16	44.7	44 13	. 22.4	23:9	30:18
1062	10:19		36.20	36.20	30:24	activit	ICS [36]	2.1	57:21			34.18	37.6	50:24
1902[1]	25:2		38.1	39.18	35.35		83	n de la composition de la comp	again (2	39	A 11	52.7	2	
1981 [1]	2.915		39.19	43:1	40.23	<u>д</u> .=	9:21	10.0	,	15.6	15.8	already	(4)	56:23
1988 [1]	42:16		40.23	41-9	41:9	, 10.12	12:24	15.15		12.20	25.24	58-14	58:19	c0.7
1992 [3]	10:20	21-24	41:16	4 1:1+	41.15	: 19:5	20:7	26.23	1 2014 1 2014	10.11	- 2 Y 3 1 DD	also (33)	3:3	4-22
42.22			41:10	41:16	4::18	20.24	20:25	21.13	34:2	34-15	34.23	4/23	7:25	9:5
1993 [1]	61:16		41:19	4202	42:19	28.22	30:1	3212	35:11	36.2U	39.10	9.20	9:24	10:1
1995 [1]	52:9		43.9	43:18	+2.0 ÷3-70	35 11	22:17	30:17 30:17	41:4	45:1é	51.3	17:19	23:20	25:18
1997 [2]	1:14	63:1 4	44.9	4+:13	44 I D	45:15	47:17	48-10	5-14			20.19	2912 34×141	29:14
2 {1}	28.8		44.16	44:21	44:22	48:21	51:19	51:25	against	(1) [1]	48.12	3.12	32:12	32:24
3.5 [1]	38.3		45:7	45:17	45.20	52.2	52:13		agencio	S [1]	16 17	32:25	33-14	35.13
317 [1]	4:15		1 45:25	46:2	46:14	activit	y [8]	1:1	Agency	/ [2]	43:24	' 3∱:lo	36.25	42:8
45 m	42:25		40:12	40(12)	40 17 17:0	2.4	8:4	43.8	61:9			45.3	49:11	53:25
5 m	1.14		47:15	47-19	45.20	51.16	52:15	54:23	ago [3]	47:9	47.19	56:1	26:24	61:5
50 m	27.14		49.2	49.3	49:8	76 		· · •	ńu:19			01:0		-0.
503 121	14-74	52-121	49:8	49:1	-9:25	- actaar	[14] 11-E1	- 100 L	agreed	121	17.13	anema	tive [1]	2013
STHOU	43-13	1 - 1	50:1	50.14	50.15	19.14	37-15	37.34				allema	tives[1]	41:20
6.01	1.15	. . .	1 20.20	20.23	20:25	35.11	38:12	38.14	agreen	cnt {2}	2019	althoug	3p (5)	2:6
60 (2) 60	41.12	J. <u>1</u>	, 21.1 , 51.1	2412 570,54	10 - 10 - 10	38,15	48:24	53.33	-				L	
00[1] 70	0.23		53:2	513	4	55:0			Azemia	ID [36]	1.24	anoget	ner	54:11
70[1]	01:23		53.8	53.04	54.2	actual	ly 1551	5.21	1	1:05	211-	always	[2]	14:15
132[1]	52:19		54.iu	54:23	55.2	7:13	8:13	- 8 .3₹	42:17	44.23	451	0.042		
a [249]	2.15	I:le	: 55.7	53.22	56.4	10:8	10:22	1.1.1.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	45:14	47 3	59/11	2111 [8]	21.2	511M 81577
- 31 ° - 5-1 0	->:24 -5:11	4.24	56.71	20.1	20,20	11.4	13-25	14.10	50:22	\$1:5	51:9	5.01	53.20	63:10
5.23	6:10	6.14	1 58.0	27.40 50-4	- 06.5 Syld	15.12	16:14	lo:15	51:14	52.5	53.19	amendi	mentuu	46-11
6:14	6:22	7:3	59.7	59-14	59.17	16:22	17:2	t = .9	1 55-10	24:15	22:0	Americ	10011.[1]	56:15
7:3	Ť. 4	7:15	i 59:24	60;2	ov:13	17:14	17:17	17:28	5.021		57.6	50.19	/ 411 [2]	. 10. I -
7:23	8:21	8:21	- 60°17	(tů:19	60:21	18:1	18:5	18-7	- 9	57:24	57 20	ອກາການເ	uition ex	ור ב:
8:25 0.00	9:9	9:19	60:25	61:5 41:31	().(h)	18:12	10:20		28.0	50 4	611.5	34.24		
2. - 2 10:21	11.1	110110	0112	D1(2)	00.0	28:14	28:19	24.32	0 - .4	t2.4		amoun	tm	28:12
11:24	12:7	12-13	 ∴abotom		50.7	30.24	31:9	31.17	Albuqi	acrque	6	an 150	417	745
12:15	12.15	13.7	abidee	entif	20.21	31:19	32:8	52:12	1 Here	2∪ue	21.1	12.3	13.9	14:17
13.7	13:10	13:22	ablacs	11	397.21	32.24	32:25	38.5	- → - 1N	2222	22.12	16.6	10.7	10:11
14:1	14:20	14:21	aDIC	12.2	10:2	38:18	40:12	40.56	Alexaa	Inder	1 49.24	16:12	18.1	2 0:10
15:1	15:4	15:6	<u>نہ</u> ، ۱	55(25	2412	+1:3 1-7*	41:10	42020	Alexan	acr 191	4.5	20013	20:15	20:17
12-23	1019	10.9	about	20;		50.11	50.5	40 I ·	4.5	4010	40 10	20.22	23:21	25:16
10.10	10.10	1.2	1 0.0 77 \$	- 1001 v 26 K	-:	u bhe	18-7			- • • _u • _	+ 2° 17	2012 2011 - 20	28,19	29.14
17:8	17-12	114	28.14	52:10	20.10	audini	16.1	·· ·	aller			2010	32.10	30.00
17:19	17:20	17:23	- 40.21	42:15	45:19	່ວຍບານ	Un [2]	10.1	~ 417 [44] \\\\\	1 3	0.4	720	33.7	33-19
18.7	1አ-9	18:12	' 4 7,4	⊣ 7.13		additi	malia	22.22	11.20	13.24	14 6	33/20	34.2	36-13
19.3	19.12	19.74	54-18	5 N. I.V.	60 S	44 3	11-2 211-2	47.15	14:12	10.5	26.24	3 23	37 3	38-14
1916	19.18		61.12			47.22	41.23		23:11	24.9	25.23	⊒ 1 1 1	12-15	44:12
:12	2204	22.10	above	2	47.25	additie	onaliv	1 22.22	27:1e	30:25	31.4	415 I.	+ə.i! 19-1-	4 .14 30:2
23-5	23.14	`	47 25			addroe	S 181	1 30 X		35 Fe		• / 5 • •	49-15	NU: N NU: N
24-1	24.4	24.9	absorp	tion [1]	57.21	11-1	1, 12 101	4		· · · ·		en i C	1990 I M	0. <u>-</u> 9
24-14	24 23	25:3	accept	ablent	72.14	45.23	46.23	48.1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			analve	İSTU	46.16
15-11	25:1e	25.20	accept	ing 📖	-23	57 15			→:	4217	432	analuti	calu	15.16
25.20	261	26:5	42 %	-		addres	singit	.: - :•	4 14.		45.6		24 i 3	12.20 12.30
10 in	19.22	10 22	access	<u>e</u> 1 (748	alicqua	ately	55 23	5 a c.m.	5	54 24	analyza	0 : 1 i	
			access	iblent	$2 - \alpha$					-	1.15	and w	~ ()] 5, 2 <	7 - - 7 7 - 14 i
		- 7 - 1								· _ ·		attra 19.	1 - -	- 111

—

-

-

-

 $\overline{}$ $\overline{}$ Ý - $\overline{}$ $\overline{}$ $\overline{}$ - \sim - \sim $\overline{}$ -~ - $\overline{}$ $\overline{}$

-

- - - -

Index Page 1

RA BC	DARD	MEETI	NG			Сот	ndense	It i	_				and	<u>/or -</u>	at
2:11	2.12	2.13	37.9	37.22	38.5	18.17	20:11	2.3	5000	09122	<u>∼</u> ÷		n. N		, —
2.16	2.22	2:25	38.18	38/27	39-10 30-10	. 21.3	21.11	2:13	area par	Ч.,,,	344	around	[7]	2.10	г
1.19	2.24		30.19	40-3	40.4	24.2	24:17	- 1.2	+ 21		5 i		100 11 - X	54.15	I
4:25	5:2	5.4	40:5	40.6	40.7	26.23	29.24	311 1	617	n:13	5.17	20000	421	6-11	٢
5:5	5:11	5:12	40:12	40:15	40.10	30/8	32:9	32/11	n 21	- 3	-	- anoyoa - 15		7.19	-
5:13	5:13	5:13	40.20	40:25	41:1	36.6	37-14	3724		7 10	7 13	7-25	8 23	03	1
5:16	6:5	6:16	41.8	41.10	41:1	- 72-13 - 75-2	4006	-41-23 So 12		T: ∩ = 3.		94	9.17	10.7	[
6.18	6:12	6:24	42:8	42:8	42.14	54.25	564	57 1	ין או זר ד	11	\$11	10:22	13-14	13.19	t
6.24	7:8	7:9	42:19	42.20	42.22	58.16	55.22	55-24	× 22	8.24	8.25	1221	14 2 14 10	14.2	-
7:13	7:14	7:19	42 24	43.1	43:2	59-13	e2:12	n3 1	93	41.5	93	15.22	1.10	17:11	Ē
7:19	7:24	8:5	434	43.5	43.0	anybody	Y U I	58:24	911	9.15	915	17:18	17.21	19.7	1
8:18	8:12	8:25	. 43:21	43.23	43.19	anyone	[2]	30-16	9 0	915	- 10 15 - 19	1913	19:16	30:13	Γ
9:1	9:6	9:14	44:6	44:8	44.9	. 0 <u>.</u>			10:18	11.1	11.15	20.10	31.17	31:19	
9:18	9:20	9:21	44.15	44:16	45:2	anythin	B 121	1 27 34 10	Hie	13/11	14.24	3 .21	31 22	31:24	1
9:24	10:2	10:2	42:6	42:	42.12	58.25	• / • •		15.5	15.8	15-10	32.22	34,19	3517	Г
1.10:4	10.2	10:2	42.12	- +2.1 - 46:1	40.20	anywhe	rem	19.8	1 12012 1 17-11	12	101	35.8	35/10		~
11:3	11:5	11:20	46.7	40:9	46:15	anologi	7C (1)	3(~10	1-19	18:0	16.11	arroyos	[2]	19:12	ł
12:4	12:16	12:17	46.21	46:23	46.25	appeare	d m	33.17	15-3	19.5	19 -	20,0			۲
12:18	12:23	12:23	47:10	47:20	47.21	annears		194	19:9	19:17	20.1	art [1]	-1:15		•
13:13	13-14	13:15	1 48:1	48:4	-15. 18⊴15	applica	hleur	15.70	205	20.13	20.18	artistic	[1]	22:8	Г
13:10	10:20	1-4:1 1.1-5	- 40:0 45:17	40.12	+0.42 49:6	applica	tion	60 I D	21.5	2118		as [65]	5.3	2.6	٣
14:10	14:14	14:15	49.7	49:10	49:12	apprica	1011[2]	001.17	22:19	22:24	24.5	1 2:12	0.10	9-25	
14:19	14:19	14:23	49:16	49.22	49.23	annreci	atem	58.24	26:40	27.22	27.23	10:14	12.8	14:11	Г
15:1	15-2	15:3	1 50.2	50:3	50.4	anoroad	-11 (2)	12.9	29:5	29:10	29 10	14.24	15:13	16:3	-
1 15:11	15:12	12:16	50:14	5007 50:15	50:12	12:11	(-)		29:14	29:16 30:13	29.23	10.3	17.22	19:9	1
15:24	16:3	16:4	51:1	51.4	51:11	арргоас	ched m	60 T	30:18	31:17	31 25	20:9	21012	23:25	Г
16:6	16:7	16:12	51:13	51:19	51:21	approa	ching 🗗	1.57-18	32:1	32:13	32-19	24:5	24:22	25:3	
16:14	17:5	17:15	51:25	51.1	52:3	approva	alij	4c.17	33.2	33,4	33.5	25:16	25:16	28:20	1
17:16	17:17	17:18	22:0	32.10	22011	approve	cd [2]	:1*	33:11	33:14	33.20	28 25	29:13	29:19	r
17:20	18:16	19.3	1 53-2	53:4	53.7	46:20	•••		35 23	.4 70 .4 70	34.17	30:20	31:7	- 3204 - 35-23	•
19:6	19:8	19:9	53:7	53:10	- 11	approv	cr [1]	18:21	34.25	35:5	35.6	1.01	37.73	39.14	Г
19:11	19:11	19:15	53:13	53.22	23:24	арртох	imated	[1]	35:13	30-13	30 le	39-18	-9:18	40:9	τ
19:21	20:10	20:16	54.2	54:9	54:11	8:19			<u>: 36:22</u>	30.25	37.4	41:19	42:6	43:4	1
20:20	22:5	22:15	24:12	5-1	24.20	approx	imately	y [2]	3 0	37:6		- 45:20	46:13	46:14	Г
23.1	22.17	22.21	55:18	55.19	55:23	27:14	40:2		40.0	44.5	45.24	- 4 1 - 30-16	49:5	49:8	
23:9	23:16	23.18	55:23	55.25	56.3	April (1	453:14		46-9	46.22	48:4	54.3	54.21	58:4	1
23:22	23:25	24:i	56.5	50.15	50:17	arbiter	n –	18 20	48.10	4a:12	51.10	58:11	-9.2	o0:15	I
24:7	24:8	24:8	56.22	56:23	57.4	Archeo	ologic	ij 2 0.6	517	54.22	(9) [1)	n i T	01.18	61: 21	
24:9	24:9	24112	50-3	2010 5910		archeol	logist	3] 2 0.14	areas	63;	5 12 	asbesto	DS [1]	1 8 11	1
24.13	25.8	25:10	59.16	59.18	oU.2	20.15	20:22		- 011 	0 19		aside (:	9.4012	50.2	ı
25:13	25:15	25:17	60.5	60:7	hu:8	archeo	logy III	55 J	- 5 ie	9:23	i 2	äS 🗄 [4]	5-6	5.10	-
25:22	26:1	26:1	60:8	60:14	60:20	arc [74]	2.12	8 10 10000	1.1.4	10.8	19715	34:5	5911		1
26:5	26.10	26:14	60.25	613	61:9	ð. I	8:19	10.10	leilé	10.21		asicd	3]	28.19	
2010	27.22	28-3	62:1	62:7	52:9	12.20	12:23	13.2	12010	1331	12.1	22.12 		36.33	•
28.4	28:8	28:16	63:6	63:7	63:7	14:6	14.11	15.11	15.16	15.12	15 18	asking	[2]	38.23	1 T
28:17	28:24	29:3	65:8	03:9	n3,11	16.8	16:21	16.21	1.2	10 0	155	185055		13.0	
29:6	29:9	29.11	and/or	r [1]	16.11	1 1 1	19:21	19 10	1-13	17.2	1	400000	ed uu	15.77	۱ ۱
29:13	29147	29:20	angle	[1] 8.22		74-14	24:25	25.8	12.8	144	19 1.	000000	mont	1.1.1	- 1
31.1-	31:2	31:10	anoma	alicsm	8:2	25:14	25:16	25 24	20.22	20.1		400000		61.10	
31:10	31-13	31:15	anothe	CF [12]	8.23	: <u>27</u> 7	27.22	30%	25.26	25.23	2 \ 2 +	ASSIST	ance 1	11.11	' I
31:18	31:23	31.24	13.9	14:9	14,19	30-15	33 12		28.25	29.0	29/22	associ	ated [4]	12:21	,
32:9	32:9	32.15	14.20	311	32.1	4 (b) 17 P J	20-7	3.12	3002	30.23	39-25	40000	e 113	57.1	
1 32:20	33-1	32.25	- 15 -1 - 15 -1	- 29.44 61-1	40.10	39.24	41:20	43.8	3.5	31.5	34.2	2350111	eduu	י ב- ג בי	1
33:16	33:20	33.21	ลกะพา	51.4 20161	2018	42.12	43/16	43.18	2210	1		assum	ingu	27.0 27.5	ı
33:22	33:22	33.24	21.20	3009	4:21	4-12	4. 22	47.15	1.25 22,12		47.23	aaauu at	1.10		'
34:5	34:8	34 10	50.8	50.5		47:22	48	48.09		50 ge		ar 881 2 2 3	2.25	33	
34:15) 34:19 54:19	321	any (5)	01 2 7	545	ન્સ્ટ 200 વૈદ્ય પ્	52.2%	52 24	Army	1351	<u>-</u> ·	4.15	5 19	- 24	
1 2219	11.55	25.00	5::	5.8		57.24	53 E	53.2	2010	1=13	<u>}</u>	1.15	- (s)	× 20	
1 22 12	3019	30110	11.8	12.3	17:4	:3.12	54 0	:		• -		· ·	240	- 9.12	
36.10	3e [7	36.21	15 A 15 A	12.4	17.15	54-18	54 <u>1</u> -	s7 4		- · ·	-			10.5	s.
1 : 7 :	3= =	31.0	1.5	10.00	• • • • • •		20.2		₹	. •	•	41 - 1	· · •	-	•

·-- -·

-- -

~**-** · ·

·_----

Index Page 2

- - -

-

£ L 1 1 Ŧ I. ٤ Т T 1 L

and/or - at

RA BOARD MEET	ING		Condensel	t			attend - co	lection
18.15 20.11 20.15	7.8	7.3	3 3 38 16	<u>s is</u>	bring (4) 52-13	5.5.8	chance (3)	•) *
22.1 23.7 23.18	1 7.19 8 4	511	- 38/20 - 40.18 -	122	5 PS01x22			
$\begin{bmatrix} 23.21 & 24.9 & 24.12 \\ 23.112 & 23.12 & 25.2 \end{bmatrix}$	10:6 FGL2	10/21	- 42.2 - 42:10	12 1	brought(i)	45.0	channel (5)	1705
1 25:14 25:15 25:17	1423 12.	3:23	44.8 52/7 5	52 1 2	:Bud(i) 4.1		100.00 200.00 0.3558	
25:18 25:23 25:24	32:17 33.16	13.22	53:19 54:19	5 12	building (11)	22.15	Chanelin	4:10
26:2 29:1 31:19	33:23 33:25	32:8	55 14 57 18 5	- 25	22:19 48.24	49.1	characteristics	
31:23 32.3 33.5	36.2 37.1	37.2	. 58.19 - 58.25 - t	ni.25	- 4740 - 4946 - Kosti - Kosti	44 (n) 5	Ber	. •)
33:10 34:16 32.3	41:9 6/018	00:20	before [6]	2:8	52:10		characterizatio	DT [4]
40.11 - 40.13 - 40.17	haciac u	77.15	6:25 14:3	18/11	built ni 56-12		. 610 9.7	9.21
40:19 40:25 41:1	bacins [1]		hogan	:	bulldozem	51-1	1.15:15	
42:5 42.18 43:1	DOT	74/19	bolon(m	₹₩1₩2 1 1 1.0	hulidozed u	13.21	characters (1)	56:16
43:3 43:25 44:18		<i>z</i> 1	- UCIOW [3]	: H 1 C	Burcana	3-14	checking(1)	24.21
49:20 50:20 51:36	DC (9) 2 2 507 5 20	2.4 Tota	henching ()	0.12	3:15 3.20		Chee [1] 4-15	
51:18 51:20 51:23	- 10:10 11:19	12.7	thends up	2-7-1 	burial pag	611	Chris [4] 2:15	57:9
52.9 53:5 53:6	12:11 12:15	12:22	bost on Sur	·	n1N24	815	57,14 57,16	
53.24 54.1 54:21	14.14 15.19	17:5	botter (1)	12.5	9 a - C 20	13 -	Chuck	3:23
54.25 56:12 50:17	17:12 17:23	18:12	48:16 48:17	-0.1	12:24 19:20	19-24	chunk (3)	26:14
59:23 60:10 61:9	- 19:11 19:14 - 20:10 22:7	19:10 5:5-0	hetween isi	19-12	20.2 21.16	28:16	50:20 50:24	
61:24 63:9	: 22.23 13:8	23.10	20:9 24:19	2r 5	28:17 28:17		citizens ())	61:11
attend (1) b(12)	23:23 24:4	24:10	41.16		Burn (11, 13:15		City [1] 57-19	
attention (1) 15:9	24.15 24.21	25-25	BIA (1) - 3:17		burning/open	6	civil [1] 52.3	
Augustian 43:31	26:10 2n.23	27.19	bids ()1 49:21		1.20 5.24	52	civilian (1)	51:5
47.4	29.10 300	31.1 22.10	big 121 20:13	53-5	3016 47.0	48.4	clam (1) 59.9	
authority in 58-12	1 31.11 31.13 1 33.75 37.5	37.75	'billion m	28.19	business(1)	60:6	clarification	1 19.4
available av 25-14	39:13 39:19	40:1	bit (10) 7:4	8-71	businesses (1)	60.9	£ 47:10	
53.7 56:22	40.2 40.3	40.4	18:8 19:4	19.15	C [8] 2:1	29 5	clarify (i)	16:25
awaiting (1) 15/16	40:5 40:6	40.7	22:2 25:20	28:5	29:10 29:15	50:11	clays (1) 27 22	
award m 49:22	40:9 41.9	+1:18 -11:16	61:15		2 34:17 34:23	35.5	clcan [4] 14.15	14:16
away (1) 12:16	43.20 44.2	45.7	blow (1) 11:13		canisters [3]	37.12	49:17 58:1	
Bacaul 63:4	45.9 48.3	40:3	blow-in-place	2)	28 		cleaning (1)	58:7
back 1012:16 13:14	46:8 47:11	40.3	12:13 12:15		cannot(i)	24.11	cleanup (2)	3:24
15:4 19:14 24:13	48.19 5(08	50:13	blown(i)	59:6	canyon [1]	14.5	6.:20	
31-13 45.12 52:17	5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	2012 4 51400	BMDOn	53.17	cap [4] 40:18	41.5	cicar [1] 33.20	
55:20 50:14	R171 R54	56:18	board [8]	1:2	H1112 H1112	•	clearance [1]	51:25
back-filled [2] 8:12	57.22 57.22	58:15	2.4 50:4	60:1ē 51.5	capping	40.10	Clinton's [1]	61:18
10:22	58:16 58:21	59:6	 	012	carbon [1]	27.71	close [7] 10:19	16. 2 1
backfilled [6] 17.4	60:17 60:21	e1:2	Boards 121	ol lo	Care [1] 40:24		29:1 41:3	77 4
- 31/18 31/24 31/25 - 35 7 35 C		21.20	61:23		(case pt 13.15	3(1,24	- 40°0 - 2019 	
hackground (m. 23.)	ocarings (i)	01:40	Bob (2) 4:9	01.5	3 _ i		closed [16]	n.13 Turi
04CEGIOUNU [8] 24::	became III	2014	boringsu	23.21		1.2	- 10 	<u>ابا</u> درگ
25.11 25:22 28:20	because [16]	t.20	Bortotuu	1.15	11112 14-0	12.24	10.17 15.21	143
61.15	-13.12 - 13.19	1513	bottom		14:2 14:21		19.7 31-18	41:11
balance [3] 17:12	- 19,11 - 20,14 - 1,3202 - 36(14)	38.5	boundarias to	1	31:4 32.21		42.15 46.3 -	46 4
17:14 17:20	43.25 45.2.	54:5	5-18 15-25	19 10	(categories (2)	10.15	closely 121	-15,12
balancing (1) 17:23	56.11 - 56:17	59:10	30.23		11114		221-	
Ballistic [2] 51:17	becomen	54:22	boundary [14]	5:25	category [1]	35.1	closer	47:15
52.23	becomes (1)	17:20	7:8 7:11	5:19	caution ()	25 4	closing	29.1
banding [3] 15.1	(bcd µ) 22:5		9.2 9:14	16.1	Contor [6]	3.1	34.12 40.13	
34:10 35.13	(bcds (s) 22:1	22:25	10.4 11:2	15.32	- 4n - 40 li	42 IV	closure (33)	10.14
bank [2] 14:10 34:19	1 23:3 26:24	49-1	- 22.5 - 50.22 - 30.93	40.2	49:25 - 23:24			12.20
Barber tion 3:17	bccn [65] 0 3	7.2	bounderin		Contral (7)	4 24	1 1 10 25	15.34
3:17 19:18 19:20	5.8 Y n	16:22	13.25	11.2	18124 19114 18124 - 19114	2111	17.22 17.21	18:2
19:20 20:2 20:5	12.1 12.1	13:5	DOX (2) 34(2)	34.24	containuu	5 7 5 7	29.4 32.12	32.13
bacora 215 2:19	12:20 - 14. 	19,23	BRAC 171	h	1 15.68 - 17.8	32.1	346 379	39.7
14.4 35:8 42:1-	2013 20.21	2111	42.6 42:13	51.22	CERTIFICAT	TEm	39614 - 42014 1. J.	44:9
51.21 61.19	21.4 21.13	21.12	51-14 - 6 1-20	o1:22	and the second second		·····································	46:15
based 171 8:9	21.23 21.25	22.24	pricks (r)	54,8	Certified in	n3.23	4n 19 - 47 h	48.17
15.14 17.13 22.2	23-11 - 23-16	24.9	34 8		centily in	t • •	5 21 61.19	
224 281 3617	2→.18 - 2018. 5. 5. 5. 5. 19		bridges (1)	55.14			cochair [3]	60.25
<pre>based-risk(i) 25.22</pre>	1972 - 1974 - 19	17 K	briefing (1)	• •	CERSON	3912-	o 1 o2€	
basic (1) 14.21	32.2. 33.13	3.4 5	briefivia	(*** *	chalkboard	5.5	collected [1]	58 20
basically [29] 51	32.5 31.59	• • •	N. 23			•	collection [4]	41.10
• • •				_				

-

Index Page .

 $\overline{}$

)

· _ ·

RA BOARD MEETI	ING	Condenseit		colored - done
41:16 58:16 58:21	consistent [2] OTH	COUTSC [131 - 15	1e 2	deionate [3] 11-1
colored u 14/13	30.21	0.69 843 195	definite (i) 55.4	12.12 12.17
Columbia un 27	consists [1] 30:11	<u>,</u> 20.24 - 28.21 - 29.9	definitely us ou lu	detonated (i) 13.5
comfortable (1, 2:12	constituents is: 9.25	31.2 33/18 35.16	degradation us to "A	detonation [10] 4 20 T
	14:14 25:14 32-11	-2.18 22.0 102-	dugrado y ha 22	- 5-24 - 6-3 - 7-20
	47,25	court (3) 63.3 63.4	Durate	1 1 17 11:18 15:3 T
33.20 33.22 33.22 33.8 50.7	construct (i) 11-1	1 03 23	Degree III 526	30:6 47 48.4
	constructed (2) 33.14	- courtesy $(1) = -39.2$	delineate (i) 30/25	develop (i) 43:6
	5610	• covers [1] 51:16	delineated [6] 8 19	developed [1] 23.2 m
56.9	construction (6) 34-11	(cranny))) 5-3-	$\frac{1}{4}$ [101] $\frac{1525}{10.2}$ [0.2]	developing (1) 52:10
Committee III 6.5	35-15 49.22 51.11	crap (1) 13.11	16 18 19 19 19	diagrams (i) 55.25
	51/18 51.19	created (i) 61/10		different [6] 14 22
compare (1) 25:11	contact [1] 13.4	creating (i) 13.2	domocrophica	154 16:5 19:12 F
compare (i) 2011	container [1] 20:15	criteria (6) 32:14	demographics [1]	- 34(8 - 54,13 - _m -
	containers [1] 37.15	39:12 39:24 29 2:	demolishing as to	difficult ₁₃₃ 5:11
Comparison (2) 24:5	contaminant in 25:12	<u>† 40:13 - 40:15 - </u>	509	<u>: 34.16 3р:14</u> Г
annulation (c. 22.1)	contaminants (3)	cross-contaminated	demolishing au sets	dig (1) 16 3
	10.21 15 17 49 4	[1] 24-19	demolition w 7 19	digesting [1] 31:4 F
[compile [2] 31:13	contaminated (4)	cross-section [3]	1-0 34.13 35:15	digging (3) 11:4
	44:10 45:21 47.15	a 31:5 - 31:7 - 37-1	5 1.12 1.711 21.14 5 50-15	14.2 20.20
completely [1] 11:19	40-4	cultural (3) 52-1	demonstrate ou SIS	dimension (2) 33:1 r
[complex [1] 28:1	contamination [6]	i <u>55,22</u> 56:4	demonstration	33:25
compliance [2] 29.7	13/22 23:6 23:23	Curley [2] 3.13		dimensional (2) 31.14
29:17	1 27.12 47.14 47:21	* 3.13	dopartment (1214	33:24
component [1] 50:16	continue (3) 40:8	current [16] of 2	2 17 2.25 310	direct () 20:17
comprises [1] 60.16	46.18 4n.21	7 14 9 (0 9 11	3.22 4.8 39.10	direction (3) 25:25 T
conceivable in 32:14	contract [3] 45.7	0.915 - 10.12 - 10.1	43.23 50:4 53.2	26.3 63.7
concentration (s)	49.21 60:1	13:11 15:5 16.1	- 58:3	directly (2) 20:7 T
17:8 18:9 24:4	contracted (i) 59.22	בוענ 17:1 19:00 ביין 17:1 יין מוב וריוב הפרי	- depiction [2] 149	2:3
28:9 28:10	contractor (3) 12:25	20.7 31.21 21.2 normine.co	120	discontinued (1)
concentrations [4]	29:21 59:22		depicts (i) 13.15	45:5 4
23:8 24:6 28:11	cooled in 40-re	CUI [1] 34:19	_ deposited (2) 9.23	discuss (1) 50
54:9	coordinate (2) 51:24	cut-outs (i) 101		discussed (H 48.25 T
concept [t] 40.22	53-1	Cutback [1] 30.3	6 depot (7) 1:1 2.4	discussing at 43:15
concern [9] 6.22	coordinating (2)	-cutbacks [1] 30.2	2 27 5.25 51.16	44% 4412 T
29:22 29:24 34.25	1 21:1 42:7	(cuts [i] = 10.21	51.13 54.2	disposal usi 29:5 r
43:3 43:25 49:5	coordination 17	$D_{111} = 2:1$	depression [1] 17.3	29:10 29:16 30:11
50:11 55:7	10:3 12:24 16:14	damage ()) 50-	depressions [3] 33.9	, 34:17 34:23 35:5 T
concerned [1] 61:11	20:16 20:25 43:19	- data (12) 24/12 - 24/1	4 . 35:13 36:16	35.21 36 1 39.18
concerns [4] 13:18	44:14	24.15 24:23 25	depth [9] 11:3 14.1	-4(c) 41:14 50:18 T
18:13 42:24 59:8	coordinator [3] 2:6	- 26.2 31:14 43.1	14 17 8 23:24 31:10	5307 0124 •••
concrete [1] 22:21	(2.19 2.29	43:14 54:3 54	11 32-9 32:25 33:24	disposed [4] 10:1 U
condition [3] 49:3	Copc [1] 4:10	n1.20	1 3-1 1 I	10124 14120 29142
50:7 54.10	copy (i) 44:22	date (1) 21:4	describe [2] 39 b	disposition (3) 13:19
conditions [2] 48:5	Com [13] 1.24	:days (1) - 34:12	39:24	
48:16	2:22 4.4 10:3	deactivation [2] 34	- design (c) 16.15	distance (1) _0.2
conduit _[2] 34:11	41:1 51:5 51:0	36.17		distinction 56017 1
36.21	- <u>52:1</u> <u>52:2</u> <u>58:18</u>	dealing (i)		district (14) 4.4
confirm [7] 9:23	59.22 59.2 - 6 0:2	debris :271 mil	designated (2) = 25/23	16.15 20.16 21:1
10:8 29:12 32:6	correct[5] 21:17	n 18 7,24 N.S	21.1.3	- 42.1 - 42.3 - 42.8 - L
32:8 34:4 45:19	10:17 40:3 47:3	8:6 8.7 51	< designation (1) is w	42.8 51.90 51.02
confirmed [2] 10.4	6218	9:5 9:19 10	23 designations () 13/12	n de la companya de l Companya de la companya de la company
30.23	correctly [2] 6:24	13/11 13:1e 5	23 designed pp 58-15	
connects [1] 9:3	13.14	17.15 19:8 19	destroying (2) 17 le	
Conservation [3]	correlated (i) 54:11	2013 21:10 21:	17.21	
50 11 41 8 45.25	correspondence [1]	- 1910 TAP TA	destructive [1] 17.9	2010 Altrenatione - Extern
conservative [1]	15.19	34 10 35 15	detect in 23.15	disturbing ()
12:10	COTTOSIVO [2] 50:8	decided up	detected (1) 25-9	documented (a) 55 2.
consider (i) 35.14	30.9		at desection to 12.1	20.2
considerable in	costly (i) 53/8			documenting(1)
28-11	country (3) 54:18	deeply (i) 23		55-24
considerably ())	54.20 e4.12	Jerense m		documents (1) = 45.2
2010	county (4) 56.14	51 77 52.24	Concompane (2) 14 15	doesn'tro 41.2
considering 11, 40.20	couple (2) 36-26	de 1 n C (2)	ا میں اور	done sight 7 11.18
consistin	49 2			(4) 17/24 ≥ 22.18
Leonoras (.)		detinedia	· • · · 7	

· · · · <u>- -</u> · · · · · ·

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

- -

Index Page 1

RA BOARD	MEET	ING		Condens	clt			dots - ge	ologica
23:12 24.15	24 22	clectrical [2]	34,10	33.19 34.2		falls is 42 18		fluid (1) 22-13	
22:6 25:19	32.2	30.21		excavate [3]	13/24	familiar (3)	22 :	focus (4) 17.2	30.24
48:5 50:5	4014 Shije	elements()	4n,19	14/15 15:24		48-10 53.20		32.6 37.4	
58.21 59.4	1	cmployed pr	22.10	excavated [5]	14.2	far 103	25 le	folks [2] 6 6	59 7
dots 11 23.20		employee	5110	17.5 19:11	30 22	27:13 37:23	39-18	follow [2]	4:25
double-lined u	11	employment (2)	4.5(6)	35-20		59.2		44:m	
41:9 41.14	41:15	45.7		excavating (2)	14.8	[tarther [1]	37.4	following	48:3
doubled	56 1	empty _[2]	37.2	18:1_		fast [1] 15:0		force (1) 56.12	
down uzi	7.17	38.18		excavation [17]		favoring(1)	41.2	foregoing [1]	63:5
9:14 14:5	14.7	encompassed	1	10:12 10:6 10:12	15.9	fcasibility (6)	15.14	foresce [1]	58.15
14:11 17:19	22:6	9:15		19.23 20.22	29-26	23 7 42.20	43 L''	forgot(i)	5-14
25.4 27:13	31.12	encountered (1)	20.7	32.15 32.18	32.20	- 46:22 - 49°0		fork (1) 20 3	
31:19 31:22	31:22	Congineer [3]	52.3	33:17 35:11	25.17		10.8	Fort (33) 1:1	2.3
59:18	-10.12	aprinoaring	41.15	30.1			L j	2 o 2:20	2.23
down-gradient	t (2)	Environment			31 M	federalin	1 10	i 3·1 3.3	4.4
25:1 25:9	- (-)	2.2.2. 4.4		35:18	2.4.20	25:13		4:18 2:24	4.12
downgrading	1]	42:1 51:6	51:5	exceed (2)	25:21	fcc (1) 57:23		42:3 42:15	43:25
24:7		58:18 59:23	60:7	28:11		feeting 27:14		45:22 51:9	51:15
draft [4] 24:13	24:23	engines [1]	37.24	exceeded [2]	25.18	FELIN	1.12	51:16 51:20	51.23
43:14 44:13		entirem	52:19	28.3		feitus sers		52:13 53.5	53:6
drainage [3]	7 15	cnvironment	12.16	excellent[1]	58.20	fence un son		54:21 54:25	25:13
23:9 41:6		2:17 3.19	3.22	exciting [1]	48.20	fanced	10 7	р 20.42 - 29.43 - 6 -24	יי עמ
drawings [1]	55.18	4.8 8.9	39:10	existing in	11.15		40.7 47.4	forward m	47-1
drinking (1)	28:7	58:3 60:3		expecting	26.3	- 7CW [5] - 2.5	42 .	found to	18:4
drum (3) 35:16	35:17	covironmental	[14]	experts (2)	12.4	ifinidan us	40.17	18:7 27:12	10.4
35:20		210 31 1418 28-22	416 40-14	59.8		54	014	43:5 43:6	44:11
drums (1)	13:16	42.9 43:23	43.23	Expires [1]	6 3-23	fieldworkm	18 I I	53.22 54:14	
due [2] 56:13	61:12	49:25 51:23	5.:24	explosive	25:1	figure is	\$-3.6	.four [1] 26:1	
	13:20	52.5 53:2		26.14 50:4	50.20	9.5 30:12	46:22	four-stage [1]	26:22
duplicate [1]	54:15	cnvironmental	-type	i <u>52.22</u>		52:20		fragments [2]	12:21
during [6]	8:12	(I) őüll	•	explosives	i 2.17	figures (1)	8.17	12 21	
9:7 9:20	29:1	EPA [6] 3.24	3.25	- 16:23 - 22:11	25:8	filen 45:12		framc [7]	T:21
29:6 33:17		24:15 37:9	45:5	19.6 19.0		filin 62.0		10:19 23:14	28.15
dust [1] 52:22		23.7		-: 50:13 - 50:17	-	filled at 60.18		+ 43:19 + 43:24	49,22
E [2] 2:1	2:1	equipment()	49:12	expression	s.; =	final usus 20	18.20	Trankly (2)	45:9
early [1] 29:6		CTA [1] 56:6		extensivem	6-20	25:3 37:9	43.8	frontes for	
easier [1]	19:16	ercci [1] 59:23		extention	12.77	E 43:11 - 43:16	43:20	fice (i) 2.6	
easiest [1]	28:6	EKM [6] 1:22	1.23	14:1 19:8	2(+14	44:3 44:7	44 13	front [1] 40'5	
casily [3]	17:5	- 1120 - 213 11-42-36	2.3	22:12 29-14	32.9	- 4 4 4 12 - 4011 - 6 31 12	22.24		
19:11 19:14		essence ut	\$ 1.00	32.22 47.24		finalization	17.1	Tunction [1]	4212
cast [1] 9:14		essentially	1994 1994	'exterior [2]	22:15	41.5 47.5	47.7	Turnace [2]	34:8
casy [1] 59:9		evaluate m		58:14		finding in	71-3	furnage us	
effect [1]	5 0:1	48:16 50:3	-0.9	extract [1]	27:1	findingsm	1 10	funaces [1]	·+
efficiently[1]	11:18	evaluated in	30.7	extraneous [1]	33-15	finen 301	• • •	fusciti 12	10.1
effort [1]	24:1	58:4	• • •	1acc [9] 7:25	1667 1672	finishe	43.10	10×CS [3] 11:20 17:5	
efforts (1)	29:o	evaluating [2]	25.3	13:21 14:4	1412	fire in 33.03	- 40 100 - 21 1X	Engine	15.7
Egnaczyk [43]	1:22	20.7		190	111.1.	faretaer fin		45 T e0.1	· · · ·
2:24 2:24	5:2	evaluation [2]	4.23	faces 11.14-2		11 2 C C C C C C C C C C C C C C C C C C	1210	FW-10.00	3.16
2:8 5:18	11:9	25:17		facilities m	يد () ش	43:10 52:9	55 26		
16:23 18:23	10:19	evaluations	0:3	52.9		Fisher (20)	2:	Gullunan	1.1.7
19:19 19:24	20:4	evaporation [2]	22:17	facility no	223	2.5 3:5	3.8		44.00
20:6 21:8	21:10	23:1		21:5 22:7	23.7	3.11 4.12	416	44.23 45.3	45:11
21:17 24:20	26:18	evening (3)	2.2	25:21 35:22	36.1	5.14 41:23	57 92	57 IS - 57,22	
27.2 27:6	28:13	23 214	4,14	-1.5° -15.51	10 <u>2</u>	28.23 - 29.13 19.14 - 117		gang (1) St. Re-	
36:4 30:6	30:8	218 		fact [12] 11:24	1211	$\sim 1 - 20$		general (1)	39 22
37-17 37.20	38/4	everybody	1112	13.2 32.24	31.13	~ _		generally 161	2: 3
38:10 38:12	38-15	everyone's H	o.25	20:18	+3.2° Se, 1X	"ve-toot in	23.22	26.2	27.20
39:3 44.25	45:5	exactly (%)	4 4	5, 17	11110	fintis) 48 cl		- 5 - 4841	
5n:1 56.23	01.3		32.4	factoria	; ;	floor max 3		generated ())	N 26
cight [2] 52.18	52.24	40 - 45 12	1.1	failes 36.8	• •	flow 11 T3 -		geademan (2)	\$3.16
cither [2]	le:S			fairly o	•••	flowing	- 2		
28.25		3:3 32.20			· - ·	1 2 27 1V	-1.	geological ()	17.5

_.

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

Index Page 5

)

RA BOARD M	1EETI	NG		Condenselt		gcologi	ist - leg	_
geologist [6]	1.23	high (3) 18.9	· · ·	impermeable [3]	inventory (it = 45.02	keeping (1)	17/25	
2.15 2.25	3.3	587		41.5 41:12 41:15	investigate (5) of 8	kind (21) 5.5	- <u>5</u>	-
3.24 21.23	_	high-pressure [1]	implement [1] 18-15	8.3 28.2	7,21 \$223	5 22	
geophysical [2]	7:25	53.3		implemented [4]	investigated [4] 9 8	- 10110 1414 - 77:8	27.23	-
48:9 Completion	7.17	highest	28:8	1 6:4 7:1 28 15 9 20 20	- [29:11 33.1" - 55:5	27:24 30.15	34:18	-
	3:13	highland(1)	27.24		investigation ing	37:4 37:22	37/23	
GERLENE [2]	63:3	highlighted	\$4.23			37,24 43,2	45:17 p	-
03.22		highly (1)	49:4	linaccossible (1) is t	23:6 28:14 28:16	60:20		_
given [1] 59 4	20.10	himself()	50:16	linch on as a line for the	28:22 29:6 30.1	Kneebone	55-13	
giving [2]	20:19	historic [3]	55:15	linch [2] 58.5 56.25	42.10 42.20 43.17	knew [1] 23.4	٦	-
alad as 5 20		55 19 5-18		4717 496 5117	40:25 4118 49:5	knowledge [1]	52:14	
grau (1) 26-25		historical (2)	52:13	includes on 53 by	investigations ()	known [2]	54.9	-
goar (i) -0.20		2011 11.14		indenthus 42.23		1 01.18 1 1 4	2. J.J. F	_
	7.1.1	: nits (2) → ··2+	4 (22)	Indian (2) 304	52:17	iaboratory [1]	74/10 1	
55-18	27.1	nogoack [1]	48012	3:16	involved (2) 40-15	1ack (1) 29:24		-
leood as 2 2	2-14	noies [1] 38:19		indicated (2) \$2.22	52:7	1agoons (6)	-4:23 -57:3 - 2	_
4:14 5:8	18:25	nope [2] 2.9	53:24	53:23	irregular [1] 27:22	57.6 57.8	- 1.7	
25:6 45:18	59:4	hopefully [2]	26.10	industrial (1) 49/2	issue [2] 43.22 53.6	land (4) 35.2	41-14 F	-
Government [1]	25:13	49.44 5-4.10	·o =	infiltration [2] 22 17	issues [3] 18 16	45:5 57:23		
gradient (1)	25:4	not [2] 22:12		23.1	29:7 47.18	land-based [7]	-lo:7 [-
graffiti (3)	55.2	numan [6]	2012	information [10]	itcm [8] 12:4 12.8	16.12 17:5	31/2	-
55:8 55:11		1 2000 - 2000 - 1 1500 - 2002 -		7:25 31:3 31:13	12:9 12:12 12:12	E 32:16 40:23	47:13 1	L
great [3] 26:5	56:3	Huntsvilleum	124	+ 32:10 - 32:10 - 32:12	12:10 12:17 12:22	landfill(12)	4:25	Г
59:4		1 S2 1	T			28:24 29:14	31:17	_
Greatly [1]	28 4	hydraulie m	30:2	initial (a)		3.:25 3.2:13	33:2 F	Ē
ground (2)	3:19	I-40 m 22.3	• • • •	9:20 15:14 28.22	12:18 12:23 13.3	36:13 36.22	50.0 F	-
27:15		lidea (a) 23/22	74-S	inner (2) 34:5 30.24	18:3 18:4 37:2:	landfill-type (, 11	
groundwater (17	7]	34:16 54:9		innerfingering ()	37:25 38.16	47:8	'' I	Г
23:5 23:11	23:12	identified (18)	6:14	28.2	itself [13] 14:0	landfilled [4]	32:5	-
24.2 24.6	41:20	81 9:6	9:19	inquiries (1) 54:17		32:8 36.19	4014	ļ
44:2 44:4	44:6	13.13 19.25	21:4	inside rai 20:14	- 1 (<u>.21</u> <u>- 12 15</u> <u>- 50.40</u> - 1 35:10 <u>- 38 4</u> <u>- 38:1</u>	landfilling [3]	28.23	Г
45:23 47:5	47:18	+ 21.12 - 28:24 -	29:6	55:2	49:3 49:12 58:6	32.2 33.5		
48:16 48:18		12:2 12:2	15.12	inspection (1) 50.15	Jacobs (20) 3.18	landfills [2]	40:12 l	Γ
Group (7)	29:5	10.0 TT.4		installation (13) 6:1	318 10.18 15.20	j 4. 1	i	г
29:10 29:15	30:11	identify is	30.16	16.20 10:24 28:18	1e.20 30:3 30.5	large [4] 17:7	32:22	1
34:17 34:23	35:5	: 47:23 47.24	45.15	29.1 29:2 29.4	30:7 36.3 36.5	54:19 61:9	1	Г
growin [1]	35:9	60:9				larger [2]	30:18	
guess [4] 16:24	46:2	identifying ()	41.24	-: 34,13 - 32019 - 34 -::=====11========================	- 1 2712 - 2713 - 2713 - 1 8757 - 37511 - 891	j-1	2.6	1
4/01 2018	6 7 11	ifsm 1890			59:1		212	1
guys [2] 49:18	57/15	12100 141 53:9	54:2	installed (c) (2.1)	Jane 10: 1 23 3.2	100 0-0	12 17	
[nabitat [1]	10:2	54:19 55:24		1115taned (6)	5.2 21:22 38:5	3480[3] 20.32 5245	43.12	1
hand (5) 41:7	50:15	igloos [14]	52:1o	247 253	43:12 43:15 44 1	latern aster		
20:25 2:02	62014	52.18 52:19	53:3	instances (i) 27/23	47:1948:24	Internition	4-1	•
nandle (1)	5012	53.17 54:8	54:10	intact (i) 12:8	job [2] 21.24 59 5		14.	Ł
handles (1)	/18	- 00112 00110 - 5557 - 5568	58:8	integral in 52.0	Joc [6] 4:7 20 1	- Jaierally in	11-2	
happening[1]	48:22	58-12	214.0	integrator (1) 42 T	- <u>1915</u> - 4011 - 2015		14-22	ł
hard [1] 47:10		ignitable	3n/8	51.22	ing	lavers u	32.23	1
hazardous [7]	32:11	H 111 55.6		intend (1) 54 1		leachateiai	41.10	
35:21 35:24	2001	illun olis	<u>51-4</u>	interacted in 5000		$\frac{1}{4} \frac{1}{10} \frac{1}{4115}$	41.17	I
bood 25.7	41.0	illustrated up	37013	interest (2) 50.3	58:18 58:25 59.1	icachine (4)	22-1	ı
hcau[1] 20.7	75.15	immediateuu	2.142	n3.11	July nr 49 23	22:5 20.24	49-1	'
	22:15	imenet	_ 47.4 M	interested (2) 54.2	-500	3 lead isi 42.2	52:5	Ł
		impactie	17.17	62:2	Junction (1)	52.12 54:21	57:20	
		10.0 15.1		interim 121 p17	Juno/July	. lead-based in	49.11	1
HELDIN	1:10	impacted as	10.21	461		leading in	22.23	ī
[Hello [1] 59.21		2113 24.9	1972) 14.18	intersects (2) 31.1	JURISALCTION (2) 4 (4)	least or 37.13	58.12	'
hclp (1) -43-13		14 26 35 19		31.22	Kutzing	Patron 121 - 12		Ţ
Hendrickson	2)	impacting ())	2 3	interval (i) 23.2	, NALLINA (11) 	Hom man	10.55	1
3:23 3.23		impanaled	40	introduce pi 24-	41.25 48 7 41	icaving (1)	• • •	1
hereby D	63.5	impermeabil	itym	- 13	- 70.23 5		1.7.1.7	i
Herren	ц. С. ,	2 18	2 4 ⁻ 1	introducing () - 11	n <u>1</u> 14			
N - D - D				inventoried (a) of a	keep (i) so i	10g (11 - N 23		

_ · _ ·

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

-

Index Page 6

RA BOARD MEETING Condenseit		legislation.	OCCUTE
Ilegislation (1) (b) (* Malcolm (2) 2.18 members (5) (* 13 52.22		42.5	
length (6) 717 1819 2711 5514 60.24 61.8 61.9 most (9) 5.2	5 - 25	neither [1]	►3 L(+
9:17 13:13 13:21 53:15 56.9 61.7 601.24 616.45 12.10	:22)	New [20] 1-12	2.15
15:22 33:1 manager [6] 122 memorandum [1] [5:17 10.4	310	3.18 3.21	47
level (3) 18:2 25:16 1:24 2:22 2:25 20:9 55:11		e 15 18 21	18 23
$\frac{1}{25:17} \qquad \qquad \frac{1}{42:6} \frac{51.16}{51.16} \qquad \qquad \mathbf{Memorial} (1) \frac{1}{4:16} \frac{1}{10} \frac{1}{1$	121	20.2 297	10.13
$ evel_{[8]} _{[5:19]}$ manner[1] $ ^{3:19}$ Menapan [2] 4.1 motor [4]	37,19		46.10
$17:13$ 25:12 25:12 map_{12} 13:14 23:11 4:1 37.21 37.21 37.22	37 22	5, 11 53.2	55:17
25.22 25:22 28:4 [maps (1] 5:12 [mention (1] 60.4 [moved [2]]	12.22	next (7) 25:19	°6.9
52:22 March 121 53.12 mentioned 111 $3^{-1}3$ $14:24$		26.11 44.9	52-16
Library [4] 111 63.14 mentioning [1] 14.3 moving [5]	23 M	5-19 59.20	
$\begin{bmatrix} 44.24 & 45.3 & 45.11 \\ 1 & 1 & 1 \end{bmatrix}$ March/April $\mu_1 49.21$ mere $(\mu_1) \mu_1 24$ $24.11 = 25.25$	33 21	mon-detect (2)	47.25
License [1] 63.23 MARTINEZ [2] metal (7112.21 15.1 Salar)		48.1	
light (1) 47:11 1 63.5 63.22 1 34.6 34.8 34.10 MS (61) 2.21	3.4	nook (11, 50, 14	
line [3] 15.10 50.9 Mary [10] 1.23 + 34.25 35.13 54.00 24.20	- 10-12 - 15-16	BOF IN 63.10	
50:25 3.2 5.2 $21:22$ methods (1) 54.6 $21:58$	27.14	north // 159	18:8
liners μ 41:16 38:5 43:2 43:14 Mexico μ 1:12 42:148 27:21	28.6	2013 20:0	
liquidation (1) 50:13 + 44:1 + 4^{-1} (9) + 48:24 + 2:15 - 3:19 - 3:22 - 3:0.3 - 5:0.5	397	northern III	25:21
list (1) 60:25 Master's (1) 52:6 4:7 6:16 18 21 30:3 30:5	38 E	+ 2×:+8 33-3	
liversi 11:7 11:9 material mi 14:13 18:23 21:2 297 38:25 41:25	42:13	northern-own	edin
11110 11114 12115 14422 169 18.14 1379 3940 4323 42214 4244	++ 11 12 11	60.9	
located (14) 2/6 28:1 31:1 31:9 46:10 51:11 53:2 4-123 45:1	41,14	nothing a	13-1
5.25 6.11 6.21 31:23 34.5 35:19 55:17 44.5 50:10	- 197.44 51 14		54:14
7:24 29:9 30:18 50:25 Mexico 8 (3) 29:14 50:25) 54.5	noticed u	44.15
31:6 31:12 32:22 Materials [42] 9 2.5 1 40 15 41 4	55.10	noticeu	1.16
33.2 33.12 33.15 105 11.03 11.05 DUBRION	50.8	notices [1]	
35:13 13:6 14:7 14:11 19 22 51:11 55.9 56.2	1 - ber 2 3	nonnications	11
location [15] 9:18 14.16 14:18 14:23 01:17 57:1 57:2	57-3	1 H0112	7.0
13.16 13.20 20.15 15.13 17.8 $1-15$ migration [2] 18.14 15.76 57.7	s= 9	BOW [32]	15-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 0.10 50.1	10.10 14.01 25.6	26.7
23112 - 30114 - 30113 - 3215 - 3217 - 3219 millitary (i) $2110 - 3110 - 320 - 3300$	191	2011 - 2010	34:15
33.7 33.10 32.16 32.23 32.25 Miller [5] 4.14 4.4		35-0 37-4	37.4
133(21 - 34(15 - 34(15 - 59(21 - 59(ise Ei	4 .7 41.23	42:1
$\begin{bmatrix} 100011001111 & 0.00 \\ 0.0011 & 0.001 \end{bmatrix} = \begin{bmatrix} 0.0011 & 0.0011 \\ 0.0011 & 0.001 \end{bmatrix} = \begin{bmatrix} 0.0011 & 0.0011 \\ 0.0011 & 0.0011 \end{bmatrix}$		42:5 42:9	42:18
132 - 1323 - 1312 - 1323 - 1323 - 1323 - 13124 - 11100 - 13124 - 11100 - 13124 - 131	6) 1972 1 57 73	43:8 43:22	40:10
25-4 30/12 30:23 38:20 38:21 38:25 43:00 publication		47:16 49:20	52:8
47:23 40.16 45.10 minimize(1) 18.16 indimension (2)		· · · · · · · · · · · · · · · · · · ·	24.21
100k nst 5:10 = 17:25 matter (1) $03:12$ minimized (1) 10.5 Mumby (1)	3.15	08.1 - 29.0 	5.31
20:11 20:15 23:5 maximum (1) 25:12 minor (1) 52:2 minor (1) 53:5 37:15 3	1 37.12		12.1 T
25:14 25:15 25:17 may rate 7/2 = minority (1) 50:17 37 8 38 2	38.14	200 28.8	20.11
$26:2$ 23:10 39:13 $12:14$ $14:14$ $12:14$ minus p_1 40:18 38:14 38.2	2 39 2	4121 200	
39:15 54:1 58:13 (18:12 22:9 14:9 minuten) 52:22 55:1	55 9	numbers ()	25.15
60:1 24:10 24:20 25:25 misinterpreting (1) N(1) 24			33.70
looked [8] 10:16 (32:11 32:11 33:13 37.21 name 111	<u> </u>	namerous	-2.41
23:18 24:17 40:11 45:7 45:9 40:8 (missile m) 51:17 114 3.4	214	One 21	
40:13 $40:19$ $40:25$ $40:12$ $50:24$ $55:3$ $50:23$ $50:23$ $50:23$ $50:23$	1 5014	0]\$/QD ₁ 32]	<u>p:10</u>
+511 - 55:13 mixeino (1) 36:15 - 52:3	n2 5	612 613	7 (24) 0-04
looking [24] /9 McCalister [3] 4-3 45:10 45:13 62:8		14 504	111.16
1111 8:24 9:10 4.3 58:17 mix 11 27:22 nationally 1	ų <u>502</u>	1973 13.6	10 10
16/10 25/24 34/16 mcan (7) 11/22 20/2 mobilize (2) 46/23 nationwide	m 3423	1+25 15.5	- N
$3015 - 4017 - 410 = 24.6 - 26.20 - 26.17 - 100002021 - 7.21 - native \beta_1$	21-23	in In J	:
43/18 44/18 40/0 30/10 30/21 mobilized (a) 30/0 32/2	1	19 N 19 V7	29.74
46(20 + 47(22 + 49(20 + mcaring))) = 10(23 + mcarinz(21 + 10(23 + mcarinz(21 + 10))))	15.25	2 61 - 29 22	1. 2
50:19 52:9 54:21 (47:22 Distance 50:23 (17:20		34.5 37.6	49.24
58:11 - 60:10 - means (3) - 16:25 - monet (4) - 25:25 - naluf (2)	1.9	44 11 45.24	48.15
$ looks_{\{2\}} 26:2 + 48:15 + 21:16 - 24:14 $ moleculs $[1] = 20 - 32:10 - 32:10$			_
loops (1) 50:5 (meant (1) 55:18 money (2) 54:5 Navaio (6)	3 (4	objectives in	Ċ.
low 13 28:10 49:1 mcasures (1) 18 16 oct 11 316 317	- 434	observed ())	58.19
58.7 meet (1) 3nin monitor (3) 20.22 (3.5)	:	obtain (ii	26/24
liow-volume (n. 55:3 meeting (no) 1.2 41:10 43:13 no.ar (4) 43:	· :2	obviousm	33-10
Lynn 11035 24 3- 41 monitored 11 2316	2	obviously	41.17
Mini and the second sec	9 - 51		
101 (21 - 0.00 - 0.00 - 50 (0 - 50 (0 - 50 (0 - 50 (0 - 0.00 -		occurred	- <u>2</u> 0
$ \frac{ \operatorname{main} _{21}}{ \operatorname{main} _{21}} \xrightarrow{\text{result}}_{12} \frac{ \operatorname{member} _{21}}{ \operatorname{member} _{21}} \cdots \xrightarrow{\text{result}}_{12} \frac{ \operatorname{member} _{21}}{ _{21}} \cdots \xrightarrow{\text{result}}_{12} \cdots \xrightarrow{\text{result}}_{12} \cdots \text{resul$	<u>.</u>	achuring	15-11
maintain () 3.24 44.20 s. T. (2.46) needed of	<u>-</u> .	S OCCUTED	50 D.G
majority (i) 2012 012 012 012 morting (2) 100 morting (2)	-	OCCUTA[1]	

_

-

-

--

 $\boldsymbol{\smile}$

)

. _ .

Index Page

RA BOARD N	AEETI	NG		Condense	lt			OCTAVIA	- quite	Ŧ
OCTAVIA III	1 1 !	Organization's	111	46.15 46.16		34 [2		prohibitive	18.4	I
		Sel"	111	neriodically	13.14	nestru Jod		project in i	1.22	ī
	12.1	• O IL		periodicariy [1]		Proactice and a		1.23 1.24	2.22	
	1 - 1		1.1.2	permit [2]	20.2	posts 1 + 1 +		2 25 3:3	21:23	Г
3118 5010	-0.	Ourserves [3]	4.1.			potential na	10.2	2:23 42.6	51:15	-
office us	1.0		e	permitted	С. _		1010	52.8	-	٢
55.15 55.10	7.0 57.0	outlet [1]	29/14	9:12 40:5		1 100 10 10 01 1 100 15 11 10 01	47 141	projected [1]	15:14	_
57-13 63-4	51.7	outnumbered	1	permitting [1]	23.12	motortiolly	12.10	projectile	37:18	Γ
offices us	22.5	59.2		perpendicular	(I)		12.10	projections (1)	16:14 -	т
offices [1]		outside(1)	41-19	33.23			18.17	projects (1)	51-11	1
		overflow [1]	22:16	personnel [2]	40.5	-peuis ();	10.1 11.11	propelled u	37-74	Т
	+7.12	overhead [4]	5.10	40.6		prc-1902[1]	22 24 74 35	properied (i)	50.17	
old [3] 23:13	31:17	[7:3 T 12	47-19	phase [3]	10.15	pre-treat (1)	2021		2000	Т
30:23		override(1)	18:13	- 4312 - 4312 -		precipitate [1]	27.9	property [s]	0.1	-
on-site (13)	10:0	overscent	51.19	Phillip (3)	3.21	preliminary (5)	0.9	i a 13	2	l
10:12 20:10	20.22	oversight [4]	20:17	39.9 40:25		261 45.14	45.0	nronosalia	39-18	т
39-13 39-18	40.1	20:17 29:20	35.1	photo [2]	24 44			39:20 44 14	57:10	L
40.6 44.8	58.17	overview [4]	4.17	22:0		present [3]	¢	nronosed (4)	- 7.5	Т
on-the-job m	52.6	15:21 20:25	36.13	photos (4)	10 10	3_124 _ 2911		44.9 50.5	58:1	
	1.1.0	overwhelmed	1]	52(8 24(12	21.14	presentation [6]	1 - 1	DTODOSIDG (1)	53-1	T
15:6 15:7	19.3	59:10		pick [2] 12:23	25 22	- + 19 - 2.44 	20.19	proposinging	5.72	-
32.20 34.2	34:15	own [2] 4.2	12:12	pictures [3]	15:7			prospective [13]	0.0	1
36:20	•	P III 21		47.8 22:25		presented [5]	56.24	1 1 5 1 7 7 7	22.7	٦
ODE (31) 5-14	5.20	P M m L IS		pieces (2)	12-7	58.25	200.44	24.9 25.20	31:15	'
6.17 0.13	8:5			12:8			1 7 1	33.24 51.15	51:22	٦
8:22 11:5	12:14	packing (4)	26. 26.75	pilc (6) 7:24	8:15	presenter		protection (2)	36:23	
13:10 13:18	13:20	1 30. 30.3	20.44	9:20	15.23	presenters ()	29.3	43.24		Г
14:2 14:20	19:5	paint (2) 49:11	4902	28:16		presenting 3	24.25	ntotocol u	74-18	
26:7 29:9	29:11	pallets [3]	34.20	pilot [4] 52.16	53-4	37:7 59:5		providera	1.1-17	I
30:14 30:15	34:2	34.24 32:10		553:10 - 53:25		Preservation (2	155 15	310		٦
35:16 30:20	+2.22	paper [1]61:10		pipe [1] - 36:23		55-19		public con	1-11	•
44:13 44:2 56:10 56:15	56:19	Pardon	36.4	place (1)	11.14	preserved [1]	55.4	37 340	3:11	-î
58-11 59-5	. (* *	parliament	61:17	16:21 10:25	17:17	preserving(1)	17.20	40:7 43.20	43:21	-1
0868101 18:24	58-19	part no 616	6.16	- 18.1 19:24 - 19:24	24.12	President m	61:18	: 44:16 44:16	44:21	i
	13 11	14.24 17.22	20.9	41.2 41.0	41 11	pressure [2]	12.2	44,24 45:3	46:13	-1
17:17		23:6 23:25	35.2	a least ou	11.10	Ĵ 58:7		40:15 59:2	29:6	
00000 (0) 3 20	5-74	- 5404 - 610U			11 10	protty (6)	13.7	- 6.1⊒1 01.2++ ∠0.1	64122	_
6:2 30:6	47.6	participation	21	- 31-24 - 34-18	37.3	14,4 45.18	45.19	nii I bliantine cu	52.71	
48:4 58:2	62:1	61:22 (1.13)		nacementuu	ר טר	20:15 - 59:19		publication [1]	30:24	I
62:1		particular [2]	40115		18.2	previous [3]	9.2	Pucrco [2]	24:3	
operating [3]	46.4			18:21 46:10	40:15	34:13 37:1		2019 1		
47:12 47:14		particulariy	1.56.11	46:19 48:17	57.3	previously [1]	20.32	puntit strie	100	
operation [7]	9:12	parties [2]	20-20	61:18		principally (4)	17.15	punctared [1]	35/19	1
10.18 11:18	17:22	6511		planned())	9:21	privy (2) 53-16	53-19	purpose	n1:20	I
23:4 37:3	46.5	- parts (2), 18:16		infanning (i)	6 D9	problem [2]	5.15	purposes [1]	35:3	i
operations (15)	10:23	past (9) 6 4	b:ń		n:1 ⁻	5:15		pushed [2]	45:17	I
10:24 L1:17	13 0	5.8 let5	20.21	2013 (4) 0.12	•••	problems in	45.22			1
13:8 14.25	15:3	21:12 28.21		n Instan (N. 1873)	10.17	procedure in	26.17	Dut (10) 5:9	n:14	ģ
20:14 22:10	25:5	2201		11411(2) 40.24	2,12	procedures	54.14	12/16 23.13	34:3	1
33:18 34:6	24:14	Pat (2) 405	59,21	players [2]			- 7 / 54 D	39,19 45-13	10 h	
3 (1) → ± (= 3)		' Paul µi e3:-		DI CONTRA DI		proceed(i)		56.24 61-10		
opposed [2]	39°1-	(pay 1 57:23		Plus [1] - 24		proceedings	9 62 12	qualified (1)	24/16	
20.20		PCB11 49:14		point [13]	2012	D		Quality 11	3,19	
option 4	1010	DCB111 9/16		8_0 12.2 1515 1513	1.1.1	process 14		ouantify (1)	31.11	
1/124 4444	211	neoniciai	55:11		25.2	1.100 LP 11 1.100 LP 12	20.00	quarterly (2)	59 :4	
options [4]	10:4	, 100 pro (2) - 39 j 1		100 336	45.2	2	5	54 (* 1997) 1997		
10:2 10:10	20.42			nointsui				onestions (15)	ž e	
ordinance [25]	e.21		57.15	pomisti	• •:• •	n2:1		5.15 21.21	39.3	
	11.10	percentra	22.10	poor [2] = 5.17		nrocesses 11	24.24	4.23 45.14	48.18	
	10.21	percentage	52:20	portion (9)	101 I	o rocessing u		54.25 57.1	-18.22	
- <u>1121</u> (122) 	12.15	perform()	32.12	······································	N 1.3	processing ()		SN 24 - 59 9	59.11	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.3	performance	D340-1.1	اشاخت مرجو دانل جرور		- GESSIONAL	-	59,13 - 22,12		
18 10 30 4	35.)	-performed in	4.35	nousihilitio		profiles ()	. ⇒ + .	quick (1)	4.4	
37 25 37 25	38.0	performing :	1 5 3	possibilities	• 1 4	program (10)	р н	quict ₁₁₁ 59 12		
49.4 4 .2	51.25	period in	22.25	possible [4]			, -	quite (3) 15 22	1-4	
organization	171514	29.26 44 6		an I maanabilaan		الم الأن التي التي التي التي التي التي التي التي				
1.52.24				possiony (2)		·				

.

Index Page

- _.. . . _
| RA BOARD N | MEETI | ING | | Condense | lt i | | | quote - slope | | |
|------------------------------|---------------|-----------------|---------------|--|----------|-------------------------|--|---|------------------|--|
| quote [1] 55 8 | | 25.12 n1:9 | | TCSCTVC [1] | 59.25 | <u></u> | - :4 | serve (1) 61:19 | | |
| R ₁₁₁ 2:1 | | related [3] | 2(-10) | residualm | 2 le | T 15 - NUT | | SCT [6] 0.15 | 6.24 | |
| railroadm | 55 [1 | 29:8 03.13 | | residue isi | 115 | runofi 🖂 | 18.18 | 12:1 40.1 | 34-13 | |
| ran (1) 7:18 | | relative (3) | 29/23 | 13.15 13.22 | 45 a | runs (3) 15.23 | 3-113 | UN N | | |
| | 53 A. | 29:24 40:11 | - | 34.24 | | 31.20 | • | settle (1) 22/22 | | |
| random[i] | 23.24 | released in | 43.20 | resolution m | 37.9 | Sm 1 | | settling (3) | 22:15 | |
| range [1] 58:2 | | main | 1.516 | TOSOUTCO (A) | 37-13 | (0)) | | 26:22 27:8 | | |
| RAP [5] 6:5 | 6:6 | 40.8 | 1 | 10300100461
1417 45-25 | 521 | sale 121 (2.22 | -7 | sevenui | 52.18 | |
| 16.4 28:21 | 40:21 | temaining | : 1.15 | 55:23 56:5 | • • • | Salciy 19; | 0 == | coveralis | 0.5 | |
| RCRA [9] | 6.2 | 1 35 19 | 1- 10 | resources III | 11 | | 10 10 | - 17 14 - 13-9 | 33.11 | |
| 6:16 6:17 | 9:12 | Temains (A) | 19.6 | Tasponse in | 10.15 | 50:4 50.11 | | 3.512 33:14 | 15.22 | |
| 35:23 30:3 | 36:5 | 1010a1113 [4] | 2120 | 604 | 40.11 | safety-wise or | 155 | 54:20 | | |
| 30:10 42.7 | | remedial m | 23.6 | restoration | | | ن م
ن م | shape (1) | 13.6 | |
| KDA [2] 28'8 | 28:9 | + 42:3 42:19 | 43.17 | 2:4 18:5 | 40.22 | 1415 24 2. | · • • | sheer 111 56.13 | | |
| readings [2] | 27:17 | 46:25 49:5 | 49:17 | 51.23 b0:16 | 00:18 | isampled or | · · · · | shell (st 12.20) | 384 | |
| 2018 | 24.14 | 53:4 | | 61.5 61.16 | 61.23 | samples (i) | 1.1 1 2 | 38.4 36.13 | 38.15 | |
| ready [4] 11:22 | 26.10 | remediate III | 49:15 | restored [1] | 19.16 | int the second | 27.71 | shells (7) | 11:15 | |
| 49.10 49.10 | | remediation (2) | 48,21 | result [4] | 471 | campling un | 1 | 13:4 30:25 | 37:2 | |
| real[1] 20:17 | | 52:11 | | 54:13 54:16 | 55-20 | רויגר או רב | 0.0
13-10 | 37:25 38:8 | 38:19 | |
| realignment [2] | 42:14 | remedy (1) | 50:21 | results (10) | 4:22 | 24:18 43:1 | 43.2 | Shelton | 61.2 | |
| 51:21 | | remember 121 | 150 | 15 16 24:21 | 37.5 | -2.13 -48:1 | 52.17 | shipning (i) | 37-15 | |
| realize [1] | 15:6 | 28:7 | | 37:5 48.7 | 53:17 | 5+:4 54:7 | | short (1) 42.20 | 17:0 | |
| really [14] | 13:23 | remnant | 13.7 | 53:18 53:20 | 55.21 | satisfaction | 6.25 | shorthand w | 47.2
47.6 | |
| 17:25 18:13 | 29:24 | rempants (a) | 11-10 | reuse (3) 26:21 | 17:2 | saveni eu.2 | | SIGUARD | 01.0 | |
| 30:1 30:11 | 30:18 | 12.20 15.2 | 14.47 | 49:1 | | Sana in 19 | | SHOLS [2] | 30:20 | |
| 41-13 45-24 | 3317 | remotely (1) | 1 2 . : - | Freview [1] | 39.20 | 104W [1] 14:21 | | shove [2] | 5:20 | |
| 51:14 | -U. L | removal | 1.6.00 | ridges (i) | 48.12 | | | 19:0 | • | |
| TCaSOD 121 | 6:20 | 16:8 16:12 | 10.0 | RIFS [7] 42:20 | 45.24 | acute () (24 / 2 | 15.00 | 1SDOW [4] 8:18 | 17.2 | |
| 24:22 | 0.00 | 32:15 39:14 | 51.2 | 44.6 44:13 | 44 19 | SCONATION [1] | 12/20 | 4009 - CO(9 | 47.10 | |
| reasons (2) | 17.9 | remove 121 | 12-15 | 45:6 52:17 | | schedule [2] | 43:9 | snowca [4] | 47/19 | |
| 49:2 | ••• | 26:13 | • • • • • | right [27] 2:13 | 3:7 | 40020 | . . | (1) 2004 C - 20042 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1 | | |
| recapture m | 26-20 | removed is | 17-5 | 5:1 7:9 | 7:16 | scope | 8-4 | snowing [3] | 12:7 | |
| received m | 16-17 | 19:11 31:1 | 31:2 | 9:10 9:17 | 15 23 | screening [1] | 25.16 | i⊥i ⇒ 1.5
 | | |
| 47:24 54:17 | 40.17 | 35:20 35:21 | | 20:4 21:10 | | secured [1] | 40:3 | SDOWD [2] | 9 <u>14</u> | |
| recently (1) | 23.25 | removing [2] | 17-14 | 20:16 26:18 | 17.10 | sccurity [3] | 35.25 | CUDO | 22.72 | |
| Tecessiu | 67-15 | 18:14 | | 33.3 38:2 | 38.6 | 40:7 40:8 | | | - 2.2 X 2
 | |
| melaimuu | 02.10 | rep (i) 55:17 | | 45:5 49:20 | 52:23 | sediment [2] | 50.20 | SIGC [8] 5.20 | 7:8 | |
| meand | 5(| report [9] | 37:7 | 55:16 57:12 | 57:19 | 1.20.25 | | 34.9 35:10 | 38.19 | |
| recommend (f) | | 42:19 43:18 | 43:20 | 57:20 | | scdiments [1] | 27 21 | sides in 7:15 | 31-1 | |
| recommendati | OD [1] | 43:24 44:4 | 44 - | right-hand (1) | 7:12 | Sec [41] 5:19 | 7 - | sino (2) 7.10 | 21.07
10 T | |
| 17:24 | | 45:6 45:20 | | rinse (1) 22:12 | | 1 <u>1</u> 1 5 | 8.10 | signed[1] | 41.1
A.2 A.4 | |
| recommended | [1] | reported [4] | 5.5 | risk (1) 43:6 | | - F N 21 - 9 3 | 9.1 | significance | 1 2011 | |
| 27.10 | 56.00 | 30:21 33:4 | 0.5.5 | risk-based m | 25.15 | 1034 114
1036 1039 | 14.2
17.9 | 1999C
Similatan a su | 62.30 | |
| 62.9 | 20122 | reporter [2] | n3:3 | river (2) 24-3 | Ωr⊢ó | 1-2 i-n | 1 - N | significant [1] | 22:42 | |
| 02.0 | 6.17 | 63:23 | _ | 817 (1 short | | 15.11 15.22 | 199 | silts [1] 27.02 | | |
| | 2:17 | REPORTER'S | Say | Toadayay | | 22.20 23.20 | 30/20 | similar [1] | 27 lo | |
| Kecovery [3] | 30:12 | 630 | | יוסמנויי איז איז איז איז איז איז איז איז איז א | 1.4.5 | 3157 318 | 31.13 | 2 118 - 28 | _ | |
| | 22.20 | Keporters (1) | o 3 :4 | rocketia | 37.11 | 32,17 33:19 | 34.17 | single [1] | 61:20 | |
| rectangles [1] | 14140 | reporting 31 | 43:3 | 3012 3745 | 7 | ورينهي ويسو
وورينه | | Sil (1) - 52, 8 | | |
| recury [1] | 50:7 | 44:1 44:6 | | 35.7 38:3 | | 2110 28900 4 | an a | SILCTION OF N | 7.23 | |
| recyclen | 26:21 | repositories in | 43.21 | meketsu | 35.74 | 47.11 - 48.1 | 55 1 | 515 131 | 21 m | |
| recycling (1) | 53:11 | repository | 45:10 | rolaus 12.2 | | and the second | 737 | 32.4 42:10 | 43-10 | |
| red [1] . 23:20 | | represent [3] | 2:11 | | - (12 | 3013 | - ' | 4999 - 4947 | | |
| reestablish | 45:12 | 3.5 47:5 | | 52:12 | | south 111 55.1 | | site-wide [1] | 40:22 | |
| referred u | | representation | 111 | Rosaldin | \$5.15 | sulootad us | | sites (14) 7.24 | 9. 6 | |
| maarding | 30.25 | 10:11 | | nonfus set? | | serected pr | · · · | 9.20 15.24 | 19.21 | |
| manda | 37. . | representative | [2] | 1001(1) | 11.1 1 1 | -sona (20-35-21 | 029 | 1924 2013 | 10°D | |
| legalus [1] | 20:0 | 60:6 61:1 | | | +•• [.5 | sense (4) 11.9 | EE 14 | 2518 2817 | 20:17 | |
| rcgion [1] | 3:24 | represented 13: | 5:10 | rougniy | N2 23 | 1101 · 1 He | | oitting and | 1.1.2 | |
| regular III | 31:25 | 16.4 28:21 | | round [2] | - | sensitive [3] | 10.2 | SICHE [2] | 1413 | |
| regulations [6] | 29:5 | representing to | 12.16 | | | 1.1)
 | | cituations of | 12.1 | |
| 29/18 32.15 | 39:21 | represents (2) | <u>_</u> | KOY [3] - 5-15 | - | separate (1) | 47 14 | alidarie s | 4.3.au
5.5.au | |
| 29. <u></u> 41. 4 | • | 4* 12 | | 22.4 | | sequence (i) | 27.23 | SHUC [2] 2 21 | · - | |
| regulators [4] | 2008 | require(1) | 58 - <u>1</u> | run 3 ; | • | series (7) | | 811p (2) 3343 | 10 - 1
 | |
| | | research | 40.23 | 2019
600000000 | | <u> </u> | | stop: m in the | + i î | |
| regulatory (4) | 10.1 | | | La municipi | | | • | 1. Y | | |

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

—

-

-

2

 \sim

)

- - -

Index Page 9

RA BOARD N	MEET	ING		Condense	lt 🐪			sloping	- unde
sloping(1)	48.12	10.18 21.24	42.22	successful (i)	13.17	three-or [1]	2122	32.17	T
small [11]	10.1 e	52.9 no.19		such nr 2045		through 1491	0.12	transfer [2]	404 -
10:21 10:21	17:3	starting (1)	43.12	summarize (i)	n N	- 13 - 13 -	- ;4	4115	1
11.3 30:15	37:22	state [20] 6-15	18:21	summarized	37.5	715 717	- 23	transformers (2	і Г
61.25	01.15	18:23 21:2	25.13	Summary [1]	16-1	183 804 183 804	5 L5	49:13 49:14	-
soilus 1415	רריבו	29. 29.1	30.35	SUDIMOLIS	6.4	9 25 - 10 S	in ia Iù ia	transition (2)	2·19 I
14:23 20:12	22:18	41.13 51.3	51.11	23.25 44.19	47 22	11.1 11.5	13-10	219	л Г
23:5 23:8	23:18	55:15 55:17	55.19	48:2 48:20	49.12	13:12 13:18	13/24	transitioned [1]	52.12
23:19 23.21	23:23	56.22 58.3	619	54 24		14:12	14.20	trash (6) 17:15	29:3 T
32:21 35:19	430	statement 1]	49/25	sumps (1)	22 21	19.22 12.10 1.15.17 15.24	12.1-	- 127.0 - 127.12 - 33.13	эч.» Г
soils un 8.7	\$.5	status [2]	ъ·1=	superimpose [1]	7.5	17.19 19.25	20.8	treated in	13:5
9:25 14:10	14:18	40.1		supervision(i)	ft 5 7	22:14 24.23	25 24	treating())	19.21
18:1 20:20	31:10	stay [2] 5 18	60:11	SUFTACC [8]	8.2	28:25 30:13	3-7-22	treatment	53.11 -
44:10 45:21	47:13	stcam [1]	5.5	סבסב 10 בייק איצר 17 ק	-0 19 50 17	1 2106 - 2206 1 25 <u>1</u> - 2506	38.15	57-23	1
47:15		steeply in	19:13	41:5		4-19 40:14	40.18	trees (c. 747	Г
Solano [6]	3:21	Stell [15] 1:23	3.2	surveying[1]	20.25	throughout [2]	8.12	trench [10]	9.22
39.17 39.25	39.9	21-22 25/16	2122	survival	45.6	49:10		13:9 14:19	14:20
solicitm	49:21	27.14 27.18	27:21	system [12]	8:23	Tim (6) 4:5	40:10	15.12 31:8	32:20 15 T
solid m 40-13		28:6 38:5	38:5	22:12 30:13	31.18	45:8 45:16	473	JO 40 DAL	->2 -+ -> ->11
solidified m	50:24	38:25		; 36.23 41:10	4111	1 47.24 timor (10.51			32:18 E
solution	49.8	stenographic ()	J	- +102 - 4109 	+1:20	times [1] 40:21		33:13 30:15	58.8 m
solvent	77-11	03:0		evetems of	- 1-6	(IIICS [1] 24021		trenching [6]	8:3
49:8		step [3] 25:10	26.9	takes m x 25	-10			8.15 9.8	9-22 F
someone	5-19	ston-by-ston in	50-15	taking us	15.72	THICS [1] 21-14		10:14 13.18	-
Sometimes	30-10	- sicp-by-sicp [2]		tanking [1]	+e	1 M W = 02 [1]	24	trial [2] 29:19	29.25
somewhat m	6-17	stens (1) 44-16		1000KS [2] 22.19	- 0	1 M W-03 [1]	25.8	tried [6] 5:9	11:11 F
somewhere ou	47 11	Steve m 1-22	3-7	tapenting us	14.11	(INT [6] 4:23	22.1	21.6 31.5	31:11
SOFTV 171 4 1 2	5-14	5.7 18:20	37:11		2 - 0 0 - 4	- 2212 - 22110 - 1 48:25	فالعث	troth (a) 33/16	1
5:17 21:18	31:21	43:2 47:8			70 71 10 71	today m	20.8		Γ
38:12 57:7		Steven	2.24	team [2] 3:24	19.20 53.7	43:12 50:22	• .7.Q		5.12
sort [2] 27:23	58:2	still [6] 11:15	12.8	technology [1]	20.2	together (s)	5 10	501X 10025	12-5
source [1]	23.5	16:10 41:1	44:12	icrm [3] 21:5	21:15	o.14 20:11	34.3	14:13 23.22	24:6 г
south (1) 9:1		62:1		1001		5e:24		24:9 26.20	47.23
southern [1]	15:8	stockpilen	12:23	test [1] 39(23		Tom [9] 3.4	3.4	48:4 59:14	59:17 E
speak [4]	12:5	stood [1] 62:15			22.22	3.7 3:9	691.13 60.22	trying()	48:15
19:1 28:13	58:5	stopping ()	33:22	Towns	2.5 134	n015 - 0015 -	00 13	turn [2] 9:1	41.24
spcaking (1)	61:8	stored(1)	49:13	51-10	51.9	tonight (7)		turned (i)	40.9 1
spec (1) 22:11		strapping [3]	34:7	iexture ui	14 -	21:25 24:25	45-18	$TV_{1}v_{1} = 37:22$	
specifically [1]	38:23	34:25 35:12		thank up	47.	58,25 61:2	6244	WO 16: OH	15
specifications	[1]	STRETCH [3]	9:4	21.21 30.7	393	itoo (i) 18:4		10.15 10.5	19:12
39:7		introtobos (u)		-1:22 59:1	55.24	(took (i) 31.52		22/20 22.2	10.20
spending[1]	54:2	stretenes (1)	012	· o0,2 62:13	62:14	100 [4] T6	14.3	- 20-11 - 22-12 - 49-3 - 51-14	52.8
spot ₁₁ 9.17		Strictly [1]	40(2)	thaoks (3)	3:12	14/10 28.7		53.24 53.24	1
sprinkling (1)	58:1	structure [1]	4905	5.8 58:23		topics ₁₁	50.5	type [7] in 7	leui 1
stabilization 12	g17:16	Structures (2)	3408	that'll [3]	40.3	topography [1]	48.11	25.1 39.19	40:19 1
17:17		etudice	11.5	404 402	.	toial (1) Same		4.5 41.18	1
stabilize [1]	18:16	1 47 22 48.9	77.L'		2.11 58 st	totally pa	20.10	types (2) 50.1	55:3
stabilized (1)	19:14	study (7) 23-7	42.19	They we a	5 n 1	toward (2)	24 7	Typically (i)	41.19
stage [4] 12:19	24:13	42.20 430	+o:25		1.6.1	1n:3		U.S m (124	51:6
43:8 43:16		47.2 49:6		whick m 27.25		towards (2)	- 、	ultimate [2]	44 ju - I
stages [2]	43:11	[stuff]2] 17:15	26:13	think mean	• 2 •	7 11		5 F F	
55.24	_	subjection	12 e	•bible	-7 -	TPL ₁₀ 82.23		umbrella ₍₁₎	42:19
stains [1]	49-14	submission in	lo.17	-hiptor 12.24		track (3) -5.25	45.25	unable 111	Ci.2
Stan [2] 4.3	58:17	submitisi	34:20	thought in	م . (.	27.14		unclear (1)	-46:8 T
stand (1) 36:23		44014 45.3	·	2925	_ . c	tractiti 45.24		UDCOVCF [2]	16.3
standard ())	40.1T	n2.5		chatchiel 23.12	24.1	trade () (52.4		1 19 .	1
standpoint [4]	12.15	submitted (s)	2.15	2:1 25.23	27 1.5	truining [1]	<u>5</u> 2 m	uncovered [3,	14 i I
16:9 16:9	29:25	46.11 - 46.13 30.20	in ji	28 . 0 31 14	33.16	transcribed (2)	ex 7	1000_11	1
start [4] 2.13	48-1	oli 🔔 🗋	.	S2 14				uncovering	1111
48.14 49.23		SUDSHTLACC [2]		three-and-a-ha	alf (g	transcol [1]		an der inter	
started [6]	2.8	11 A 4 4 4		38-23		transcots ()	<u>8</u> 8	01/001 (6)	`- I

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

Index Page Re-

42.15 47.15	41-14	Verener	21	10.25		<u></u>			underlying	- zoac
55:11 63:7	·= 17	17:21	-1	F11-2	24.14 2.12 28.1 29.5		an_14 	14.55		
inderlying [4] 8:8 9:25	8:7 14:18	vertical 23:23	ly [2]	11.3	waters [2] 23.3	23-1	: years [4] 23 1 52:5 00:19 Tvotics 21.2	+3.42 51.55		
underneath [1]	8:7	vicinity	111	24:10	weatherin	53:13	28:11 4613	-+ 57 18		
understand [3]	26:19	Vince	J	60.15	welcome [2]	1.3	vield (2) 49/17	54.16		
48:5 60:12		Vincen	t _{E1}	34	n2.2		vielded	14:15		
undertake [1]	58:4	visual	2)	8.22	wells [10]	23.13	VOINTEG			
undertaken [1]	26:23	9:9	•		24.6 24:7	25-1	vourself	3.6		
undisturbed fr	1 20:12	volatili	zation	l (2)	25.9 25.23	26.1	413	3.0		
uneven [1]	48:8	49:9	50:12		10 10 4 (20 NGC1070 10)	+0.0	zero (1) 53/22	1		
unexploded [6]	6:21	volume	[1]	58:8	6-1 9-11	4140	zonchi 411-	1		
18:9 30,4	35:1	volunte	ern	61:11	28.24 29:13	33.2				
unfortunately	(3)	voted [1]	160:20		34:4 36:13	<u>3n:22</u>		1		
23:14 35:17	[2]	Walden	[22]	2.18	40:12 40:25					
unimpacted 12	24.5	18.24	18:19	18:19		10.2				
25:6		27.11	27:16	27:19	whatsoever					
init [22] 16:7	16:12	28:3	36:10	42:16	whatsoever [1]	03.1-		i i		
17:6 31:2	32:16	53:15	53:15	53:21	Whitman	5.1.1				
39:18 39:19	40:1	61.7	30:9 61:5	20:9	2:15 57.9		1			
44:11 46-1	41:19 46:2	walk-th	rough	00 \$110	57:16 57:25	12 1 1 1 1 1		i i		
47:7 47:12	47:13	7:23	lough	9[1]	whole [4]	14.24				
47:14 48:4	48:13	wall is:	5:12	14-4	17:4 30:24	61:24	1			
50:17 57:22		19:16	30:19	52.18	width [2]	32-22	•	1		
inits [1] 37:16		walled	1]	19:13	33:1		; 	:		
Jniversity [2]	21:2	walls m	35:10		Wilson [2]	3:17	1	ł		
4/:12		Warm	56:6		19.20 Windord		1			
	33:7	warhcad	tin	37:18		11-7		1		
annecessarily	[1]	wash (14	1	22:12	Wingstours	11 11	:			
unwieldlum	5-11	26.14	27:23	49.5	24 2:6	2:20		1		
ALT 104 4-25	5.15	52:16	53:3	53,4	2:23 3:1	3.3	i	·		
6:24 7:2	9:3	54-19	25112	53:17 57:4	4.19 5.24	S:12	1			
10:19 12:23	16:16	58:6		1 .	1 42 15 43.25 51 16 51 20	45.22	1 			
22:3 33:3	33:25	washed	[6]	26:13	52-13 53:5	53.6		1		
32:23 39:17	42:1	27:4	27:24	33.20	54:21 54:25	50-13	1	I		
-46:16 46:22	42(18) 47-21	58:15	58:20		59.24 61:24					
48:3 48:5	48:12	washing	5 (1)	54:9	Winkler [17]	4:7	1			
50:17 59:10	60:3	washou	t (9)	4 23	4.7 26.12	26.12	1			
pcoming [3]	5:1	22.5	22:10	22:19	20.20 27.4	34:5	!	i		
5.4 60:8		49.12	40.24	4	50.19 50:20	37.23 51.5		:		
ipper (i)	10:8	waster	- / - / - / - / - / - / - / - / - / - /	8-5	51:8 51:13	52.3		1		
10:18 ISBN 10-18	10:19	- γ ασιο (4 . - δ:ό	87	5.19 8:19	51.4		1			
23:5 22:25 20:10 to 0	29:19	9:23	9:24	10:9	within 191	13-15				
30:10 49:8	.	10:17	10:22	14:3	21:11 29:15	31/24				
151ng (5) 21:15	30:9	11.5	14:14	14:16	1 52114 40:23 1 5515 4014	44.11				
240 241/ 10101-5-15	37:22	14:18	14:22 15:19	15:12	WITNECC					
15081 [1] 2:15		16.2	19:8	28:17	WOMEN	01 (4	•			
フロロ(1) 2:7 いいいしょう	•. • •	29-12	39:23	30:25	woman (1)	02 N				
	28:25	31.9	31:23	32:5	WOOD [4] 54:6	24:16				
JAU [5] 12:4	29.20	32:6	32:9	32:15	- 27-27 - 32-12 - Waada isi			1		
47.24 3013 Maria 2017	22(1	- 32123 - 34 I	32(25 - 32(18 -	33.21 33.2	3019 3017	1312 25 In				
• [4] - 20210 - valid 55 *		35.19	35:20	33.21	workshon ()	50.23				
/4110 [1] 22:/	6.14	35.24	3n.1	NP:3	Worldin	50.0				
7411CY [2] 14-5	9:15	3n T	40:13	41:8	Worth					
alleysm	16:16	57.23 water:	1	2.00	12.25 lo:15	-21				
arious ou	20.02	- Walcf [24	1.515	18416	42:3 51:9	51.15				
cectation m	33 14	22.12	2510	26.25	5023 n0 ń					
vegetative of	34-0	27.10	28.8	21/18	worthwhile	ol 18				
verify	а. А.	<u>199</u>	24 10	31.2	wrapped in	4n in				
	-4.5.) -4	÷. :	1	4	AUTILO : 14 TH IN					
milving	1		2.3	2 N N N						

PAUL BACA PROFESSIONAL COURT REPORTERS, INC.

_...

Index Page 11

)

))

-

-

-